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¢ Basic abstract theory

e A model case with no derivatives

e Discrete to continuum and viceversa

e Elliptic operators in divergence form

e Expansions by '-convergence

¢ Phase transitions and image segmentation
¢ Problems with multiple scales

e Dimension reduction

e From convergence of minimizers to evolution problems
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Introduction

The theory of I'-convergence was invented in the ’70 by E.De Giorgi.
Among the precursors of the theory, one should mention:

e the Mosco convergence (for convex functions and their duals);

e the G-convergence of Spagnolo for elliptic operators in divergence
form;

e the epi-convergence, namely the Hausdorff convergence of the
epigraphs.

But, it is only with De Giorgi and with the examples worked out by his
school that the theory reached a mature stage.
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-convergence is a “variational” convergence, somehow the most the
natural one to pass to the limit in variational problems.

More specifically we shall deal with the '~ convergence, the one
designed to pass to the limit in minimum problems.

The most general definition of '™ upper and lower limits, for
F:lxX— [-o0,+o0]:

r—*lim F(x) := supinfsup |nf F(,y),

Usx i€l j>i ye

=~ 1lim F(x) := supsupinf inf F(j,y).

Usx iecl J=iyey

From now on, our index set / will be N and we work in a metric space
(X, d), dropping the — from . &
|55,
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Sequential definition of -convergence
Let (X, d) be a metric space, F, : X — [—00, +00] lower semicontinu-
ous. As in many other cases, to define convergence we pass through
the intermediate notions of upper and lower limits:

I —limsup Fp(x) := inf {Iim sup Fn(xn) : Xp — x} ,

n—oo n—o0

r — liminf Fy(x) = inf {lmiogf Fa(Xn) © X — x} .

It is obvious that I' — liminf, F, < T — limsup, Fs, and it is not too
difficult to check that they are both lower semicontinuous. We say that
Fn T converge if

I —limsup Fp(x) < T —liminf Fp(x) Vx e X

n—oo n—oo

and we denote the common value of the upper and lower T limits by C@
MF— lim Fp,.

n—oo
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The second inequality means that we should be able to prove, for
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How one proves [-convergence
As soon as we have a guess F for the I'-limit, we have to prove that

I —limsup Fn(x) < F(x) and F(x) <T —liminf Fp(x).

n—oo n—oo

The first inequality means that we should be able to find (x,) C X
convergent to x with limsup, Fn(xn) < F(x). Any sequence (x,) with
this property is called recovery sequence.
The second inequality means that we should be able to prove, for
any (xn) C X convergent to x, the lower bound for the liminf, namely
liminf, Fn(xn) > F(x).
Warning!! In general pointwise convergence has nothing to do with
-convergence, for instance F,(x) = sin(nx) I-converge to —1.
In this case

m  2[nx/2]r

Xn=—go+ = is a recovery sequence. &
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The two basic theorems of '-convergence

The first result clarifies the meaning of variational convergence: limits

of (asymptotic) minimizers are minimizers and we have convergence of
minimum values.

Theorem 1. IfI — lim F, = F and (x,) C X is asymptotically

. . . . . n_)m
minimizing for Fp, i.e.

Fn(xn) < igl(f Fn+en

with e, — 0, then any limit point x of (xn) minimizes F.
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The first result clarifies the meaning of variational convergence: limits

of (asymptotic) minimizers are minimizers and we have convergence of
minimum values.

Theorem 1. IfI — lim F, = F and (x,) C X is asymptotically

. . . . . n_)m
minimizing for Fp, i.e.

Fn(xn) < ig\(f Fn+en

with e, — 0, then any limit point x of (xn) minimizes F. In addition,
under the equi-coercitivity assumption

ig](f Fn= iﬂf Fn for some compact set K C X independent of n,

one has that F, attain their minimum value, and

lim min F, = minF.
n—oo X X @
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Proof of the first part. Let x = klim Xn(k) be a limit point of (xy).
—00
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On the other hand, if (y,«)) is a recovery sequence relative to y, then

lim sup inf Fii < I|m 1sUp Frk)(Yn(ky) < F(¥).
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By taking the infimum w.r.t. y we can obtain infx F in the right
hand side.
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The two basic theorems of '-convergence

Proof of the first part. Let x = klim Xn(k) be a limit point of (xy).
—00
Obviously we still have F =T — klim Fn(k), so that
—00

, < < limi it ‘
|51(fF < F(x) < Ilkrglcgf Fagk)(Xnk)) “knl!)gfl?(f Frek

On the other hand, if (y,«)) is a recovery sequence relative to y, then

lim sup inf Fii < I|m 1sUp Frk)(Yn(ky) < F(¥).

K—o0

By taking the infimum w.r.t. y we can obtain infyx F in the right
hand side. Now, combining these two inequalities we obtain that x
minimizes F and that infx F) converge to miny F.
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Theorem 2. If (X, d) is separable, then I -convergence is sequentially
compact.

Proof. Let (U;);cn be a countable basis for the open sets of X, stable
under finite intersections.
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Theorem 2. If (X, d) is separable, then I -convergence is sequentially
compact.

Proof. Let (U;);cn be a countable basis for the open sets of X, stable

under finite intersections. If F, are given, we may extract by a diagonal
argument a subsequence n(k) such that

li= kILmooin Frek) exists for all i € N.
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Proof. Let (U;);cn be a countable basis for the open sets of X, stable

under finite intersections. If F, are given, we may extract by a diagonal
argument a subsequence n(k) such that

li= kILmooin Frek) exists for all i € N.
Then, define

F(x) :=sup¥¢;, x e X.

Usx
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Theorem 2. If (X, d) is separable, then I -convergence is sequentially
compact.

Proof. Let (U;);cn be a countable basis for the open sets of X, stable
under finite intersections. If F, are given, we may extract by a diagonal
argument a subsequence n(k) such that

li= kILmooin Frek) exists for all i € N.

Then, define

F(x) :=sup¥¢;, x e X.
Usx

The T-liminf inequality follows by
imi > liminfi =/¢; forallis.t. .
Ilknl!)rcl)f Frky(Xk) = IlkriLrgfllrJ]lf Fowy=4¢; forallist. x e U
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The two basic theorems of '-convergence

Theorem 2. If (X, d) is separable, then I -convergence is sequentially
compact.

Proof. Let (U;);cn be a countable basis for the open sets of X, stable
under finite intersections. If F, are given, we may extract by a diagonal
argument a subsequence n(k) such that

li= kILmooiLr}f Frek) exists for all i € N.
Then, define
F(x) :=sup¥¢;, x e X.
Usx

The T-liminf inequality follows by

imi > liminfi =/(; forallis.t. 3
IlknlLrAan(k)(xk) > Ill(riLrgfllrJ]lan(k) i forallist xe U

The proof of I'-limsup inequality is left as an exercise.



Other easy properties

e When the convergence is monotone, i.e. F;, < Fp.4, the monotone
(or pointwise) limit is F(x) = sup, Fa(x) (in this case the recovery
sequence is constant).
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Other easy properties

e When the convergence is monotone, i.e. F;, < Fp.4, the monotone
(or pointwise) limit is F(x) = sup, Fa(x) (in this case the recovery
sequence is constant). This happens, for instance for the LP norms
([1fIP du)w’ in a probability space, whose limit and I'-limit as p 1 oo is
the L>° norm.
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Other easy properties

e When the convergence is monotone, i.e. F;, < Fp.4, the monotone
(or pointwise) limit is F(x) = sup, Fa(x) (in this case the recovery
sequence is constant). This happens, for instance for the LP norms
([1fIP du)w’ in a probability space, whose limit and I'-limit as p 1 oo is
the L>° norm.

e [-convergence is invariant under additive continuous perturbations
and left compositions with non-decreasing maps:

F=T—1lm F, = F+g:F—nILm(Fn+g) Vg € C(X,R),

n—oo
F=T—1lim F, = ¢poF =T—lim ¢oF, ¢ non-decreasing.
n—oo n—oo
@
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