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effective dynamics means:
@ Given a nonlinear evolution equation with small or large
parameter
@ one seeks a simple description of (at least some) solutions, where
@ simple may mean: in terms of lower-dimensional objects
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effective dynamics means:
@ Given a nonlinear evolution equation with small or large
parameter
@ one seeks a simple description of (at least some) solutions, where
@ simple may mean: in terms of lower-dimensional objects

relevance of the calculus of variations
@ [-convergence is very often a source of inspiration
@ [-convergence (with related estimates) is often an ingredient in

pI’OOfS including for example for wave and Schrédinger equations

@ [-convergence (with upgrades) can sometimes be the basis for
proofs especially for gradient flows, cf lectures of Ambrosio

@ In general: effective dynamics is largely a question of stability
@ and calculus of variations is very relevant to stability.
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general open problems

1. Abstract framework for '-convergence and Hamiltonian systems.
For gradient flows, Sandier-Serfaty ‘04, Serfaty 11

2. For Hamiltonian systems (especially),
@ Can one ever establish global-in-time results ?

@ In particular, given a periodic solution of a limiting Hamiltonian
system, can one find “nearby" periodic solutions for the
approximating functional?
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First example

Exercise

Assume that F, : R = C — R and that F. — F in some topology. For
which topologies is it true that solutions of the ODEs

).(a = _VFa(Xs)y XE(O) = Xo (1)
X. = —VF.(x.), x-(0) = xp, X:(0) = v (2)
ix: = —VF(x:), x-(0) = xo (3)

converge, as ¢ — 0, to solutions of the ¢ = 0 systems?

Note:
@ for (1), “energy" decreases along trajectories: %Fs(xs) = —|x|?

e for (2), “energy" is conserved: $[3[x.[> + F.(x.)] = 0.

@ for (3), (adifferent) “energy" is conserved: %Fe(xa) =0.
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Another example

The above exercise is misleading in that it (probably)
@ doesn’t use gradient structure
@ doesn’t distinguish between different dynamics

more illustrative: Let g : R — R be a fixed smooth function, and
define

_ . X
FE(X7.y) = g(X,y)+€ p(y_gqsm(g))Z
for certain p, g > 0.

Exercise
Show that

g9(x,0) ify=0
Fo 5 Fo(x,y) ==
~ D) {+oo if not

v

Exercise

For which values of p, g do solutions of various ODEs for F. converge
to solutions for Fy?
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Note: in general I'-convergence is far too weak to allow any
conclusions about dynamics.

Assume that f : R” — R is continuous, ¢ : R" — R is measurable and
Z"-periodic, with inf¢ = 0. Then for any p > 0,

Fo(x) = f(x) + 5_pgb(§) ot

Exercise

Assume that f : R” — R is positive. Let {x;} be a countable dense
subset of R”, and define

Falx) = 0 if x € UX,B(x;,27'¢)
U f(x) i not

Then

F. - F>0a.e. andinL}, but F.(x) — 0.
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For the duration of this lecture, we consider the Allen-Cahn energy

€ 1
F.(u) := /Q E\Vu|2 + 2—&_(u2 —1)% dx ue HL(Q)

and associated evolution problems (where typically Q@ = R".)

Plan

@ recall I'-convergence (for inspiration) and state corresponding
wave equation result
@ discuss proof
e transform via change of variables into a stability question
@ address this using variational arguments
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Theorem (Modica-Mortola *77, Modica '87,Sternberg ’88)

1. (compactness) /f (U-).c(0,1] IS @ sequence in H'(Q) such that
Fo(u:)<C

then there is a subsequence that converges in L' as e — 0 to a limit

ue BV(Q;{£1}).

2. (lower bound) /f (u.) c H'(Q) and u. Ly, then

liminf F.(u;) > Fo(u) :=

e—0

%|Du|(§2) ifue BV(Q; {£1})
+00 if not

3. (upper bound) For any u € L'(Q) there exists a sequence
(u.) € H'(Q) such that

w5y and limsup F(u.) < Fo(u).
e—0
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@ Informally,

F-(+) 5 “interfacial area functional ”

@ As a corollary: if (u.) is a sequence of minimizers of F. (for
suitable boundary data....) then

u. — uc BV(Q; {:|:1 }) after passing to a subsequence if necessary, and
the set {x € Q : u(x) = 1} has minimal perimeter in Q.
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further (PDE) results: (many references omitted here.....)
@ similar for nonminimizing solutions of

1
—eAu, + g(uf ~Nu. =0

(assuming natural energy bounds.)
@ solutions of ]
—eAu. + g(uf —Nu.=¢kr

are related in a similar way to surfaces of Constant Mean
Curvature.

@ in addition,

U-(x) =~ q(TX), where d(+) is signed distance from interface

so that d(-) satisfies |Vd?=1, d=0onT
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Theorem (J ’11, Galvao-Sousa and J., '13)

Assume that T is a smooth, compact, embedded, timelike hypersurface
in(T., T*) x R", bounding a set O, and such that Hpin(IN) = k € R.

Then there exists a sequence of solutions (u.) of the wave equation
1
(Bl — Au) + g(u2 —1)(2u—ek) =0

such that

1 inO : N
U. — U= {_1 g in L2 ((T., T*) x R")

@ In fact we prove more, including energy concentration around I',
estimates of rate of convergence etc.

@ Hpink = (1 — v?)~"/2(Hgye — (1 — v®)~'a), where v = velocity,
a = acceleration.

@ Hpink =0 <= critical point of Minkowskian area functional
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Formal arguments and eliiptic results suggest that| u ~ q(—) |, where

@ qis the optimal 1-d profile:
—q"+(¢*-1)g=0, q0)=0, qg—+lat+oo
@ d is the signed Minkowski distance functionto I, i.e.

—(0d)2 +|Vd2 =1, d=0onT,

Note that g minimizes

v»—>/2 1—v)dr

among functions such that v(r) — £1 as r — +oc.
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Plan:
@ consider 1d case (with k # 0) for simplicity
@ Letry=x"". Then

[ = {ro(sinhf,coshf) : 6 € R} := {(t,x) : x® — 2 =13}
@ change to Minkowskian polar coordinates
(rcoshé,rsinh9) = (x, t), r>0,0eR

Then and |r—ry = d = Minkowski distance to T |

@ then hope to show that

u(x,t) =v(r,0)~ q(g) — q(r;ro

).

@ in fact we will concoct a functional ¢ such that

),

r—~n

n(v(-,0)) small = v~ g( .
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« change variables to study (Vg9 — Vir — 1v/) + 1(v2 — 1)(v — 2ex) = 0.
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« change variables to study (Vg9 — Vir — 1v/) + 1(v2 — 1)(v — 2ex) = 0.

o datal: take v(r,0) = —1,vg(r,0) = 0if r < R~',v(r,0) = 1, vg(r,0) = 0 if r > R.
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« change variables to study (Vg9 — Vir — 1v/) + 1(v2 — 1)(v — 2ex) = 0.

o datal: take v(r,0) = —1,vg(r,0) = 0if r < R~',v(r,0) = 1, vg(r,0) = 0 if r > R.
Then: v(r,0) = —1 near r = 0, and v(r,0) = 1 for r > Rel?l. (%)

Robert L. Jerrard (Toronto ) Variational methods for effective dynamics Variational Problems in Physics 14/15



« change variables to study (Vg9 — Vir — 1v/) + 1(v2 — 1)(v — 2ex) = 0.

o datal: take v(r,0) = —1,vg(r,0) = 0if r < R~',v(r,0) = 1, vg(r,0) = 0 if r > R.
Then: v(r,0) = —1 near r = 0, and v(r,0) = 1 for r > Rel?l. (%)

o data2: take v(r, 0) ~ tanh(L=22), for ry = k. Also take v, (0, r) = 0.

€
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« change variables to study (Vg9 — Vir — 1v/) + 1(v2 — 1)(v — 2ex) = 0.
o datal: take v(r,0) = —1,vg(r,0) = 0if r < R~',v(r,0) = 1, vg(r,0) = 0 if r > R.

Then: v(r,0) = —1 near r = 0, and v(r,0) = 1 for r > Rel?l. (%)
o data2: take v(r,0) ~ tanh(*=2), for ry = k. Also take v4(0, r) ~ 0.

motivation: g = tanh("=") solves e(—gr — 1gr) + £(v) = 0. Close to PDE with vy = 0.
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« change variables to study (Vg9 — Vir — 1v/) + 1(v2 — 1)(v — 2ex) = 0.

o datal: take v(r,0) = —1,vg(r,0) = 0if r < R~',v(r,0) = 1, vg(r,0) = 0 if r > R.
Then: v(r,0) = —1 near r = 0, and v(r,0) = 1 for r > Rel?l. (%)

o data2: take v(r,0) ~ tanh(*=2), for ry = k. Also take v4(0, r) ~ 0.
motivation: g = tanh("=") solves e(—gr — 1gr) + £(v) = 0. Close to PDE with vy = 0.

« pseudo-energy: define e (v) = 5(5vZ + v2) + o= (V2 —1)2
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o change variables to study £(vgg — vir — 17v,) + %(v2 —1)(v —2ex) =0.
o datal: take v(r,0) = —1,vg(r,0) = 0if r < R~',v(r,0) = 1, vg(r,0) = 0 if r > R.

Then: v(r,0) = —1 near r = 0, and v(r,0) = 1 for r > Rel?l. (%)
o data2: take v(r,0) ~ tanh(*=2), for ry = k. Also take v4(0, r) ~ 0.

motivation: g = tanh(%) solves e(—qr — %qr) + f-(v) = 0. Close to PDE with vy = 0.

« pseudo-energy: define e (v) = 5(5vZ + v2) + o= (V2 —1)2

Term 1 Term 2
compute: Lo (v) = (Vovr)o +erTvovr(1 — kr) + ervp(vr — e~ 1(1 — v2)).
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o change variables to study £(vgg — vir — 17v,) + %(v2 —1)(v —2ex) =0.
o datal: take v(r,0) = —1,vg(r,0) = 0if r < R~',v(r,0) = 1, vg(r,0) = 0 if r > R.

Then: v(r,0) = —1 near r = 0, and v(r,0) = 1 for r > Rel?l. (%)
o data2: take v(r,0) ~ tanh(*=2), for ry = k. Also take v4(0, r) ~ 0.

motivation: g = tanh(%) solves e(—qr — %qr) + f-(v) = 0. Close to PDE with vy = 0.

« pseudo-energy: define e (v) = 5(5vZ + v2) + o= (V2 —1)2

Term 1 Term 2
compute: Lo (v) = (Vovr)o +erTvovr(1 — kr) + ervp(vr — e~ 1(1 — v2)).

o optimality of g: (x) implies [ e-(v)dr > co, equality iff v, —e="(1 — v?) = 0iff v = g(r — a).
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« change variables to study (Vg9 — Vir — 1v/) + 1(v2 — 1)(v — 2ex) = 0.

o datal: take v(r,0) = —1,vg(r,0) = 0if r < R~',v(r,0) = 1, vg(r,0) = 0 if r > R.
Then: v(r,0) = —1 near r = 0, and v(r,0) = 1 for r > Rel?l. (%)

o data2: take v(r,0) ~ tanh(*=2), for ry = k. Also take v4(0, r) ~ 0.

motivation: g = tanh("=") solves e(—gr — 1gr) + £(v) = 0. Close to PDE with vy = 0.

« pseudo-energy: define e (v) = 5(5vZ + v2) + o= (V2 —1)2

Term 1

Term 2

compute: Lo (v) = (Vovr)o +erTvovr(1 — kr) + ervp(vr — e~ 1(1 — v2)).

o optimality of g: (x) implies [, e-(v)dr > ¢y, equality iff v, —e="(1 — v?) = 0iff v = g(r — a).

o define:

n® = [(1+(r = Pe(n)(r.0)dr - co.

Then data2 implies 71 (0) < Ce?.
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o change variables to study £(vgg — vir — 17v,) + %(v2 —1)(v —2ex) =0.
o datal: take v(r,0) = —1,vg(r,0) = 0if r < R~',v(r,0) = 1, vg(r,0) = 0 if r > R.

Then: v(r,0) = —1 near r = 0, and v(r,0) = 1 for r > Rel?l. (%)
o data2: take v(r,0) ~ tanh(*=2), for ry = k. Also take v4(0, r) ~ 0.

motivation: g = tanh(%) solves e(—qr — %qr) + f-(v) = 0. Close to PDE with vy = 0.

« pseudo-energy: define e (v) = 5(5vZ + v2) + o= (V2 —1)2

Term 1 Term 2
compute: Lo (v) = (Vovr)o +erTvovr(1 — kr) + ervp(vr — e~ 1(1 — v2)).

o optimality of g: (x) implies [, e-(v)dr > ¢y, equality iff v, —e="(1 — v?) = 0iff v = g(r — a).

o define: | 1(0) = /(1 + (r = ry)®)e=(v)(r, 8)dr — cy. | Then data2 implies 7 (0) < Ce2.

2
%‘% (= )2(EVE 4+ (v — 12)dr |if () holds.

then: | n1(0) > n2(0) = 2 2¢

Robert L. Jerrard (Toronto ) Variational methods for effective dynamics Variational Problems in Physics 14/15



o change variables to study £(vgg — vir — 17v,) + %(v2 —1)(v —2ex) =0.
o datal: take v(r,0) = —1,vg(r,0) = 0if r < R~',v(r,0) = 1, vg(r,0) = 0 if r > R.
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2
%‘% (= )2(EVE 4+ (v — 12)dr |if () holds.

then: | n1(0) > n2(0) = 2 2¢

o estimate 1(0) < CeClPln,(0) < CeClP1n,(6) |if (x) holds. (C depends only on R.)

%77
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o change variables to study £(vgg — vir — 17v,) + %(v2 —1)(v —2ex) =0.
o datal: take v(r,0) = —1,vg(r,0) = 0if r < R~',v(r,0) = 1, vg(r,0) = 0 if r > R.

Then: v(r,0) = —1 near r = 0, and v(r,0) = 1 for r > Rel?l. (%)
o data2: take v(r,0) ~ tanh(*=2), for ry = k. Also take v4(0, r) ~ 0.
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%77

C
e conclude that| n;(6) < Ce®® 912 |
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Conclusions:
@ In particular

© roo V2
/ / Vi or o < Ce2.
o Jo TF

Thus Poincare’s inequality implies that

v — VoHLZ([o,e]x(O,oo) < Ce.
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Conclusions:
@ In particular

© roo V2
/ / Vi or o < Ce2.
o Jo TF

Thus Poincare’s inequality implies that

v — VoHLZ([o,e]x(O,oo) < Ce.

@ This translates into estimates

U — Ull{x>0,jt/x|<tanh()} < Ce
for explicit U with interface following curve of curvature k. In fact,

2 _ g2\1/2 _ .1 .
Ut x) = g =5 ) = g(aistt:x). 1)

e 9

).
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© given any T, we can use this to control uin {|t| < T} .
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Conclusions:
@ In particular

© roo V2
/ / Vi or o < Ce2.
o Jo TF

Thus Poincare’s inequality implies that

v — VoHLZ([o,e]x(O,oo) < Ce.

@ This translates into estimates

U — Ull{x>0,jt/x|<tanh()} < Ce
for explicit U with interface following curve of curvature k. In fact,

2 _ g2\1/2 _ .1 .
Ut x) = g =5 ) = g(aistt:x). 1)

e 9

).

© given any T, we can use this to control uin {|t| < T} .
© can also extract estimates e.g. of energy-momentum tensor.
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