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» Analysis of the Hamiltonian of Almost Axisymmetric Flows.
» A Toy Model.

» Challenges in the study of the Almost Axisymmetric Flows with
Forcing Terms.



Time varying domain.
The time varying domain occupied by the fluid is given by

Ce={(\r,2) [ <r<r()\z), ze[0,H], A€ [0,2n]},

For simplicity, we set ry = 1 in the sequel.

s=

Figure: Time varying domain.



Hamiltonian

The fluid evolves with the velocity u := u(\, r, z) expressed in cylindrical
coordinates (u, v, w) .

The temperature 0 of the fluid inside the vortex is assumed to be greater
that the ambient temperature maintained constant at 6y > 0 .

g is the gravitational constant.

The Hamiltonian of the Almost Axisymmetric Flow is

u? 0
— — g— )rdrdzd \.
./l_’l( 5 geo)r rdz

Important: The Almost Axisymmetric Flows are derived from
Boussinesq's equations with no loss of the Hamiltonian structure (George
Craig).



Hamiltonian : Stable Almost axisymmetric flows

Q : Coriolis coefficient.
ru+ Qr? : angular momentum
9%9 . potential temperature.

Stability condition:
On each A— section of the domain I',,, we require that

(r.2) — [(re* + Qr2)2, 26°]
0

be invertible and gradient of a convex function.



Hamiltonian: Stable Almost axisymmetric flows

We made crucial observation that, for stable Almost axisymetric flows for
which the total mass is finite (=1), the Hamiltonian can be expressed in
terms of one single measure o

Hlo] = / ool + inf Joal(p)a

Here, o is a probability measure such that 7@0 is absolutely continuous
with respect to £\1[0,27r]'

lolox] = /R2+ <};1 -y, - |y2|2> ox(dy)

1, 1 0? |x|? 1
loal(p) i= 5 W2 (‘“’ 1- 2x1)2XDP(X)>+/Dp (2(1 “2x) _7) A= 2ap ™

Here, S is the set of functions p : [0, H] — [0,1/2),

Dy :={x=(x1, %) | x1 € [0,H],0 < x> < p(x1)}



Analysis of the Hamiltonian

Assume oq is a probability measure on R? and write

1 1
Ioo](p) = 5 1% (oo, m){op (X)) + good terms
Existence of a minimizer.

Obstacle : {XDP}pES is not weakly* closed in L*°.



Analysis of the Hamiltonian

Assume oq is a probability measure on R? and write

1

L2
Iool(p) = §W2 (00, m){op (X)) + good terms

Existence of a minimizer.

Obstacle : {XDP}pES is not weakly* closed in L*°.

However,

I[ool(p*) < I[ool(p)

where p* is the increasingly monotone rearrangement of p.
Classical results in the direct methods of the calculus of variations
ensures the existence of a minimizer.
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Analysis of the Hamiltonian

Uniqueness of minimizers.
Obstacle : No convexity property for p — I[og](p) with respect to any
interpolation we can think of.

We use a Dual formulation of the minimization problem that yields
existence and uniqueness.

sup /R (% -y, - w(y)) Uo(d}/)-i—;gl; /OH Np(p(x2), x2)dxa

{(P,V):P=w* w=P~}
(1)

s 1 1
_ — e — < .
np(Xl,S) /0 (2(1*2X1) P(Xz,Xl)) (172X2)2dX1 for 0<x <1

(1) has a unique solution.



Analysis of the Hamiltonian.

Regularity of the boundary 0D,
The dual problem reveals a regularity property of p stronger than
monotonicity.

More precisely, if spt(cg) C (Lio, Lo) x (0, Lo) Lo > 0 and P?° solve the
variational problem (1) then the study of Euler -Lagrange equation of

H
inf /O Mpeo (p(x2), x2) b

yields C > 0 such that the minimizer p?° satisfies
p7(%2) = p”°(x2) = C(%2 — x2)

for all xo, % € [0, H]. Consequently, we obtain that 9D, is piecewise
Lipschitz continuous.



A unusual Monge-Ampere equation.

Moreover, assume in addition, og is absolutely continuous with respect to
the Lebesgue measure.

If (P70, W70, p) is the variational solution(1) then P is convex, VP
is invertible (1 — 2x1)"%xp,(x)£? a.e and

(I’) WdetVAU = 0o

(i) P(p(X2),X2> = 2(1+:(X2)) on {p >0} (2)

(i) VW maps spt(og) onto D,.



Change of variables

Let (Px, Wy, pa) be the solution to the variational problem (1)
corresponding to o). Assume ¢ absolutely continuous with respect to
Lebesgue.

Define u, 0, r through
(urr + Qr?)? = 0, Py, gg—/\ =0,Py, 2q=1-r"2 (3)
0
and
Xr,, rdrdzd \ = (1- 2x1)_2><DpA (x)dx1dxad X = odyrdyrd .

Then, (u, 8, ) satisfy the stability condition and

u? 0
Hlo] = (7 — ge—)rd)\drdz.
. 0

I



Forced Axisymmetric Flows : Toy Model 2D
We remove the )\ dependence on the quantities involved in the Almost
axisymmetric flows with forcing terms to obtain the forced axisymmetric

flows: gt = 0y + vOr + woz.

(ru+Qr2)? =P p+ %, £0 =00+ L] in T,
%3,(rv) +0,w =0 in T,
on {r=n}
inl,
(4)

Oir1 + wdyr = v,
bilru+Qr)=F, 5(£0)=£S

Here,
rrf = {(r,z) ‘ rl(t7z) >r>r, zZ€ [07 H]}7

on 9{n > n}.

QO(t, r].(t7 2)7 Z) = 07
Neumann condition has been imposed on the rigid boundary.

Data : F, S are prescribed functions.
Unknown :u, v, w, @, 0 and



Toy Model in “Dual Space” 2D

In view of the change of variable discussed above, existence of a
variational solution to the MA equation, formal computations yield

(9,_»0’1_» + diV(UtVt[a't]) = 0

Olt=0 = 0o

Toy Model < {



Toy Model in “Dual Space” 2D

In view of the change of variable discussed above, existence of a
variational solution to the MA equation, formal computations yield

(9,_»0’,_» + diV(UtVt[a't]) = 0

Olt=0 = 0o

Toy Model < {

» Task we completed:

Identify the operator o — V;[o].



Forced axisymmetric flows: Velocity field

Regular initial data:

Vi[o](y) = Le(VV(y); y)

where
Le(x;y) = (2\/)71Ft((1 - 2X1)7%,X2), eg—ost((l - 2X1)7%,X2)>.

and
W7 is a solution in the variational problem (1).

General initial data:
Use the Riesz representation theorem to uniquely define V;[o] by

/(Vt[a],G>dU:/ e(x1)(Le(x, VP7), G(VP")) dxt dso
R2 D

o
po

VG € C(R?,R?) and (P7, p?) solves the variational problem (1).



Existence of solutions for the Forced axisymmetric flows.

» Appropriate conditions of the forcing terms.
» Continuity property in 0 — V;[o] ((and 0 — o V4[o]).

— Global solution in time.



Almost Axisymmetric Flow with Forcing Terms

Back to the full physical model
These equations are given by (here, % = 0t + %0\ + vOr + woz)

2
r(2+ %4 19,0+2Qv) = F, L+ 2Qu = 0y, bl =3,
%8,(rv)+ %(%u—l—@ZW:O 324,0—g9% =0

O + ﬁaﬂl +wd,n=von {r=n}

(6)
in the region
M, ={(\r,z) | n(\,z2)>r>n, z€][0,H], Xe]0,2r]},
subject to the boundary condition
o(t, A\, n(t,\,z),z) =0, on 9O{n>r}. (M)

Neumann condition has been imposed on the rigid boundary.



Almost axisymmetric Flow with Forcing Terms : Dual
space 3D

The equations above can be recast as a transport equation :
at0t+diV(UtXt[Ut]) :0, O'\t:O :5'0 << £3 (8)

Here
Xe[o](y) = Le(VV9(y),y)

W7 (},-) solves the Monge Ampere equations (2)
and
Lt(xay) =
Y. 1 1
(22 - 2- 205 20O et 00). ) + 203 £S5 e ). )

with x = (A, x1, %) , y = (A, y1,¥2) and e(x1) = (1 — 2x1) 2.



Challenges in the continuity equation

» Defining well the velocity X;[o].

» Existence and Regularity of

oV oV oV
V= (mmaz)

» Regularity in a Monge-Ampere equation with respect to a parameter:

1 2 A_ A
(1- 20, 07)2 detVy V' =0



Thank you for your attention!



