Variational methods for effective dynamics

Robert L. Jerrard

Department of Mathematics University of Toronto

Minischool on Variational Problems in Physics October 2-3, 2014 Fields Institute

effective dynamics means:

- Given a nonlinear evolution equation with small or large parameter
- one seeks a simple description of (at least some) solutions, where
- simple may mean: in terms of lower-dimensional objects

- Γ-convergence is *very often* a source of inspiration
- Γ-convergence (with related estimates) is *often* an ingredient in
- Γ-convergence (with upgrades) can *sometimes* be the basis for
- In general: effective dynamics is largely a question of stability
- and calculus of variations is very relevant to stability.

effective dynamics means:

- Given a nonlinear evolution equation with small or large parameter
- one seeks a simple description of (at least some) solutions, where
- simple may mean: in terms of lower-dimensional objects

relevance of the calculus of variations

- Γ-convergence is very often a source of inspiration
- Γ-convergence (with related estimates) is *often* an ingredient in **Droofs** including for example for wave and Schrödinger equations
- Γ-convergence (with upgrades) can sometimes be the basis for **Proofs** especially for gradient flows, *cf* lectures of Ambrosio
- In general: effective dynamics is largely a question of stability
- and calculus of variations is very relevant to stability.

general open problems

1. Abstract framework for Γ-convergence and Hamiltonian systems.

For gradient flows, Sandier-Serfaty '04, Serfaty '11

- 2. For Hamiltonian systems (especially),
 - Can one ever establish global-in-time results ?
 - In particular, given a periodic solution of a limiting Hamiltonian system, can one find "nearby" periodic solutions for the approximating functional?

First example

Exercise

Assume that $F_{\varepsilon}: \mathbb{R}^2 \cong \mathbb{C} \to \mathbb{R}$ and that $F_{\varepsilon} \to F$ in some topology. For which topologies is it true that solutions of the ODEs

$$\dot{x}_{\varepsilon} = -\nabla F_{\varepsilon}(x_{\varepsilon}), \qquad x_{\varepsilon}(0) = x_{0}$$
 (1)

$$\ddot{x}_{\varepsilon} = -\nabla F_{\varepsilon}(x_{\varepsilon}), \qquad x_{\varepsilon}(0) = x_{0}, \dot{x}_{\varepsilon}(0) = v_{0}$$
 (2)

$$i\dot{x}_{\varepsilon} = -\nabla F_{\varepsilon}(x_{\varepsilon}), \qquad x_{\varepsilon}(0) = x_{0}$$
 (3)

converge, as $\varepsilon \to 0$, to solutions of the $\varepsilon = 0$ systems?

Note:

- for (1), "energy" decreases along trajectories: $\frac{d}{dt}F_{\varepsilon}(x_{\varepsilon}) = -|\dot{x}_{\varepsilon}|^2$
- for (2), "energy" is conserved: $\frac{d}{dt} \left[\frac{1}{2} |\dot{x}_{\varepsilon}|^2 + F_{\varepsilon}(x_{\varepsilon}) \right] = 0.$
- for (3), (a different) "energy" is conserved: $\frac{d}{dt}F_{\varepsilon}(x_{\varepsilon})=0$.

Another example

The above exercise is misleading in that it (probably)

- doesn't use gradient structure
- doesn't distinguish between different dynamics

more illustrative: Let $g: \mathbb{R}^2 \to \mathbb{R}$ be a fixed smooth function, and define

$$F_{\varepsilon}(x,y) := g(x,y) + \varepsilon^{-p}(y - \varepsilon^{q}\sin(\frac{x}{\varepsilon}))^{2}$$

for certain p, q > 0.

Exercise

Show that

$$F_{\varepsilon} \stackrel{\Gamma}{\to} F_0(x,y) := \begin{cases} g(x,0) & \text{if } y = 0 \\ +\infty & \text{if not} \end{cases}$$

Exercise

For which values of p, q do solutions of various ODEs for F_{ε} converge to solutions for F_0 ?

Note: in general Γ-convergence is far too weak to allow any conclusions about dynamics.

Exercise

Assume that $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, $\phi: \mathbb{R}^n \to \mathbb{R}$ is measurable and \mathbb{Z}^n -periodic, with $\inf \phi = 0$. Then for any p > 0,

$$F_{\varepsilon}(x) := f(x) + \varepsilon^{-p} \phi(\frac{x}{\varepsilon}) \xrightarrow{\Gamma} f.$$

Exercise

Assume that $f: \mathbb{R}^n \to \mathbb{R}$ is positive. Let $\{x_i\}$ be a countable dense subset of \mathbb{R}^n , and define

$$F_{\varepsilon}(x) := \begin{cases} 0 & \text{if } x \in \cup_{i=1}^{\infty} B(x_i, 2^{-i}\varepsilon) \\ f(x) & \text{if not} \end{cases}$$

Then

$$F_{\varepsilon} \to F > 0$$
 a.e. and in L^1_{loc} , but $F_{\varepsilon}(x) \xrightarrow{\Gamma} 0$.

For the duration of this lecture, we consider the Allen-Cahn energy

$$F_{\varepsilon}(u) := \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{2\varepsilon} (u^2 - 1)^2 dx \qquad u \in H^1_{loc}(\Omega)$$

and associated evolution problems (where typically $\Omega = \mathbb{R}^n$.)

Plan

- recall Γ-convergence (for inspiration) and state corresponding wave equation result
- discuss proof
 - transform via change of variables into a stability question
 - address this using variational arguments

Theorem (Modica-Mortola '77, Modica '87, Sternberg '88)

1. (compactness) If $(u_{\varepsilon})_{\varepsilon \in (0,1]}$ is a sequence in $H^1(\Omega)$ such that

$$F_{\varepsilon}(u_{\varepsilon}) \leq C$$

then there is a subsequence that converges in L¹ as $\varepsilon \to 0$ to a limit $u \in BV(\Omega; \{\pm 1\}).$

2. (lower bound) If $(u_{\varepsilon}) \subset H^1(\Omega)$ and $u_{\varepsilon} \stackrel{L^1}{\to} u$, then

$$\liminf_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}) \geq F_{0}(u) := \begin{cases} \frac{4}{3} |Du|(\Omega) & \text{if } u \in BV(\Omega; \{\pm 1\}) \\ +\infty & \text{if not} \end{cases}$$

3. (upper bound) For any $u \in L^1(\Omega)$ there exists a sequence $(u_{\varepsilon}) \subset H^1(\Omega)$ such that

$$u_{\varepsilon} \overset{L^1}{ o} u$$
 and $\limsup_{\varepsilon o 0} F_{\varepsilon}(u_{\varepsilon}) \leq F_0(u)$.

Informally,

$$F_arepsilon(\cdot)\stackrel{\mathsf{\Gamma}}{ o}$$
 " interfacial area functional "

• As a **corollary**: if (u_{ε}) is a sequence of minimizers of F_{ε} (for suitable boundary data....) then

```
u_{\varepsilon} \to u \in BV(\Omega; \{\pm 1\}) after passing to a subsequence if necessary, and
          the set \{x \in \Omega : u(x) = 1\} has minimal perimeter in \Omega.
```

similar for nonminimizing solutions of

$$-\varepsilon\Delta u_{\varepsilon}+\frac{1}{\varepsilon}(u_{\varepsilon}^{2}-1)u_{\varepsilon}=0$$

(assuming natural energy bounds.)

solutions of

$$-\varepsilon\Delta u_{\varepsilon}+\frac{1}{\varepsilon}(u_{\varepsilon}^{2}-1)u_{\varepsilon}=\varepsilon\,\kappa$$

are related in a similar way to surfaces of Constant Mean Curvature.

• in addition,

$$u_{\varepsilon}(x) \approx q(\frac{d(x)}{\varepsilon})$$
, where $d(\cdot)$ is signed distance from interface, so that $d(\cdot)$ satisfies $|\nabla d|^2 = 1$, $d = 0$ on Γ .

Theorem (J '11, Galvão-Sousa and J., '13)

Assume that Γ is a smooth, compact, embedded, timelike hypersurface in $(T_*, T^*) \times \mathbb{R}^n$, bounding a set \mathcal{O} , and such that $H_{mink}(\Gamma) = \kappa \in \mathbb{R}$. Then there exists a sequence of solutions (u_{ε}) of the wave equation

$$\varepsilon(\partial_{tt}u_{\varepsilon}-\Delta u_{\varepsilon})+\frac{1}{\varepsilon}(u^{2}-1)(2u-\varepsilon\kappa)=0$$

such that

$$u_{\varepsilon} \to u := egin{cases} 1 & \mbox{in } \mathcal{O} \ -1 & \mbox{in } \mathcal{O}^c \end{cases} \qquad \mbox{in } L^2_{loc}((T_*, T^*) imes \mathbb{R}^n)$$

- In fact we prove more, including energy concentration around Γ, estimates of rate of convergence etc.
- $H_{mink} = (1 v^2)^{-1/2} (H_{euc} (1 v^2)^{-1} a)$, where v = velocity, a = acceleration.
- $H_{mink} = 0 \iff$ critical point of *Minkowskian* area functional

Formal arguments and elliptic results suggest that $u \approx q(\frac{d}{c})$, where

$$u \approx q(\frac{d}{\varepsilon})$$
, where

q is the optimal 1-d profile:

$$-q'' + (q^2 - 1)q = 0,$$
 $q(0) = 0,$ $q \to \pm 1$ at $\pm \infty$

d is the signed Minkowski distance function to Γ, i.e.

$$-(\partial_t d)^2 + |\nabla d|^2 = 1, \qquad d = 0 \text{ on } \Gamma,$$

Note that q minimizes

$$v \mapsto \int_{\mathbb{R}} \frac{1}{2} (v')^2 + \frac{1}{2} (1 - v^2)^2 dr$$

among functions such that $v(r) \to \pm 1$ as $r \to \pm \infty$.

Plan:

- consider 1*d* case (with $\kappa \neq 0$) for simplicity
- Let $r_0 = \kappa^{-1}$. Then

$$\Gamma = \{ r_0(\sinh \theta, \cosh \theta) : \theta \in \mathbb{R} \} := \{ (t, x) : x^2 - t^2 = r_0^2 \}$$

change to Minkowskian polar coordinates

$$(r \cosh \theta, r \sinh \theta) = (x, t), \qquad r > 0, \theta \in \mathbb{R}$$

Then
$$\theta \approx$$
 "time" and $r - r_0 = d = \text{Minkowski distance to } \Gamma$

then hope to show that

$$u(x,t) = v(r,\theta) \approx q(\frac{d}{\varepsilon}) = q(\frac{r-r_0}{\varepsilon}).$$

in fact we will concoct a functional ζ such that

$$\eta(v(\cdot,\theta))$$
 small $\Rightarrow v \approx q(rac{r-r_0}{arepsilon}),$
$$rac{d}{d heta}\eta(v(\cdot,\theta)) \approx 0 ext{ if } v \approx q(rac{r-r_0}{arepsilon}).$$

• change variables to study $\varepsilon(v_{\theta\theta} - v_{rr} - \frac{1}{r}v_r) + \frac{1}{s}(v^2 - 1)(v - 2\varepsilon\kappa) = 0$.

• data1: take
$$v(r,0) = -1$$
, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, $v(r,0) = 1$, $v_{\theta}(r,0) = 0$ if $r > R$.

Then:
$$v(r, \theta) = -1$$
 near $r = 0$, and $v(r, \theta) = 1$ for $r > Re^{|\theta|}$.

• data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{s})$, for $r_0 = \kappa^{-1}$. Also take $v_\theta(0,r) \approx 0$.

compute:
$$\frac{\sigma}{d\theta} e_{\varepsilon}(v) = \varepsilon (v_{\theta} v_r)_{\theta} + \varepsilon r^{-1} v_{\theta} v_r (1 - \kappa r) + \varepsilon \kappa v_{\theta} (v_r - \varepsilon^{-1} (1 - v^2)).$$

- optimality of q: (*) implies $\int_0^\infty e_{\varepsilon}(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- define: $|\eta_1(\theta)| = \int (1 + (r r_0)^2) e_{\varepsilon}(v)(r, \theta) dr c_0$. Then data2 implies $\eta_1(0) \leq C \varepsilon^2$.

then:
$$|\eta_1(\theta) \ge \eta_2(\theta) = \int \frac{\varepsilon}{2} \frac{v_\theta^2}{r^2} + (r - r_0)^2 (\frac{\varepsilon}{2} v_r^2 + \frac{1}{2\varepsilon} (v^2 - 1)^2) dr$$
 if (\star) holds

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- conclude that $|\eta_1(\theta)| \leq Ce^{Ce^{C|\theta|}} \varepsilon^2$.

• change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0$.

• data1: take
$$v(r,0) = -1$$
, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, $v(r,0) = 1$, $v_{\theta}(r,0) = 0$ if $r > R$.
Then: $v(r,\theta) = -1$ near $r = 0$, and $v(r,\theta) = 1$ for $r > Re^{|\theta|}$.

• data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_\theta(0,r) \approx 0$.

motivation:
$$q = \tanh(\frac{r-r_0}{\varepsilon})$$
 solves $\varepsilon(-q_{rr} - \frac{1}{r}q_r) + f_{\varepsilon}(v) = 0$. Close to PDE with $v_{\theta} \equiv 0$.

- optimality of q: (\star) implies $\int_0^\infty e_{\varepsilon}(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- define: $|\eta_1(\theta) = \int (1 + (r r_0)^2) e_{\varepsilon}(v)(r, \theta) dr c_0.$ Then data2 implies $\eta_1(0) \leq C \varepsilon^2$.

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- ullet conclude that $egin{aligned} \eta_1(heta) \leq Ce^{Ce^{C| heta|}} arepsilon^2 \end{aligned}$.

• change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0$.

• data1: take
$$v(r,0) = -1$$
, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, $v(r,0) = 1$, $v_{\theta}(r,0) = 0$ if $r > R$.

Then:
$$v(r, \theta) = -1$$
 near $r = 0$, and $v(r, \theta) = 1$ for $r > Re^{|\theta|}$. (\star)

• data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_\theta(0,r) \approx 0$.

motivation:
$$q = \tanh(\frac{r-r_0}{\varepsilon})$$
 solves $\varepsilon(-q_{rr} - \frac{1}{r}q_r) + f_{\varepsilon}(v) = 0$. Close to PDE with $v_{\theta} \equiv 0$.

compute:
$$\frac{d}{d\theta}e_{\varepsilon}(v) = \varepsilon(v_{\theta}v_{r})_{\theta} + \varepsilon r^{-1}v_{\theta}v_{r}(1-\kappa r) + \varepsilon \kappa v_{\theta}(v_{r}-\varepsilon^{-1}(1-v^{2})).$$

- optimality of q: (\star) implies $\int_0^\infty e_{\varepsilon}(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- define: $|\eta_1(\theta) = \int (1 + (r r_0)^2) e_{\varepsilon}(v)(r, \theta) dr c_0.$ Then data2 implies $\eta_1(0) \leq C \varepsilon^2$.

then:
$$\eta_1(\theta) \ge \eta_2(\theta) = \int \frac{\varepsilon}{2} \frac{v_\theta^2}{r^2} + (r - r_0)^2 (\frac{\varepsilon}{2} v_r^2 + \frac{1}{2\varepsilon} (v^2 - 1)^2) dr$$
 if (\star) holds.

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- ullet conclude that $\boxed{\eta_1(heta) \leq C e^{C \mathrm{e}^{C | heta|}} arepsilon^2}$.

- change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0.$
- data1: take v(r,0) = -1, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, v(r,0) = 1, $v_{\theta}(r,0) = 0$ if r > R. Then: $v(r,\theta) = -1$ near r = 0, and $v(r,\theta) = 1$ for $r > Re^{|\theta|}$.
- data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_\theta(0,r) \approx 0$.
- pseudo-energy: define $e_{\varepsilon}(v) = \frac{\varepsilon}{2}(\frac{1}{\varepsilon^2}v_{\theta}^2 + v_r^2) + \frac{1}{2\varepsilon}(v^2 1)^2$.

- optimality of q: (\star) implies $\int_0^\infty e_{\varepsilon}(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- define: $|\eta_1(\theta) = \int (1 + (r r_0)^2) e_{\varepsilon}(v)(r, \theta) dr c_0.$ Then data2 implies $\eta_1(0) \leq C \varepsilon^2$.

then:
$$|\eta_1(\theta) \ge \eta_2(\theta) = \int \frac{\varepsilon}{2} \frac{v_\theta^2}{r^2} + (r - r_0)^2 (\frac{\varepsilon}{2} v_r^2 + \frac{1}{2\varepsilon} (v^2 - 1)^2) dr$$
 if (\star) holds.

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- ullet conclude that $\left| \eta_1(heta) \leq C e^{C e^{C | heta|}} arepsilon^2
 ight|.$

- change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0.$
- data1: take v(r,0) = -1, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, v(r,0) = 1, $v_{\theta}(r,0) = 0$ if r > R. Then: $v(r,\theta) = -1$ near r = 0, and $v(r,\theta) = 1$ for $r > Re^{|\theta|}$. (*)
- data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_\theta(0,r) \approx 0$.

motivation: $q = \tanh(\frac{r-\sigma}{\varepsilon})$ solves $\varepsilon(-q_m - \frac{1}{r}q_r) + t_{\varepsilon}(v) = 0$. Close to PDE with $v_{\theta} \equiv 0$.

- optimality of q: (\star) implies $\int_0^\infty e_{\varepsilon}(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- define: $\eta_1(\theta) = \int (1 + (r r_0)^2) e_{\varepsilon}(v)(r,\theta) dr c_0$. Then data2 implies $\eta_1(0) \leq C \varepsilon^2$.

then:
$$|\eta_1(\theta) \ge \eta_2(\theta) = \int \frac{\varepsilon}{2} \frac{v_\theta^2}{r^2} + (r - r_0)^2 (\frac{\varepsilon}{2} v_r^2 + \frac{1}{2\varepsilon} (v^2 - 1)^2) dr$$
 if (\star) holds.

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- ullet conclude that $egin{aligned} \eta_1(heta) \leq C e^{C \mathrm{e}^{C | heta|}} arepsilon^2 \end{aligned}$.

- change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0$.
- data1: take v(r,0) = -1, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, v(r,0) = 1, $v_{\theta}(r,0) = 0$ if r > R. Then: $v(r,\theta) = -1$ near r = 0, and $v(r,\theta) = 1$ for $r > Re^{|\theta|}$. (*)
- data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_{\theta}(0,r) \approx 0$.

motivation: $q = \tanh(\frac{r-r_0}{\varepsilon})$ solves $\varepsilon(-q_{rr} - \frac{1}{r}q_r) + f_{\varepsilon}(v) = 0$. Close to PDE with $v_{\theta} \equiv 0$.

- optimality of q: (\star) implies $\int_0^\infty e_{\varepsilon}(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- define: $|\eta_1(\theta) = \int (1 + (r r_0)^2) e_{\varepsilon}(v)(r, \theta) dr c_0.$ Then data2 implies $\eta_1(0) \leq C \varepsilon^2$.

then:
$$|\eta_1(\theta) \ge \eta_2(\theta) = \int \frac{\varepsilon}{2} \frac{v_\theta^2}{r^2} + (r - r_0)^2 (\frac{\varepsilon}{2} v_r^2 + \frac{1}{2\varepsilon} (v^2 - 1)^2) dr$$
 if (\star) holds.

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- ullet conclude that $egin{aligned} \eta_1(heta) \leq C e^{C e^{C | heta|}} arepsilon^2 \end{aligned}$.

- change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0.$
- data1: take v(r,0) = -1, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, v(r,0) = 1, $v_{\theta}(r,0) = 0$ if r > R. Then: $v(r,\theta) = -1$ near r = 0, and $v(r,\theta) = 1$ for $r > Re^{|\theta|}$.
- data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_\theta(0,r) \approx 0$. motivation: $q = \tanh(\frac{r-r_0}{\varepsilon})$ solves $\varepsilon(-q_{rr} - \frac{1}{r}q_r) + f_\varepsilon(v) = 0$. Close to PDE with $v_\theta \equiv 0$.
- **pseudo-energy**: define $e_{\varepsilon}(v) = \frac{\varepsilon}{2}(\frac{1}{c^2}v_{\theta}^2 + v_{f}^2) + \frac{1}{2\varepsilon}(v^2 1)^2$.

$$\begin{array}{c} \text{Term 1} & \text{Term 2} \\ \text{compute: } \frac{d}{d\theta} \, \theta_{\varepsilon}(v) = \varepsilon (v_{\theta} v_{r})_{\theta} + \varepsilon r^{-1} v_{\theta} v_{r} (1 - \kappa r) + \varepsilon \kappa v_{\theta} (v_{r} - \varepsilon^{-1} (1 - v^{2})). \end{array}$$

- optimality of q: (\star) implies $\int_0^\infty e_{\varepsilon}(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- define: $\eta_1(\theta) = \int (1 + (r r_0)^2) e_{\varepsilon}(v)(r, \theta) dr c_0$. Then data2 implies $\eta_1(0) \leq C \varepsilon^2$.

then:
$$|\eta_1(\theta) \ge \eta_2(\theta) = \int \frac{\varepsilon}{2} \frac{v_\theta^2}{r^2} + (r - r_0)^2 (\frac{\varepsilon}{2} v_r^2 + \frac{1}{2\varepsilon} (v^2 - 1)^2) dr$$
 if (\star) holds.

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- ullet conclude that $egin{aligned} \eta_1(heta) \leq C e^{C e^{C | heta|}} arepsilon^2 \end{aligned}$.

- change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0.$
- data1: take v(r,0) = -1, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, v(r,0) = 1, $v_{\theta}(r,0) = 0$ if r > R. Then: $v(r,\theta) = -1$ near r = 0, and $v(r,\theta) = 1$ for $r > Re^{|\theta|}$.
- data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_\theta(0,r) \approx 0$.

motivation: $q = \tanh(\frac{r-r_0}{\varepsilon})$ solves $\varepsilon(-q_{rr} - \frac{1}{r}q_r) + f_{\varepsilon}(v) = 0$. Close to PDE with $v_{\theta} \equiv 0$.

$$\text{compute: } \frac{d}{d\theta} e_{\varepsilon}(v) = \varepsilon (v_{\theta} v_{r})_{\theta} + \varepsilon r^{-1} v_{\theta} v_{r} (1 - \kappa r) + \varepsilon \kappa v_{\theta} (v_{r} - \varepsilon^{-1} (1 - v^{2})).$$

- optimality of q: (*) implies $\int_0^\infty e_{\varepsilon}(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- define: $|\eta_1(\theta) = \int (1 + (r r_0)^2) e_{\varepsilon}(v)(r, \theta) dr c_0.$ Then data2 implies $\eta_1(0) \leq C \varepsilon^2$.

then:
$$\eta_1(\theta) \ge \eta_2(\theta) = \int \frac{\varepsilon}{2} \frac{v_\theta^2}{r^2} + (r - r_0)^2 (\frac{\varepsilon}{2} v_r^2 + \frac{1}{2\varepsilon} (v^2 - 1)^2) dr$$
 if (\star) holds.

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- ullet conclude that $egin{aligned} \eta_1(heta) \leq C e^{C e^{C | heta|}} arepsilon^2 \end{aligned}$.

- change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0.$
- data1: take v(r,0) = -1, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, v(r,0) = 1, $v_{\theta}(r,0) = 0$ if r > R. Then: $v(r,\theta) = -1$ near r = 0, and $v(r,\theta) = 1$ for $r > Re^{|\theta|}$.
- data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_\theta(0,r) \approx 0$. motivation: $q = \tanh(\frac{r-r_0}{\varepsilon})$ solves $\varepsilon(-q_{rr} - \frac{1}{r}q_r) + f_\varepsilon(v) = 0$. Close to PDE with $v_\theta \equiv 0$.
- **pseudo-energy**: define $e_{\varepsilon}(v) = \frac{\varepsilon}{2}(\frac{1}{r^2}v_{\theta}^2 + v_{r}^2) + \frac{1}{2\varepsilon}(v^2 1)^2$.

- optimality of q: (*) implies $\int_0^\infty e_\varepsilon(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- define: $|\eta_1(\theta)| = \int (1+(r-r_0)^2)e_{\varepsilon}(v)(r,\theta)dr c_0.$ Then data2 implies $\eta_1(0) \leq C\varepsilon^2$.

then:
$$\eta_1(\theta) \ge \eta_2(\theta) = \int \frac{\varepsilon}{2} \frac{v_\theta^2}{r^2} + (r - r_0)^2 (\frac{\varepsilon}{2} v_r^2 + \frac{1}{2\varepsilon} (v^2 - 1)^2) dr$$
 if (\star) holds.

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- ullet conclude that $egin{aligned} \eta_1(heta) \leq C e^{C e^{C | heta|}} arepsilon^2 \end{aligned}$.

- change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0$.
- data1: take v(r,0) = -1, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, v(r,0) = 1, $v_{\theta}(r,0) = 0$ if r > R. Then: $v(r,\theta) = -1$ near r = 0, and $v(r,\theta) = 1$ for $r > Re^{|\theta|}$. (*)
- data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_\theta(0,r) \approx 0$. motivation: $q = \tanh(\frac{r-r_0}{\varepsilon})$ solves $\varepsilon(-q_{rr} - \frac{1}{r}q_r) + f_\varepsilon(v) = 0$. Close to PDE with $v_\theta \equiv 0$.
- **pseudo-energy**: define $e_{\varepsilon}(v) = \frac{\varepsilon}{2}(\frac{1}{v^2}v_{\theta}^2 + v_{f}^2) + \frac{1}{2\varepsilon}(v^2 1)^2$.

- optimality of q: (*) implies $\int_0^\infty e_\varepsilon(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- define: $|\eta_1(\theta) = \int (1+(r-r_0)^2)e_{\varepsilon}(v)(r,\theta)dr c_0.$ Then data2 implies $\eta_1(0) \leq C\varepsilon^2$.

$$\text{then: } \boxed{ \eta_1(\theta) \geq \eta_2(\theta) = \int \frac{\varepsilon}{2} \frac{v_\theta^2}{r^2} + (r - r_0)^2 (\frac{\varepsilon}{2} v_r^2 + \frac{1}{2\varepsilon} (v^2 - 1)^2) dr } \text{ if } (\star) \text{ holds.}$$

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- ullet conclude that $egin{aligned} \eta_1(heta) \leq C e^{C \mathrm{e}^{C | heta|}} arepsilon^2 \end{aligned}$.

- change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0.$
- data1: take v(r,0) = -1, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, v(r,0) = 1, $v_{\theta}(r,0) = 0$ if r > R. Then: $v(r,\theta) = -1$ near r = 0, and $v(r,\theta) = 1$ for $r > Re^{|\theta|}$. (*)
- data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_{\theta}(0,r) \approx 0$. motivation: $q = \tanh(\frac{r-r_0}{\varepsilon})$ solves $\varepsilon(-q_{rr} - \frac{1}{r}q_r) + f_{\varepsilon}(v) = 0$. Close to PDE with $v_{\theta} \equiv 0$.
- pseudo-energy: define $e_{\varepsilon}(v) = \frac{\varepsilon}{2}(\frac{1}{r^2}v_{\theta}^2 + v_{r}^2) + \frac{1}{2\varepsilon}(v^2 1)^2$.

- optimality of q: (*) implies $\int_0^\infty e_\varepsilon(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- **define**: $| \eta_1(\theta) = \int (1 + (r r_0)^2) e_{\varepsilon}(v)(r, \theta) dr c_0.$ Then **data2** implies $\eta_1(0) \leq C \varepsilon^2$.

• estimate
$$\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$$
 if (\star) holds. (C depends only on R .)

ullet conclude that $\boxed{\eta_1(heta) \leq Ce^{Ce^{C| heta|}} arepsilon^2}$

- change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0$.
- data1: take v(r,0) = -1, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, v(r,0) = 1, $v_{\theta}(r,0) = 0$ if r > R. Then: $v(r,\theta) = -1$ near r = 0, and $v(r,\theta) = 1$ for $r > Re^{|\theta|}$. (*)
- data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_{\theta}(0,r) \approx 0$. motivation: $q = \tanh(\frac{r-r_0}{\varepsilon})$ solves $\varepsilon(-q_{rr} - \frac{1}{r}q_r) + f_{\varepsilon}(v) = 0$. Close to PDE with $v_{\theta} \equiv 0$.
- pseudo-energy: define $e_{\varepsilon}(v) = \frac{\varepsilon}{2}(\frac{1}{v^2}v_{\theta}^2 + v_{\ell}^2) + \frac{1}{2\varepsilon}(v^2 1)^2$.

$$\text{compute: } \frac{d}{d\theta} e_{\varepsilon}(v) = \varepsilon (v_{\theta} v_{r})_{\theta} + \varepsilon r^{-1} v_{\theta} v_{r} (1 - \kappa r) + \varepsilon \kappa v_{\theta} (v_{r} - \varepsilon^{-1} (1 - v^{2})).$$

- optimality of q: (*) implies $\int_0^\infty e_\varepsilon(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- define: $\eta_1(\theta) = \int (1 + (r r_0)^2) e_{\varepsilon}(v)(r, \theta) dr c_0$. Then data2 implies $\eta_1(0) \leq C \varepsilon^2$.

then:
$$|\eta_1(\theta) \ge \eta_2(\theta) = \int \frac{\varepsilon}{2} \frac{v_\theta^2}{r^2} + (r - r_0)^2 (\frac{\varepsilon}{2} v_r^2 + \frac{1}{2\varepsilon} (v^2 - 1)^2) dr$$
 if (\star) holds.

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- ullet conclude that $\boxed{\eta_1(heta) \leq C e^{C e^{C | heta|}} arepsilon^2}$

- change variables to study $\varepsilon(v_{\theta\theta}-v_{rr}-\frac{1}{r}v_r)+\frac{1}{\varepsilon}(v^2-1)(v-2\varepsilon\kappa)=0$.
- data1: take v(r,0) = -1, $v_{\theta}(r,0) = 0$ if $r < R^{-1}$, v(r,0) = 1, $v_{\theta}(r,0) = 0$ if r > R. Then: $v(r,\theta) = -1$ near r = 0, and $v(r,\theta) = 1$ for $r > Re^{|\theta|}$.
- data2: take $v(r,0) \approx \tanh(\frac{r-r_0}{\varepsilon})$, for $r_0 = \kappa^{-1}$. Also take $v_{\theta}(0,r) \approx 0$. motivation: $q = \tanh(\frac{r-r_0}{\varepsilon})$ solves $\varepsilon(-q_{rr} - \frac{1}{r}q_r) + f_{\varepsilon}(v) = 0$. Close to PDE with $v_{\theta} \equiv 0$.
- pseudo-energy: define $e_{\varepsilon}(v) = \frac{\varepsilon}{2}(\frac{1}{v^2}v_{\theta}^2 + v_{\ell}^2) + \frac{1}{2\varepsilon}(v^2 1)^2$.

$$\text{compute: } \frac{d}{d\theta} e_{\varepsilon}(v) = \varepsilon (v_{\theta} v_{r})_{\theta} + \varepsilon r^{-1} v_{\theta} v_{r} (1 - \kappa r) + \varepsilon \kappa v_{\theta} (v_{r} - \varepsilon^{-1} (1 - v^{2})).$$

- optimality of q: (*) implies $\int_0^\infty e_\varepsilon(v)dr \ge c_0$, equality iff $v_r \varepsilon^{-1}(1 v^2) = 0$ iff v = q(r a).
- **define**: $| \eta_1(\theta) = \int (1 + (r r_0)^2) e_{\varepsilon}(v)(r, \theta) dr c_0.$ Then **data2** implies $\eta_1(0) \leq C \varepsilon^2$.

then:
$$|\eta_1(\theta) \ge \eta_2(\theta) = \int \frac{\varepsilon}{2} \frac{v_\theta^2}{r^2} + (r - r_0)^2 (\frac{\varepsilon}{2} v_r^2 + \frac{1}{2\varepsilon} (v^2 - 1)^2) dr$$
 if (\star) holds.

- estimate $\left| \frac{d}{d\theta} \eta_1(\theta) \le C e^{C|\theta|} \eta_2(\theta) \le C e^{C|\theta|} \eta_1(\theta) \right|$ if (\star) holds. (C depends only on R.)
- ullet conclude that $\boxed{\eta_1(heta) \leq C \mathrm{e}^{C \mathrm{e}^{C | heta|}} arepsilon^2}$.

In particular

$$\int_0^\Theta \int_0^\infty \frac{v_\theta^2}{r^2} dr \ d\theta \le C \varepsilon^2.$$

Thus Poincare's inequality implies that

$$\|\mathbf{v}-\mathbf{v}_0\|_{L^2([0,\Theta]\times(0,\infty)}\leq C\varepsilon.$$

2 This translates into estimates

$$|u - U|_{\{x > 0, |t/x| \le \tanh(\Theta)\}} \le C\varepsilon$$

$$U(t,x) = q(\frac{(x^2 - t^2)^{1/2} - \kappa^{-1}}{\varepsilon}) = q(\frac{\operatorname{dist}(t,x), \Gamma}{\varepsilon}).$$

- ① given any T, we can use this to control u in $\{|t| < T\}$
- can also extract estimates e.g. of energy-momentum tensor.

In particular

$$\int_0^\Theta \int_0^\infty \frac{v_\theta^2}{r^2} dr \ d\theta \le C \varepsilon^2.$$

Thus Poincare's inequality implies that

$$\|\mathbf{v}-\mathbf{v}_0\|_{L^2([0,\Theta]\times(0,\infty)}\leq C\varepsilon.$$

This translates into estimates

$$||u - U||_{\{x > 0, |t/x| \le \tanh(\Theta)\}} \le C\varepsilon$$

$$U(t,x)=q(\frac{(x^2-t^2)^{1/2}-\kappa^{-1}}{\varepsilon})=q(\frac{\operatorname{dist}(t,x),\Gamma)}{\varepsilon}).$$

- ② given any T, we can use this to control u in $\{|t| < T\}$
- can also extract estimates e.g. of energy-momentum tensor.

In particular

$$\int_0^\Theta \int_0^\infty \frac{v_\theta^2}{r^2} dr \ d\theta \le C \varepsilon^2.$$

Thus Poincare's inequality implies that

$$\|\mathbf{v}-\mathbf{v}_0\|_{L^2([0,\Theta]\times(0,\infty)}\leq C\varepsilon.$$

This translates into estimates

$$||u - U||_{\{x > 0, |t/x| \le \tanh(\Theta)\}} \le C\varepsilon$$

$$U(t,x)=q(\frac{(x^2-t^2)^{1/2}-\kappa^{-1}}{\varepsilon})=q(\frac{\operatorname{dist}(t,x),\Gamma)}{\varepsilon}).$$

- **3** given any T, we can use this to control u in $\{|t| < T\}$.
- an also extract estimates e.g. of energy-momentum tensor.

In particular

$$\int_0^\Theta \int_0^\infty \frac{v_\theta^2}{r^2} dr \ d\theta \le C \varepsilon^2.$$

Thus Poincare's inequality implies that

$$\|\mathbf{v}-\mathbf{v}_0\|_{L^2([0,\Theta]\times(0,\infty)}\leq C\varepsilon.$$

This translates into estimates

$$||u - U||_{\{x > 0, |t/x| \le \tanh(\Theta)\}} \le C\varepsilon$$

$$U(t,x)=q(\frac{(x^2-t^2)^{1/2}-\kappa^{-1}}{\varepsilon})=q(\frac{\operatorname{dist}(t,x),\Gamma)}{\varepsilon}).$$

- **3** given any T, we can use this to control u in $\{|t| < T\}$.
- can also extract estimates e.g. of energy-momentum tensor.