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Mean Curvature Flow

The mean curvature flow is a family of hypersurfaces Mt ⊂ Rd+1

whose smooth immersions ψ(·, t) : N → Mt ⊂ Rd+1 satisfy the
partial differential equation

(∂tψ)N = −H(ψ) (1)

where (∂tψ)N is the normal component of ∂tψ and H(x) is the
mean curvature of Mt at a point x ∈ Mt .



Applications and Connections

I Material Science (interface motion between different materials
or different phases).

I Image recognition.

I Connection to the Ricci flow.

I Topological classification of surfaces and submanifolds.



Some Key Works: Existence

I First mathematical treatment (using geometric measure
theory): Brakke [1978];

I Short time existence: Brakke, Huisken, Evans and Spruck,
Ilmanen, Ecker and Huisken [1991];

I Weak solutions: Evans and Spruck, Chen, Giga and Goto
[1991];



Some Key Works: Singularities

The most interesting problem here is formation of singularities.

I Collapse of convex hypersurfaces: Huisken [1984], extensions:
White [2000, 2003], Huisken and Sinestrari [2007-2009];

I Neckpinching for rotationally symmetric hypersurfaces:
Grayson, Ecker, Huisken, M. Simon, Dziuk and Kawohl,
Smoczyk, Altschuler, Angenent and Giga, Soner and
Souganidis [1990-1995];

I MCF with surgery and topological classification of surfaces
and submanifolds: Huisken and Sinestrari [2007-2009];

I Nature of the singular set: Huisken [1990], White [2000,
2003], Colding and Minicozzi [2012].



Huisken’s Conjecture

Under MCF, the vol(Mt)→ 0 as t → t∗ =⇒ closed surfaces
collapse. How this collapse takes place?
Besides planes, there are two explicit solutions of MCF:

I Collapsing Euclidean spheres with radii decreasing as√
2d(t∗ − t);

I Collapsing Euclidean cylinders with radii decreasing as√
2(d − 1)(t∗ − t);

Conjecture [Huisken]: Generic sing. are spheres and cylinders.

Partial results: Huisken, White, Colding and Minicozzi

Results:

I The spherical collapse is asymptotically stable.

I The cylindrical collapse is unstable.



Neckpinching

Theorem. (Zhou Gang-S, Zhou Gang-Knopf-S) Let d ≥ 1 and
(informally for brevity)

M0 be a surface close to a cylinder, Cd+1,

M0 has an arbitrary shallow waist and is even w.r.to the waist.

Then Mt is defined by an immersion

ψ(ω, x , t) = (u(ω, x , t)ω, x) (2)

of Cd+1, where (ω, x) ∈ Cd+1 and u(ω, x , t) satisfies

(i) There exists a finite time t∗ such that inf u(·, t) > 0 for
t < t∗ and limt→t∗ inf u(·, t)→ 0;

(ii) If u0∂
2
xu0 ≥ −1 then there exists a function u∗(ω, x) > 0 such

that u(ω, x , t) ≥ u∗(ω, x) for R\{0} and t ≤ t∗.



Dynamics of Scaling Parameter

Theorem. (Zhou Gang-S, Zhou Gang-Knopf-S)

(iii) There exist C 1 functions ζ(ω, x , t), λ(t) and b(t) such that

u(ω, x , t) = λ(t)[

√
d + b(t)y2

a(t)
+ ζ(ω, y , t)]

with y := x/λ(t), a(t) = −λ(t)∂tλ(t) and

‖〈y〉−m∂ny ζ(ω, y , t)‖∞ ≤ cb2(t), m + n = 3.

(iv) The parameters λ(t) and b(t) satisfy (with τ := 2d(t∗ − t))

λ(t) = τ
1
2 (1 + o(1)) (scaling parameter)

b(t) = − d
ln τ (1 + O( 1

| ln τ |3/4 )) (shape parameter).

(3)



Comparison with Previous Results

A result similar to (ii) ( axi-symmetric surfaces) but for a different
set of initial conditions was proven by H.M.Soner and
P.E.Souganidis.

The previous result closest to ours is that by S. Angenent and D.
Knopf on the axi-symmetric neckpinching for the Ricci flow.

Some ideas of the proof are close to those of Bricmont and
Kupiainen on NLH.

All works mentioned above deal with surfaces of revolution of
barbell shapes (far from cylinders) which are either compact
(Dirichlet b.c.) or periodic (Neumann b.c.).

These works rely on parabolic maximum principle going back to
Hamilton and monotonicity formulae for an entropy functional∫
Mt

backward heat kernel(x , t)dµt , due to Huisken and Giga and
Kohn.



Symmetries and Solitons
Collapsing spheres and cylinders are scaling solitons. The solitons
correspond to symmetries of the MCF.

Given a generalized symmetry group, Tλ, of the MCF, i.e.
one-parameter group satisfying

H(Tλψ) = b(λ)H(ψ) (⇒ b(st) = b(s)b(t)),

we define the corresponding soliton as

ψ(t) = Tλ(t)ϕ.

Related to the translational, rotational and scaling symmetries of
MCF are translational, rotational and scaling solitons.

We are interested in the solitons corresponding to the scaling sym.:

M(t) ≡ Mλ(t) := λ(t)M, where λ(t) > 0.



Rescaled MCF

To understand dynamics near a scaling soliton, we rescale the
MCF:

ϕ(u, τ) := λ−1(t)ψ(u, t), τ :=

∫ t

0

dt ′

λ(t ′)2
.

Important point: we do not fix λ(t) but consider it as free
parameter to be found from MCF. The rescaled MCF satisfies

(∂τϕ)N = −H(ϕ) + a〈ϕ, ν(ϕ)〉, a = −λ̇λ .

I The rescaled MCF is a gradient flow for the Huisken functional

Va(ϕ) :=

∫
Mλ

e−
a
2
|x |2 ,

where Mλ = λ−1(t)M is the rescaled surface M.

(MCF is a gradient flow for the area functional V (ψ) = Va=0(ψ).)



Self-similar Surfaces

We traded the fast changing λ(t) for slow changing a(τ) = −λ̇λ.
We consider the rescaled MCF as an equation for ϕ and a:

(∂τϕ)N = −H(ϕ) + a〈ϕ, ν(ϕ)〉. (4)

I Its static solutions are self-similar surfaces,

H(ϕ)− a〈ν(ϕ), ϕ〉 = 0, a ∈ R.

Expect: as τ →∞, solutions −→ self-similar surfaces.

⇒ classify self-similar surfaces and determine their stability.

Theorem. (Huisken, Colding-Minicozzi) Under certain conditions,
the only self-similar surfaces are planes, spheres and cylinders.

Cf. Bernstein conjecture for minimal surfaces (a = 0).



Linearized Stability

ϕ = a self-similar surface =⇒

ϕλ,z,g := T rot
g T transl

z T scal
λ ϕ

is also a self-similar surface. Consider the manifold

Mself−sim := {ϕλ,z,g :(λ, z , g) ∈ R+ × Rd+1 × SO(d + 1)}. (5)

Definition (Linearized stability of self-similar surfaces)

A self-similar surface ϕ, with a > 0, is linearly stable iff

HessN Va(ϕ) > 0 on (TϕMself−sim)⊥.

Note TMself−sim = {scaling, transl., rot. modes}
(i.e. the only unstable motions allowed are scaling, transl., rot..)



Symmetries and Spectrum of Hessian

Theorem. The hessian HessN Va(ϕ) of Va(ϕ) in the normal
direction at a self-similar d−dimensional surface ϕ has

1. (Colding-Minicozzi) the simple eigenvalue −2a,

2. (Colding-Minicozzi) the eigenvalue −a of multiplicity d + 1,

3. the eigenv. 0 of multiplicity 1
2(d − 1)d (unless ϕ is a sphere).

These eigenvalues are due to breaking ϕ scaling, translation and
rotation symmetry of MCF. The eigenvalue 0 distinguishes
between a sphere, a cylinder and a generic surface.

Proof. To prove say the 1st statement, we observe that, if ϕ is
self-similar, then it satisfies the equation

Hλ−2a(λϕ) = λ−1Ha(ϕ), ∀λ ∈ R+.

Differentiating this equation w.r.to λ at λ = 1, and reparametrizing
the result, we arrive at the desired eigenvalue equation. 2



Spectrum and Stability

The spectral theorem above gives the tangent spaces to the
unstable and central manifolds. They correspond to the
eigenvalues −2a, −a and 0.

Hence, if these are the only non-positive eigenvalues, then we
expect the stability in the transverse direction to Mself−sim.
Otherwise, we expect instability.



Spectrum and Mean convexity

The spectral information tells us about the geometry of ϕ. In
particular, we have the following result

Theorem
Let ϕ be a self-similar surface. Then:
(a) (Colding-Minicozzi) For a > 0 (shrinker),

HessN Va(ϕ) ≥ −2a iff H(ϕ) > 0.

(b) For a < 0 (expander), H(ϕ) changes the sign.

Proof.
One shows that the normal hessian, HessN Va(ϕ), has a positivity
improving property. Therefore the Perron-Frobenius theory applies
and gives the result.



Spectral Picture of Collapse: Sphere and Cylinder

For the d−sphere of the radius
√

a
d , the normal hessian > 0 on

(scaling and translational modes)⊥ ⇒ Sd√ a
d

is linearly stable.

For the (d + 1)−cylinder of the radius
√

a
d , the normal hessian

has, in addition to the eigenvalues above,

1. the eigenvalue −a of multiplicity 1, due to translations along
the axis of the cylinder,

2. the eigenvalue 0 of multiplicity d + 1, which originates in a
”shape instability”.

Hence the (d + 1)−cylinder is linearly unstable.



Modulated Cylinders

Consider cylinders. We have to expand the manifold of cyliners to
incorporate the additional central manifold found above.

Using the eigenfunction corresponding to the shape instability
eigenvalue, we find the approximate neck profile

ϕab(y , ω) := (y , ρneckab (y)ω), ρneckab :=

√
d + by2

a
, b > 0. (6)

We extend the manifold of self-similar solutions, Mself−sim, to the
manifold of modulated cylinders or necks

Mneck := {λgϕab + z : (λ, z , g , a, b) ∈ P}, (7)

where ϕab(y , ω) := (y , ρneckab (y)ω) and P := Gsym × R+ × R+.



Hessian on the Neck

Consider the Hessian on the neck ϕab = graphCd+1 ρneckab in the
direction transversal to the neck manifold Mneck :

HessNVa(ϕab) = −∂2y + ay∂y − 2a− a

d
∆Sd︸ ︷︷ ︸

normal hess on cyl

+Wab(y , ω). (8)

(Wab(y , ω) is generated by ρneckab .) Now, one can show that

HessNVa(ϕab) > 0 on M⊥neck

⇒ The evolution is linearly stable in transverse directions.



Key Estimate

Linearize MCF on the neck manifold Mneck to obtain

∂τφ = Labφ,

where Lab := HessNVa(ϕab).

Let U(τ, σ), τ ≥ σ ≥ 0, be the propagator generated by −Lab.

The main step: showing the key propagation estimate:

‖〈z〉−3U(τ, σ)g‖∞ . e−c(τ−σ)‖〈z〉−3g‖∞, (9)

∀g ∈ (TMneck)⊥ ≈ (Span {1, a(τ)y2 − 1})⊥.

Here ⊥ is in the sense of L2(R× Sd , e−
a(τ)
2

y2
dydω).



Estimating the Linear Propagator. I
Write Lab = La0 + W , with La0 := −∂2y + ay∂y − 2a (the normal
hessian at the cylinder), and use that W is slowly varying in y to
do a multiplicativ perturbation (adiabatic) theory.
For the integral kernel K (x , y) of U(τ, σ) (for simplicity, we do not
display the variables of Sd), we have the representation

K (x , y) = K0(x , y)〈eW 〉(x , y),

where K0(x , y) is the integral kernel of the operator e−(τ−σ)La0 and

〈eW 〉(x , y) =

∫
e
∫ τ
σ W (ω(s)+ω0(s),s)dsdµ(ω).

Here dµ(ω) is a harmonic oscillator (Ornstein-Uhlenbeck)
probability measure on the continuous paths ω : [σ, τ ]→ R with
the boundary condition ω(σ) = ω(τ) = 0 and

(−∂2s + a2)ω0 = 0 with ω(σ) = y and ω(τ) = x .



Estimating the Linear Propagator. II

To estimate U(x , y) for ea(τ−σ) ≤ b−1/32(τ) we use the explicit
formula

K0(x , y) = 4π(1− e−2ar )−
1
2
√

ae2are
−a (x−e−ary )2

2(1−e−2ar ) ,

where r := τ − σ, and the bound

|∂y 〈eW 〉(x , y)| ≤ b
1
2 r ,

which follows from the definition of 〈eW 〉 and the properties

W (y , τ) ≥ 0 and |∂yW (y , τ)| . b
1
2 (τ).

Then we iterate using the semi-group property ⇒ control the
rescaled MCF.



Thank-you for your attention



Extensions

We do not fix the cylinder and look for surfaces of the form

ψ(x , ω, t) = λ(t)g(t)ϕ(y , ω, τ) + z(t),

where (λ, z , g) : [0,T )→ R× Rd+2 × SO(d + 2),
to be determined later,

y = λ−1(t)x , τ = τ(t) :=
∫ t
0 λ
−2(s)ds, and

ϕ(·, τ) : Cd+1 → Rd+2 is a normal graph over the fixed cylinder.

The time dependent parameters λ(t), z(t), g(t) are chosen so
that ϕ(·, τ) is orthogonal to the non-positive (scaling, translation
and rotation) modes of the normal hessian on the cylinder.

Then we proceed as before.



*Comparisons
Compare the dynamics for the scaling parameter λ(t) for (MCF)
and the critical Yang-Mills equation

λλ̈ =
3

4
λ̇4,

the critical wave map equation

λ̇2 = λλ̈ ln
c

λλ̈
, c = 0.122.

and the Keller-Segel equations, for a(τ) = −λ(t)λ̇(t),

aτ = − 2a2

ln(1a )
. (10)

For the critical Keller-Segel equations:

λ(t) = (T − t)
1
2 e−|

1
2
ln(T−t)|

1
2 (c1 + o(1)). (11)

For the critical Yang-Mills equation this gives

λ ≈
√

2
3

t∗−t√
− ln(t∗−t)

.


