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Time varying domain.
The time varying domain occupied by the fluid is given by

Γr t1
:= {(λ, r , z) |r0 ≤ r ≤ r t1 (λ, z), z ∈ [0,H], λ ∈ [0, 2π]},

For simplicity, we set r0 = 1 in the sequel.

Figure: Time varying domain.



Hamiltonian

The fluid evolves with the velocity u := u(λ, r , z) expressed in cylindrical
coordinates (u, v ,w) .
The temperature θ of the fluid inside the vortex is assumed to be greater
that the ambient temperature maintained constant at θ0 > 0 .

g is the gravitational constant.

The Hamiltonian of the Almost Axisymmetric Flow is∫
Γr1

(
u2

2
− g

θ

θ0
)rdrdzdλ.

Important: The Almost Axisymmetric Flows are derived from
Boussinesq’s equations with no loss of the Hamiltonian structure (George
Craig).



Hamiltonian : Stable Almost axisymmetric flows

Ω : Coriolis coefficient.

ru + Ωr2 : angular momentum

g
θ0
θ : potential temperature.

Stability condition:
On each λ− section of the domain Γr1 , we require that

(r , z) −→ [(ruλ + Ωr2)2,
g

θ0
θλ]

be invertible and gradient of a convex function.



Hamiltonian: Stable Almost axisymmetric flows
We made crucial observation that, for stable Almost axisymetric flows for
which the total mass is finite (=1), the Hamiltonian can be expressed in
terms of one single measure σ:

H[σ] =

∫ 2π

0

I0[σλ] + inf
ρ∈S

I [σλ](ρ)dλ

Here, σ is a probability measure such that π1
#σ is absolutely continuous

with respect to L1
|[0,2π].

I0[σλ] =

∫
R2

+

(
y1

2
− Ω
√
y1 −

|y |2

2

)
σλ(dy)

I [σλ](ρ) :=
1

2
W 2

2

(
σλ,

1

(1− 2x1)2
χDρ(x)

)
+

∫
Dρ

( Ω2

2(1− 2x1)
−|x |

2

2

) 1

(1− 2x1)2
dx

Here, S is the set of functions ρ : [0,H]→ [0, 1/2),

Dρ := {x = (x1, x2) | x1 ∈ [0,H], 0 ≤ x2 ≤ ρ(x1)}



Analysis of the Hamiltonian

Assume σ0 is a probability measure on R2 and write

I [σ0](ρ) =
1

2
W 2

2

(
σ0,

1

(1− 2x1)2
χDρ(x)

)
+ good terms

Existence of a minimizer.
Obstacle :

{
χDρ

}
ρ∈S is not weakly∗ closed in L∞.

However,

I [σ0](ρ#) ≤ I [σ0](ρ)

where ρ# is the increasingly monotone rearrangement of ρ.
Classical results in the direct methods of the calculus of variations
ensures the existence of a minimizer.
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Analysis of the Hamiltonian

Uniqueness of minimizers.

Obstacle : No convexity property for ρ→ I [σ0](ρ) with respect to any
interpolation we can think of.

We use a Dual formulation of the minimization problem that yields
existence and uniqueness.

sup
{(P,Ψ):P=Ψ∗,Ψ=P∗}

∫
R2

(y1

2
− Ω
√
y1 −Ψ(y)

)
σ0(dy)+ inf

ρ∈S

∫ H

0

ΠP(ρ(x2), x2)dx2

(1)

ΠP(x1, s) =

∫ s

0

( 1

2(1− 2x1)
−P(x2, x1)

) 1

(1− 2x2)2
dx1 for 0 ≤ x1 < 1.

(1) has a unique solution.
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Analysis of the Hamiltonian.

Regularity of the boundary ∂Dρ
The dual problem reveals a regularity property of ρ stronger than
monotonicity.

More precisely, if spt(σ0) ⊂ ( 1
L0
, L0)× (0, L0) L0 > 0 and Pσ0 solve the

variational problem (1) then the study of Euler -Lagrange equation of

inf
ρ∈S

∫ H

0

ΠPσ0 (ρ(x2), x2)dx2

yields C > 0 such that the minimizer ρσ0 satisfies

ρσ0 (x̄2)− ρσ0 (x2) ≥ C (x̄2 − x2)

for all x2, x̄2 ∈ [0,H]. Consequently, we obtain that ∂Dρσ0 is piecewise
Lipschitz continuous.



A unusual Monge-Ampère equation.

Moreover, assume in addition, σ0 is absolutely continuous with respect to
the Lebesgue measure.
If (Pσ0 ,Ψσ0 , ρσ0 ) is the variational solution(1) then Pσ0 is convex, ∇Pσ0

is invertible (1− 2x1)−2χDρ(x)L2 a.e and



(i) 1
(1−2∂y2

Ψ)2 det∇2Ψ = σ0

(ii) P
(
ρ(x2), x2

)
= Ω2

2(1−2ρ(x2)) on {ρ > 0}

(iii) ∇Ψ maps spt(σ0) onto Dρ.

(2)



Change of variables

Let (Pλ,Ψλ, ρλ) be the solution to the variational problem (1)
corresponding to σλ. Assume σ absolutely continuous with respect to
Lebesgue.

Define u, θ, r through

(uλr + Ωr2)2 = ∂x1Pλ, g
θλ
θ0

= ∂x2Pλ, 2x1 = 1− r−2. (3)

and

χΓr1
rdrdzdλ = (1− 2x1)−2χDρλ

(x)dx1dx2dλ = σdy1dy2dλ.

Then, (u, θ, r1) satisfy the stability condition and

H[σ] =

∫
Γr1

(
u2

2
− g

θ

θ0
)rdλdrdz .



Forced Axisymmetric Flows : Toy Model 2D
We remove the λ dependence on the quantities involved in the Almost
axisymmetric flows with forcing terms to obtain the forced axisymmetric
flows: D

Dt := ∂t + v∂r + w∂z .


(ru + Ωr2)2 = r3∂r [ϕ+ Ω2

2 r2], g
θ0
θ = ∂z [ϕ+ Ω2

2 r2] in Γr1

1
r ∂r (rv) + ∂zw = 0 in Γr1

∂tr1 + w∂z r1 = v , on {r = r1}
D
Dt (ru + Ωr2) = F , D̄

Dt ( g
θ0
θ) = g

θ0
S in Γr1

(4)
Here,

Γr t1
:= {(r , z) | r1(t, z) ≥ r ≥ r0, z ∈ [0,H]},

ϕ(t, r1(t, z), z) = 0, on ∂{r1 > r0}. (5)

Neumann condition has been imposed on the rigid boundary.

Data : F ,S are prescribed functions.

Unknown :u, v ,w , ϕ, θ and r1



Toy Model in “Dual Space” 2D

In view of the change of variable discussed above, existence of a
variational solution to the MA equation, formal computations yield

I

Toy Model⇐⇒

{
∂tσt + div(σtVt [σt ]) = 0

σ|t=0 = σ̄0

I Task we completed:

Identify the operator σ 7−→ Vt [σ].
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Forced axisymmetric flows: Velocity field

Regular initial data:

Vt [σ](y) = Lt(∇Ψσ(y); y)

where

Lt

(
x ; y
)

=
(

2
√
y1Ft

(
(1− 2x1)−

1
2 , x2

)
,
g

θ0
St
(
(1− 2x1)−

1
2 , x2

))
.

and
Ψσ is a solution in the variational problem (1).

General initial data:
Use the Riesz representation theorem to uniquely define Vt [σ] by∫

R2

〈Vt [σ],G 〉dσ =

∫
Dσ

ρσ

e(x1)〈Lt(x ,∇Pσ),G (∇Pσ)〉dx1dx2

∀G ∈ Cc(R2,R2) and (Pσ, ρσ) solves the variational problem (1).



Existence of solutions for the Forced axisymmetric flows.

I Appropriate conditions of the forcing terms.

I Continuity property in σ −→ Vt [σ] ( and σ −→ σVt [σ]).

=⇒ Global solution in time.



Almost Axisymmetric Flow with Forcing Terms

Back to the full physical model
These equations are given by (here, D

Dt := ∂t + u
r ∂λ + v∂r + w∂z)


r
(
Du
Dt + uv

r + 1
r ∂λϕ+ 2Ωv

)
= F , u2

r + 2Ωu = ∂rϕ,
Dθ
Dt = S ,

1
r ∂r (rv) + 1

r ∂λu + ∂zw = 0 ∂zϕ− g θ
θ0

= 0

∂tr1 + u
r1
∂λr1 + w∂z r1 = v on {r = r1}

(6)
in the region

Γr1 := {(λ, r , z) | r1(λ, z) ≥ r ≥ r0, z ∈ [0,H], λ ∈ [0, 2π]},

subject to the boundary condition

ϕ(t, λ, r1(t, λ, z), z) = 0, on ∂{r1 > r0}. (7)

Neumann condition has been imposed on the rigid boundary.



Almost axisymmetric Flow with Forcing Terms : Dual
space 3D

The equations above can be recast as a transport equation :

∂tσt + div(σtXt [σt ]) = 0; σ|t=0 = σ̄0 << L3 (8)

Here
Xt [σ](y) = Lt(∇Ψσ(y), y)

Ψσ(λ, ·) solves the Monge Ampère equations (2)
and

Lt(x , y) =(√
y1

r0
− Ω− 2x1

√
y1, 2
√
y1Ft(λ, e

1
4 (x1), x2) + 2x1

√
y1,

g

θ0
St(λ, e

1
4 (x1), x2)

)
with x = (λ, x1, x2) , y = (λ, y1, y2) and e(x1) = (1− 2x1)−2.



Challenges in the continuity equation

I Defining well the velocity Xt [σ].

I Existence and Regularity of

∇Ψ =

(
∂Ψ

∂λ
,
∂Ψ

∂Υ
,
∂Ψ

∂Z

)

I Regularity in a Monge-Ampere equation with respect to a parameter:

1

(1− 2∂y1 Ψλ)2
det∇2

y1,y2
Ψλ = σλ



Thank you for your attention!


