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The Exchange Energy Problem

The electrostatic Coulomb energy of N point particles at X = {x1, . . . ,xN} ∈ R3N is

U(X) =
∑

1≤i<j≤N |xi − xj |−1.

Given a (permutation symmetric) probability distribution P (X) ≥ 0 with∫
R3N P (X) dX = 1,, the expectation value of U is, of course,

⟨U⟩ =
∫
R3N P (X)U(X) dX.

We also define the one-body density ρ(x) = N
∫
R3(N−1) P (x, x2, . . .xN )dx2 · · · dxN .

P is thought of as the square of a quantum mechanical wave function (symmetric [bosonic]

or antisymmetric [fermionic]) but this does not matter in this talk. Indeed, it is an open

problem to figure out the role of the bosonic or fermionic “statistics”, – but that is for

another day.
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A practical question in the quantum mechanics of electrons is to estimate ⟨U⟩, using
ρ, as follows. Write

Eind := ⟨U⟩ −D(ρ, ρ), where D(ρ, ρ) := 1
2

∫
R6 ρ(x)|x− y|−1ρ(y)dxdy.

The indirect energy Eind depends on P and can have either sign. The question we

address is: How negative can it be, given (only) knowledge of ρ? I.e., how successfully can

the particles avoid each other, thereby making ⟨U⟩ less than the simple, classical average

D(ρ ρ)?

One simple candidate is Eind ≥ −C

∫
R3

ρ(x)4/3 dx, which has the right scaling prop-

erty, at least. Such a bound exists (L – Oxford 1981) and the sharp C satisfies

1.43 < C < 1.64.

Variational Problem #1: What is the sharp C?

Incidentally, we could let C depend on N ; it is easy to see that C(N) ≤ C(N + 1) ≤ C.

When N = 1, U = 0, so C(1) = minρ{D(ρ, ρ)/(
∫
ρ4/3)(

∫
ρ)2/3}. This immediately

leads to a Lane-Emden equation, whence C(1) = 1.21 < C.
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Gradient Correction

Based on a numerical example, a variational calculation for the grosomeund state energy

of ‘jellium’, physicists believe that C ≈ 1.43. They also believe that a better bound would

take into account that Eind also depends on the spatial variation of ρ.

The L-O bound harks back to Onsager’s lemma, and naturally comes in two parts:

Eind = 3/5(9π/2)1/3
(∫

ρ4/3
)
− Z ≃ −1.45

(∫
ρ4/3

)
− Z

While Z can be bounded by
∫
ρ4/3, it can be bounded instead by a quantity that depends

on the spatial variation of ρ. We have shown how to bound it as

Z ≤ 0.3697

(∫
R3

|∇ρ(x)|dx
)1/4(∫

R3

ρ(x)4/3dx

)3/4

.

The challenge is to improve the constant 0.3697. We begin by defining our upper bound

to Z precisely.
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Definition of our bound on Z

The upper bound on Z found by L-O, and which we henceforth call simply Z, is defined

as follows in terms of the nonnegative L1 function ρ. It is clear that if ρ is almost constant

then Z is almost zero.

Z = 2
∫
R3 ρ(x)D

(
ρ− ρ(x), δx − µx

)
dx, where δx is the Dirac delta at x and

µx(y) :=
3

4πR(x)3
1
{
|y − x| ≤ R(x)

}
= ρ(x)1

{
|y − x|3 ≤ 3

4πρ(x)

}
(1)

is the normalized uniform measure of the ball centered at x with radius

R(x) := (4πρ(x)/3)
−1/3

. Note that the Coulomb potential of δx − µx is positive.

Historical Note; Benguria, Bley and Loss (2011) realized that Z depends on the variation

of ρ. This was an important development. They showed that Z could be bounded using

(
√
ρ, |p|√ρ) ∝

∫
R3(

√̂
ρ)2(p)|p|dp.

This expression is very non-local, however, in contrast to ours, which uses ∇ρ, and is local

and easier to compute.
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Representation of Z

The Coulomb potential of a point charge screened by a uniform distribution δx − µx in

a unit ball is Ψ(r) = r4(−r2/2− 1/r + 3/2) ·1(0 ≤ r ≤ 1). Using this, we can write

Z = 3
8π

∫∫ (
ρ(x)− ρ(y)

)
|x− y|−4

[
Ψ(|x− y|/R(x))−Ψ(|x− y|/R(y))

]
dxdy.

with R(x) := (4πρ(x)/3)
−1/3

.

This formula makes it clear that Z depends only on |∇ρ|. Our goal is to bound it from

above and show that it is not too big. We could state this formally as a problem in the

calculus of variations to minimize Z given
∫
|∇ρ| and

∫
ρ4/3 — or other variations on this

theme.

If Ψ were monotone increasing, the integrand above would be positive, and we could go

home, but it is not. Ψ′(r) is negative when r ∈ (r∗, 1) with r∗ = (
√
5 − 1)/2. To get a

lower bound we can write Ψ = Ψ1 −Ψ2, both mononote nondecreasing, and ignore Ψ1.

To proceed, we split Z into 2 parts Z1 and Z2 defined by a parameter θ > r∗. (with

c = 4π/3)

c|x− y|max{ρ(x)
1
3 , ρ(y

1
3 )} > θ or r∗ < c|x− y|max{ρ(x

1
3 ), ρ(y)

1
3 } < θ.
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The first part is easy. We simply bound Ψ2 by its maximum value value Ψ2(r∗).

Z1 ≥ − 3

4π
Ψ(r∗)

∫ ∫
ρ(x)1/3> θc

|x−y|
ρ(y)≤ρ(x)

ρ(x)

|x− y|4
dx dy

≥ −3Ψ(r∗)

∫
ρ(x)

(∫ ∞

θcρ(x)−1/3

dr

r2

)
dx = −3Ψ(r∗)

θc

∫
ρ(x)4/3 dx.

The second part, Z2, will be proportional to −θ3, and the maximization over θ will give

us the funny looking lower bound Z ≥ −0.3697(
∫
|∇ρ|)1/4(

∫
ρ4/3)3/4.

To bound Z2 we use the fundamental theorem of calculus to write

Ψ2 (|x− y|/R(x))−Ψ2 (|x− y|/R(y))

in terms of ∇R(x) ∝ ∇ρ(x)1/3 as follows:
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Ψ2

(
|x− y|ρ(x) 1

3

c

)
−Ψ2

(
|x− y|ρ(y) 1

3

c

)

=
|x− y|

c

∫ 1

0

(x− y) · ∇ρ
1
3 (y + t(x− y))Ψ′

2

(
|x− y|ρ(y + t(x− y))

1
3

c

)
dt

and obtain

Z2 ≥ −c2

2

∫ 1

0

dt

∫ ∫
r∗c

|x−y|≤max(ρ(x),ρ(y))1/3≤ θc
|x−y|

max(ρ(x), ρ(y))

|x− y|2
×

× |∇ρ
1
3 (y + t(x− y))| Ψ′

2

(
c−1|x− y|ρ(y + t(x− y))

1
3

)
dx dy.

After changing variables, adding a few more unenlightening inequalities, and noting that
∇ρ1/3 = 1

3ρ
−2/3∇ρ we find that:
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Z2 ≥ −2πθ3c3

3(r∗)3

(∫ 1

r∗

Ψ′
2(t)

t
dt

)∫
|∇ρ(x)| dx (2)

which concludes the derivation of the inequality since

2πθ3c3

3(r∗)3

(∫ 1

r∗

Ψ′
2(t)

t
dt

)
≃ 0.11641θ3
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Another bound on Z

In ‘Density Functional Theory’ people prefer |∇ρ1/3|2 (instead of |∇ρ|), which arises nat-

urally in the high density regime of the almost-uniform electron gas. We also have an

estimate of this kind, and it is

Z ≤ 0.8035

(∫
R3

|∇ρ1/3(x)|2 dx
)1/4(∫

R3

ρ(x)4/3 dx

)3/4

,

which is to be compared to our previous bound

Z ≤ 0.3697

(∫
R3

|∇ρ(x)|dx
)1/4(∫

R3

ρ(x)4/3dx

)3/4

.

The proof of this new bound is much more complicated than the previous one. It uses a

Hardy-Littlewood type maximal function inequality, and it would be very nice if one could

improve the known constant in this inequality.
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The Hardy-Littlewood type maximal function

Recall that Ψ2 is the decreasing part of Ψ.

We define the positive function χ(r) = r−1Ψ′
2(r) = −r−1Ψ′(r) · 1(r∗ ≤ r ≤ 1),

which is increasing on [r∗, s∗] and decreasing on [s∗, 1], with s∗ ≃ 0.8376. For every

square-integrable function f , we define the following Hardy-Littlewood-type function

Mχ
f (z) := sup

r>0

{
r−3

∫
χ(|u|/r) f(z+ u)| du

}
. (3)

LEMMA [Hardy-Littlewood-type inequality]: For every square-integrable function f on R3,(∫
Mχ

f (z)
2 dz

)1/2

≤ 7.5831

(∫
|f(z)|2 dz

)1/2

. (4)

Homework Problem: Find a better constant than 7.5831.
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THANKS FOR LISTENING !
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