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2D case (5'92; OST'10)

2D pentagram map:

Closed and twisted pentagons.

The 2D pentagram map is defined as

To() == (o0 — 1), 00 + 1)) N (¢()), ¢(J + 2)). Choosing
appropriate lifts of the points ¢(j) to the vectors V; in C3, we can
associate a difference equation

Vits = aj2Vjr2 + 31V + V.

Transformations T*(aj 1) and T*(a;j2) are rational functions in
a*,la 3*72.



Continuous limit in the 2D case

In the continuous case, we have a 3rd order linear ordinary
differential equation instead of the difference equation

Vit3 = ajVjyo + bjVii1 + V). The normalization condition
det (V}, Vit1, Vj42) = 1 corresponds to the choice of solutions
having the unit Wronskian. More precisely, we have:

Theorem 1
There is a one-to one correspondence between equivalence classes
of non-degenerate curves in CP? (RIP?) and operators

L= (93 + al(x)OX + ao(X),

where a1(x), ag(x) are smooth functions.



Continuous limit in the 2D case

The envelope of the chords (y(x — €),v(x + €)) for different x
leads to a new curve 7-(x):

Y(x)

Y(x+¢€)

T(x-¢)

Theorem 2

The corresponding differential operator equals

L. = L+ &%[@, L] + O(c3), where

Q = (L?/3), = 8>+ (2/3)a1(x). The equation L = [Qu, L] is
equivalent to the Boussinesq equation.



Definitions
A twisted n-gon is a map ¢ : Z — P9, such that
¢(k +n) = Mo ¢(k) for any k, and M € PSLy41. M is called the
monodromy. None of the d + 1 consecutive vertices lie on one
hyperplane P9~1. Two twisted n-gons are equivalent if there is a
transformation g € PSL4.1, such that g o ¢1 = ¢».
The dimension of the space of polygons is

dim P, = nd +dim SLy11 —dim SLy11 = nd.

One can show that there exists a unique lift of the vertices
vk = ¢(k) € P9 to the vectors V) € C9*! satisfying

det (V}, Vit1, ..., Virg) =1 and Vi, = MV;, j € Z, where
M € SLy.1 (provided that ged(n,d + 1) = 1).

When gcd(n, d + 1) = 1, difference equations with n-periodic
coefficients in j:

Vivdr1 = aj.aVjra+ad-1Vjrd1+-+a1Vin+(-1)V;, j€Z,

allow one to introduce coordinates
{ajk, 0<j<n—1,1< k< d} on the space Pp,.



Definitions

For a (d — 1)-tuple of jumps (positive integers) | = (i1, iz, ..., ig—1)

an [-diagonal hyperplane is Py := (Vi, Viktiy, Vktips s Vk+iy_1)-

Generalized pentagram map in P9 is

Tvk == PN Prg1 N ... N Prgg—1. Clearly, this definition is

projectively invariant.

We discovered several integrable cases:

(a) “Short-diagonal”: | =(2,2,...,2) (KS for d = 3, Mari-Beffa
for higher d)

(b) “Dented": I, =1=(1,...,1,2,1,...,1) (the only 2 is at the
m-th place; 1 < m < d — 1 is an integer parameter).

(c) “Deep-dented”: I =1=(1,...,1,p,1,....;1) (the number p is
at the m-th place; it has 2 integer parameters m and p).




Lax representation
A Lax representation is a compatibility condition for an
over-determined system of linear equations.
Example.
L = ky
Py = 0y
As a consequence, d(trL/)/dt = 0 for any j. If Lisan nx n
matrix, we have n conserved quantities.
If L, P depend on an auxiliary parameter A, we may have more.
A discrete zero-curvature equation is a compatibility condition for

{ Li t(M)it(A) = Yig1,e(A)

& 0L =[P, 1].

Lier1(0) = Pise WL (MPHO
Pi e(\)re(A) = ¥ e11(N) & Litr1(A) = Piyre(WLie(NP (V)

Lir1 Litn—1,t+1
Vitg1 — Vigletl — o —> Yign—1,t4+1 Yitn,t+1

Pi,tT Pi+1,tT Pi+n71,tT Pi+n,tT

L Liyn_1,
Vit —  Yig1r — . — Yipn-1x B Yitn,t



Lax representation

Theorem 3
In 3D case, i.e., when d = 3, we have:
000 —1\"
» . 1 e o A 0O a,-,l
(a) “Short-diagonal” case: L;+()\) = 001 0 a
0 0 X a3
0 -1

(b) “Dented” case: Lj+(\) =

where D(X\) = diag (1, \,1) or D(\) = diag(1,1,\) (A is
situated at the (m + 1)-th place)

(c) The “deep-dented” case is more complicated, the Lax function
has the size (p+2) x (p + 2).

In each case there exists a corresponding function P; ;.



AG integrability

Definition 4
Monodromy operators To ¢, T1,¢, ..., Tn—1,+ are defined as the
following ordered products of the Lax functions:

To,t = Ln—l,th—2,t-*-L0,ta
Tt = Lotln-1,tln—2¢.-.L1,
T2,t = Ll,tl—o,th—l,th—2,t~-Lz,t,

7—n—l,t = Ln—2,tLn—3,t--~LO,th—1,t-

A Floquet-Bloch solution 1); + of a difference equation

Yiv1,e = Li i+ is an eigenvector of the monodromy operator:
Ti,t¢i,t = W¢i,t-

A normalization of the vector g ¢ determines v; ; uniquely:

Z;L:l ¢070J =1.
The spectral curve is defined by R(w, \) = det (T; +(\) — w - Id).



AG integrability

Theorem 5

R(w, \) does not depend on i, t.

Generically, in the cases (a) and (b), R(w,\) = 0 defines a
Riemann surface I' of genus g = 3q for odd n and g = 3q — 3 for
even n, where q = |n/2].

A Floquet-Bloch solution 1); + is a meromorphic vector function on
r.

Generically, its pole divisor D;; has degree g + 3.

Remark. The coefficients of R(w, ) are integrals of motion.

Definition 6

The spectral data consists of the generic spectral curve I with
marked points and a point [D] in its Jacobian J(I).

The map S : P, — (I', [Do,0], marked points) is called the direct
spectral transform.

The map Sin, : (I, [D], marked points) — P, is called the inverse
spectral transform.



AG integrability

Theorem 7

Both maps S and S;,, are defined on Zariski open subsets.
S505S;,, = Id and S;,, 0o S = Id whenever the composition is
defined.

Remark. Now the independence of the first integrals follows from
the dimension counting.
Main example in this talk: short-diagonal case.

q
R(w,)\) =w* — w? ZG)\J "+ w? ZJJ-)\J;‘F"
j=0

q
A D
j=0



Properties of the spectral curve

Theorem 8 (short-diagonal case)

Generically, the genus of the spectral curve I' is g = 3q for odd n
and g = 3q — 3 for even n, where q = |n/2]. It has 5 marked
points for odd n (denoted by O;, Oz, O3, Wi, W, ) and 8 marked
points for even n (Ol, 05, O3, O4, W1, W>, W3, W4) The
corresponding Puiseux series for even n at A =0 are

1
O w= - IA+0(N2),
0 /0
Wi 1 5
02’3 Do W3 = ﬁ + O F , where  Gowy — Jows + lp =0,
_ G G G 3
Oy : W4:F+W+W+O()\ n):

And at A = oo they are

w,
Wi : w234 =—+0 </\q+1

\a ) , W —Gaw3 4 Jgw2 —lgwo+1 = 0.



Properties of the spectral curve

The Puiseux series for odd n at A = 0 are

. — 1 2
O : kl_lo I2A+C’)()\)
=S 1
0, : k2,3 ==+ \n/2 + 2G0)\("_1)/2 +0 <)\(”—2)/2> ’
Go Gy Go 3—
: = — ATTR
03 k4 )\n + )\nfl + )\H*Q + (9( )’

And at A = oo they are

W1’2 : k17273’4 = \n/2 +O <)\(n+1)/2> , Where koo+quoo+1 =0.




AG integrability

Theorem 9 (short-diagonal case)
> when n is odd,
[Do,t] = [Do,o — tO13 + tWhy)],
» when n is even,

t+1
[Do,t] = | Do,o — tO14 + L JW12 + LiJ Waa | .

(We denote Opq := Op + Oy and Wpq := W, + Wy).



Integrability for closed polygons
Closed polygons in CP3 correspond to the monodromies M = =+Id
in SL(4,C). They form a subspace C, of codimension
15 = dim SL(4,C) in the space of all twisted polygons Pp,.
Theorems 7 and 9 hold verbatim for closed manifolds.
The genus of I drops by 6 for closed polygons, because
M= T070’>\:1.

Cn - P,
n=2q+1:
dim base=3q-6 dim base=3q+3
dim torus=3q-6 dim torus=3q
n=2q:
dim base=3q-6 dim base=3q+3

dim torus=3q-9 dim torus=3q-3



The symplectic form

Definition 10
Krichever-Phong's universal formula defines a pre-symplectic form
on the space P,. It is given by the expression:

1 11 dA
w=—3 Ag res Tr (W54 T340 To0 A W0, ) =,
=0,00

where the matrix Wg o(\) consists of the vectors g o taken on
different sheets of T'.

The leaves of the 2-form w are defined as submanifolds of P,,
where the expression ¢ In wd\/\ is holomorphic. The latter
expression is considered as a one-form on the spectral curve .



The symplectic form

Theorem 11 (short-diagonal case)

For even n the leaves are singled out by 6 conditions:
Olo =0lg =0Gg = 06Gq = dJp = dJg = 0;
For odd n the leaves are singled out by 3 conditions:
0Go = d0lp = dJg = 0.

When restricted to the leaves, w becomes a symplectic form of
rank 2g, invariant w.r.t the pentagram map.

Remark. This theorem implies Arnold-Liouvile integrability (in a
generalized sense).



The symplectic form

Theorem 12 (Action-angle variables)

Let the divisor of poles of 19 on I be Dg o = Zfif ~vs. When
restricted to the leaves,

g+3 g
w=Y _dnw(y)AsInA(y) =6l Adgi,

i=1 i=1

g+3

Vs
/ dwi:

where |; = 74 Inwd\/\, ;= Z
ai s=1

and one-forms dw;, 1 < i < g, form a basis of HO(I', Q).



Dynamics of the pentagram maps
Theorem 13

The above integrable pentagram maps on twisted n-gons in CP9
cannot be included into a Hamiltonian flow as its time-one map, at
least for some values of n,m, and d.

This suggests the following
Definition 14
Suppose that (M, w) is a 2n-dimensional symplectic manifold and
1, ..., 1, are n independent functions in involution. Let M. be a
(possibly disconnected) level set of these functions:
Mc={xeM|lj(x)=¢,1<j<n}.AmapT:M— Mis
called generalized integrable if

> it is symplectic, i.e., T*w = w;

> it preserves the integrals of motion: T*/; = /;

> there exists a positive integer g > 1 such that the map 79
leaves all connected components of level sets M invariant for
all c = (cy, ..., cn).
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