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• Nye, Bilby, etc. (~1950)

• Smooth manifold with 
a torsion field 
( =Burgers vector 
density).

Different Models for Dislocations

How to bridge between the descriptions? What kind of 
homogenization process yields a torsion field from 
singularities?

A new limit concept in differential geometry!
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Continuum Limit of Dislocations

• Overview:

• What is an edge-dislocation?

• Construction of manifolds with many dislocations.

• Dislocations become denser — what does 
converge?

• Connection to the classical model of distributed 
dislocations.
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• Remove a sector of angle 2𝜃, and glue the edges (a cone).

• Choose a point at distance d from the tip of the cone, 
cut a ray from it, and insert the sector into the cut.

• A simply connected metric space, a smooth manifold 
outside the dislocation line [p-,p+].
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right angles between them, obtaining a “rectangle”.

The building block

p+ p�
$ $ $ $

p�

d
2✓ 2✓

A

B C

D

p+p� da

b

b

a + "

Figure 1: The building block R(a, b,✓, ").

4



• Encircle the dislocation line with four straight lines with 
right angles between them, obtaining a “rectangle”.

The building block

p+ p�
$ $ $ $

p�

d
2✓ 2✓

A

B C

D

p+p� da

b

b

a + "

Figure 1: The building block R(a, b,✓, ").

4

" = 2d sin ✓
• Denote the lengths of these lines by a, b, b, and a+ε, 

where                       is the dislocation magnitude.
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Manifolds with many dislocations
• Glue together n2 building blocks, such that:

• Each with the same cone angle 2𝜃 and with 
dislocation magnitude ε/n2.

• The boundary consists of straight lines of lengths a, b, 
b, and a+ε.

• The rectangular properties of the blocks ensure us that 
the gluing lines and corners are smooth. 
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• An consists of geodesics w.r.t. the canonical         
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Metric limit: unique by properties of GH convergence.
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Metric limit: unique by properties of GH convergence.

Is the limit parallel-transport well-defined?  
Does it depend on the choice of the embeddings Fn and 
the parallel frame fields (∂x,∂y)?
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Then (M,g,Π) is defined uniquely, that is, independent of the 
choice of embeddings and frame fields.

1. Fn are asymptotically surjective.
2. The distortion of Fn tends to zero.
3. Fn are asymptotically rigid on the mean.
4. There exist Πn-parallel frame fields En and a Π-parallel 

frame field E such that

Fn : Mn ! M

Theorem: Let (Mn,gn,Πn), (M,g,Π) be manifolds endowed with 
path-independent parallel-transport operators (equiv. flat cov. 
derivatives) such that there exist embeddings!
such that:

lim
n!1

Z

Fn(Mn)
|dFn(En)� E| = 0



What else can we construct?



What else can we construct?

• Essentially, any compact 2-manifold with 
boundaries endowed with a (metric) path-
independent parallel-transport.



What else can we construct?

• Essentially, any compact 2-manifold with 
boundaries endowed with a (metric) path-
independent parallel-transport.

• Even if the manifold itself is non-flat!



What else can we construct?

• Essentially, any compact 2-manifold with 
boundaries endowed with a (metric) path-
independent parallel-transport.

• Even if the manifold itself is non-flat!

• For example, the torus with the direction of the  
meridians and the parallels as a parallel frame-field.



What else can we construct?

• Essentially, any compact 2-manifold with 
boundaries endowed with a (metric) path-
independent parallel-transport.

• Even if the manifold itself is non-flat!

• For example, the torus with the direction of the  
meridians and the parallels as a parallel frame-field.



Conclusion



• We proved that a sequence of manifolds with edge-
dislocations converges, as the dislocations get denser, to 
a non-singular manifold.

Conclusion



• We proved that a sequence of manifolds with edge-
dislocations converges, as the dislocations get denser, to 
a non-singular manifold.

• The sequence is endowed with the canonical parallel-
transports (equiv. affine connections), which converge to 
a non-canonical parallel-transport of the limit manifold.

Conclusion



• We proved that a sequence of manifolds with edge-
dislocations converges, as the dislocations get denser, to 
a non-singular manifold.

• The sequence is endowed with the canonical parallel-
transports (equiv. affine connections), which converge to 
a non-canonical parallel-transport of the limit manifold.

• The limit manifold is therefore a manifold with a 
parallel-transport that carries torsion.

Conclusion



• We proved that a sequence of manifolds with edge-
dislocations converges, as the dislocations get denser, to 
a non-singular manifold.

• The sequence is endowed with the canonical parallel-
transports (equiv. affine connections), which converge to 
a non-canonical parallel-transport of the limit manifold.

• The limit manifold is therefore a manifold with a 
parallel-transport that carries torsion.

• This fits the phenomenological description of a 
continuous distribution of dislocations.

Conclusion



• We proved that a sequence of manifolds with edge-
dislocations converges, as the dislocations get denser, to 
a non-singular manifold.

• The sequence is endowed with the canonical parallel-
transports (equiv. affine connections), which converge to 
a non-canonical parallel-transport of the limit manifold.

• The limit manifold is therefore a manifold with a 
parallel-transport that carries torsion.

• This fits the phenomenological description of a 
continuous distribution of dislocations.

Conclusion

Thank you for your attention!


