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® A single dislocation ® Distributed dislocations
® Volterra (-1900) ® Nye, Bilby, etc. (-1950)
® Riemannian manifold ® Smooth manifold with
with singularities. a torsion field
( =Burgers vector

® Burgers vector density)

How to bridge between the descriptions? What kind of
homogenization process yields a torsion field from
singularities?

A new limit concept in differential geometry!
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Continuum Limit of Dislocations

® QOverview:
® What is an edge-dislocation?
® (Construction of manifolds with many dislocations.

® Dislocations become denser — what does
converge?

® (Connection to the classical model of distributed
dislocations.
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An edge-dislocation

® Remove a sector of angle 26, and glue the edges (a cone).

® Choose a point at distance & from the tip of the cone,
cut a ray from it, and insert the sector into the cut.

® A simply connected metric space, a smooth manifold
outside the dislocation line {p-p./.
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® FEncircle the dislocation line with four straight lines with
right angles between them, obtaining a “rectangle”.
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The building block

® FEncircle the dislocation line with four straight lines with
right angles between them, obtaining a “rectangle”.

® Denote the lengths of these lines by a, b, b, and a+zs,
where € = 2dsin 6 is the dislocation magnitude.
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Manifolds with many dislocations
® Glue together n2 building blocks, such that:

® Fach with the same cone angle 26 and with
dislocation magnitude &/n°.

® The boundary consists of straight lines of lengths a, b,
b, and a+e.

® The rectangular properties of the blocks ensure us that
the gluing lines and corners are smooth.

b
a/n+€/n2§ i a/n+26/n2§ i a/n+3g/n2§ i i a/n+€/n§
L BT S SR e e
b/n b/n b/n b/n
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How do these manifolds M, look like when n—o0?

Theorem: The sequence M, converges in the Gromov-
Hausdorff sense, to M, a sector of a flat annulus whose
boundary consists of curves of lengths a, b, b, and a+e.
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Metric Convergence

Gromov-Hdusdorﬁ convergence:
M, — M if there exist bijections
T, A, C M, — B, C M
between d,-nets A, and B, (6,—0) such that

b
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Metric Convergence

Gmmov-Hdmdorﬁ' convergence:
M, — M if there exist bijections
T, A, C M, — B, C M
between d,-nets A, and B, (6,—0) such that
dis T, = sup |dam, (2,y) — da(Tn(z), Tn(y))| =n—socc 0

T, YeEAn
b
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What else converges?

® [, consists of geodesics (straight lines).
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What else converges?

® [, consists of geodesics (straight lines).
® B, does not.

Or does it?

b
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What else converges?
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What else converges?

® A, consists of geodesics wir.t. the canonical
(Levi-Civita) parallel-transport on M,.
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What else converges?

® A, consists of geodesics wir.t. the canonical
(Levi-Civita) parallel-transport on M,.

® p, consists of geodesics w.r.t. a non-canonical one
(i.e. with torsion) — Or and r/0p are parallel.
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What else converges?

® A, consists of geodesics wir.t. the canonical
(Levi-Civita) parallel-transport on M,.

® p, consists of geodesics w.r.t. a non-canonical one
(i.e. with torsion) — Or and r/0p are parallel.

Do we have convergence of the parallel-transport?
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Convergence of the parallel-transport

b

a/n+€/n2§ 3 a/n+2s/n2§ 3 a/n+3€/n2§ 3 3 a/n+e/n§

<

~

: vl M v I v |
: | l | | :
: I I I I :
: I I I I :
: . I I I ! : :
N . | | | | . :

a+ &




Convergence of the parallel-transport

T,:An— B, can be extended to a smooth embedding

“\ a+4+e¢




Convergence of the parallel-transport

T,:An— B, can be extended to a smooth embedding
F, M, - M

“\ a+4+e¢




Convergence of the parallel-transport

T,:An— B, can be extended to a smooth embedding
F, M, - M

Parallel-transport operators converge:

“\ a+4+e¢
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T,:An— B, can be extended to a smooth embedding
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Convergence of the parallel-transport

T,:An— B, can be extended to a smooth embedding

Fn: M, - M
Parallel-transport operators converge:
lim [dF,,(02,0,) — (0,7 10,)| = 0

Components of the covariant derivative do not converge!
b
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Uniqueness

Metric limit: unique by properties of GH convergence.
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Uniqueness

Metric limit: unique by properties of GH convergence.

Is the limit parallel-transport well-defined?
Does it depend on the choice of the embeddings I, and
the parallel frame fields (Ox,0y)?
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Uniqueness

Theorem: 1L.et (My,2on11,), (M,g2,11) be manifolds endowed with

path-independent parallel-transport operators (equiv. flat cov.

derivatives) such that there exist embeddings F;, : M,, — M
such that:

1. F, are asymptotically surjective.

2. The distortion of F, tends to zero.

3. F,are asymptotically rigid on the mean.

4. There exist /1,-parallel frame fields E, and a I/-parallel
frame field E such that

Jim dF,(E,) — E| = 0

Then (M,g,1]) is defined uniquely, that is, independent of the
choice of embeddings and frame fields.
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Conclusion

* We proved that a sequence of manifolds with edge-
dislocations converges, as the dislocations get denser, to
a non-singular manifold.

* The sequence is endowed with the canonical parallel-
transports (equiv. affine connections), which converge to
a non-canonical parallel-transport of the limit manifold.

* The limit manifold is therefore a manifold with a
parallel-transport that carries torsion.

* This fits the phenomenological description of a

continuous distribution of dislocations.

Thank you for your attention!



