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Mechanism Design

@ A designer would like to make a collective decision according to
agents’ true preferences.

— self-interested agents privately know their preferences.
— when and how can the designer do it?

@ Examples

monopolistic screening

design of auctions

optimal taxation

provision of public goods

design of voting procedures and constitution

Introduction to Mechanism Design September 2014 2/75



Example: Single Object Allocation

@ Designer wants to allocate one object among I buyers.
— the designer’s reservation value is normalized to be 0.
@ Symmetric independent private values (SIPV)

— buyers’ “types” {6;} are independently drawn from U [0, 1].
— buyers’ valuations for the object depend only on their own type.

@ The designer wishes to “implement” the “efficient” allocation

— efficient allocation: assign object to the bidder who values most.

— how to do it?

@ What if the designer wishes to maximize the revenue?
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First-Price Sealed-Bid Auction

@ “Mechanism”

— each bidder i submits a bid m; in a sealed envelope
— bidder with the highest bid wins the object and pays his bid

@ Observation

— the mechanism specifies winner and payment given bid profile;
— it “induces” a game where bidders’ “strategies” are bids m;;
— payoff for bidder i: §; — m; if winning, and 0 otherwise.

@ Question: can it implement the efficient allocation?
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Alternative Mechanism

@ Second-price sealed bid auction

— each bidder i submits a bid m; in a sealed envelope

— bidder with the highest bid wins the object but pays the second
highest bid

@ Questions:

— can it implement the efficient allocation?

— how does it compare to FPA: revenue, bidder payoff, etc.?

— how should a revenue-maximizing designer adjust the auction
mechanism?
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Outline

@ Introduction to Bayesian games and mechanism design

— revelation principle
— Gibbard-Satterthwaite impossibility theorem

@ Quasilinear; uni-dimensional, independent, private types
@ Quasilinear; multidimensional, independent, private types
@ Nontransferrable utilities: single-peaked preferences
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Bayesian Game

@ Players:ie T ={1,...,I}

@ Types (players’ private information): 6; € ©;

@ Joint distribution of types (common prior and beliefs): ® (9)
@ Strategies/messages m; : ©; — M;

@ Preference over strategy profiles: u; (m, 0;,0_;)

@ In mechanism design context (mechanism: (M,g))

— outcome functions g : M| x - - - x M, — Y (alternatives)
— preference over Y: u; (v,0;,0_;) = u; (g (m) ,0;,0_;) =uw; (m,0;,0_;)

@ Bayesian game (with common prior): [Z, {M;}, {u;},{Oi}, P ()]
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Equilibrium Concept

Definition

A strategy profile (m] (-),...,mj (-)) is a dominant strategy equilibrium
if, Vi,V0;,Ym; € M;,Vm_; € M_;,

u; (my (6;) ,m—; (0_;),0;,0_;) > u; (mj,m_; (6_;),0;,0_;).

Definition

A strategy profile (m} (-),...,m; (-)) is a Bayesian Nash equilibrium if,
Vi, V0;,Vm; € M;,

E‘)—i [ﬁl (m;k (01) )mii ((9_,'), 0;, 6—[)] > Ee—i [”Zl (miv mii (e—i)a 0;, 0_,')] .

.
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Mechanism Design Problem

@ Consider a setting with I agents, Z = {1, ..., I}.

@ The designer/principal must make a collective choice among a set
of possible allocations Y.

@ Each agent privately observes a signal (his type) 6; € ©; that
determines his preferences over Y, described by a utility function
u; (y,0;) foralli € 7.

— common prior: the prior distribution ® (6) is common knowledge.
— private values: utility depends only own type (and allocation).
— type space: © = 0; x ... x O;.

@ A social choice function is a mappingf : © — Y.
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Messages and Outcome Function

@ Private information

— information 6 = (64, ..,0;) is dispersed among agents when the
allocation y is to be decided.
— notation: 6 = ((91', 9,,'), with 6_; = (91, e 0iq, 9,’+1, . 91)

@ Messages
— each agent can send a message m; : ©;, — M,.

— agents send their messages independently and simultaneously.

— the message space M can be arbitrary: M = M| x ... x M.
@ Outcome function is a mapping g: M — Y.

— after the agents transmit a message m € M, a social allocation
y € Y will be chosen according to g.
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Mechanism and Implementation

Definition
A mechanism I" = (M, ..,M;, g (+)) is a collection of strategy sets
(M, ..,M;) and an outcome function g : M — Y.

@ A mechanism T, together with a type space 0, a (joint) probability
distribution @ (6), and Bernoulli utility functions (u; (+) , ..., us (+))
induces a game with incomplete information where the strategy for
agent i is a function m; : ©; — M;.

Definition
A mechanism I' = (M, .., My, g (+)) implements the social choice

function f (-) if there is an equilibrium profile (m7 (6y),...,mj (6;)) of the
game induced by T" such that

g(mik (01) ) 7m>; (91)) :f(917 '-‘701) .
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Partial vs. Full Implementation

@ Partial/weak implementation (our focus)

— a social choice function is partially implementable if it arises in an
equilibrium where all agents report their information truthfully.

@ Full/Maskin implemenation

— a social choice function is fully implementable if it arises in every
equilibria where all agents report their information truthfully.
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Mechanism Design as Reverse Engineering

Agents’ Preferences Social Allocation

6eo

Social Choice Function yEY
fie—Y

Strategy
m;: 0; - M;

Outcome Function
gM—-Y

Message/Report
meM

@ Social choice problem:
— map agents’ preference profiles into allocations.
@ Implementation (or mechanism design) problem:

— designer announces an outcome function mapping the agents’
messages into allocations.

— the outcome function induces a Bayesian game.

— agents choose messages to reflect their preferences and to
influence outcome.
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Key Elements

@ The objective of the designer

— if it is welfare maximization: efficient mechanisms
— if it is revenue maximization: optimal mechanisms

@ Incentive constraints

— the designer must give agents incentives to truthfully report their
private information.
— incentive provision is often costly, leading to inefficient allocation.

@ Constrained maximization problem with two classes of constraints

— the “participation” or “individual rationality” constraint
— the “incentive compatibility” constraint
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“Timing” of Mechanism Design Problem

Mechanism design as a three-step game of incomplete information

@ Principal announces and commits to a “mechanism” or “contract”.

© Agents simultaneously decide whether to accept or reject.

© Agents who accept play the game “induced” by the mechanism.
— agents who reject get some exogenous “reservation utility”.
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FPA vs. SPA

@ Suppose there are two bidders, 6; and 6,.
@ Seller has cost 0, and 0,6, ~ U [0, 1].
@ The seller sets zero reserve price:

First-price auction Second-price auction

Egm bidding 0;/2 0,
Mechanism indirect direct
Solution concept Bayesian dominant strategy
Efficient? yes yes
Revenue 1/3 1/3

— revenue-maximizing seller would set reserve r = 1/2.
— both auction mechanisms would generate revenue 5/12.
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Dominant Strategy and Bayesian Implementation

Definition

The mechanism I' = (M, g (-)) implements the social choice function
f (+) in dominant strategies if there exists a dominant strategy
equilibrium of T', m* (-) = (mj (-) , ...,mj (-)), such that g (m* (0)) = f ()
for all 6.

Definition

The mechanism I = (M, g (-)) implements the social choice function
f (+) in Bayesian strategies if there exists a Bayesian Nash equilibrium
of ' m* (-) = (m} () ,...,mj (-)), such that g (m* (9)) = f () for all 6.
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Direct Revelation Mechanism

Definition
A direct revelation mechanism I = (O, f) is a mechanism in which
M; = ©; for all i and g (0) = f (0) for all 6.

Definition

The social choice function f (-) is truthfully implementable (or incentive
compatible) if the direct revelation mechanismI' = (0,1 (-)) has an
equilibrium (m} (01),...,m; (6;)) in which m} (6;) = 6, for all 6; € ©;, for
all 5.
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Revelation Principle

@ |dentification of implementable social choice function is complex

— difficult to consider all possible mechanism g (-) on all possible
domains of strategies M.

— a celebrated result, the revelation principle, simplifies the task.

Theorem

LetT = {M,g(-)} be a mechanism that implements the social choice
function f (-) in dominant strategies. Then f (-) is truthfully
implementable in dominant strategies.

@ Remark

— valid also for implementation in Bayesian strategies.
— sufficient to restrict attention to “direct revelation mechanisms.”
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Example of Direct Mechanism: Second-Price Auction

@ One indivisible object, two agents with valuations 6;,i = 1, 2.
@ Quasi-linear preferences: u; (y;, 0;) = 0;x; + t;.
@ An outcome (alternative) is a vector y = (x1,x2,1, 1)

— x; = 1 if agent i gets the object, 0 otherwise;
— t; is the monetary transfer received by agent ;
— hence, the set of alternativesis Y = X x T.

@ Direct mechanismI' = (M, g):

— message space: M; = 0,
— outcome function g : M — Y with

xi=1lLx=0t1=—-m,t=0, if m >m
x1=0x=1,4=0,t, = —my, if myp < my

g (moms) = {

— itimplements the efficient allocation in dominant strategies.
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Dominant Strategy Implementation

@ Dominant strategy implementation implements social choice
function in a very robust way:

— very weak informational requirement
— independent of players’ beliefs
— the designer doesn’t need to know @ (-) for implementation.

@ But can we always implement in dominant strategies?
— the answer is “no” in general.
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Gibbard-Satterthwaite Impossibility Theorem

Definition

The social choice function f (-) is dictatorial if there is an agent i such
that for all 6 € ©,

f(9> S {ZG Y:ui(z,ﬁi) Zu,-(y,ﬁi) forallye Y}.

Theorem

Suppose that Y contains at least three elements, preferences are rich
(containing all possible rational preferences), andf (©) =Y. Thenf is

truthfully implementable in dominant strategies if, and only if, it is
dictatorial.
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Outline

@ Introduction to Bayesian games and mechanism design
@ Quasilinear; uni-dimensional, independent, private types

— efficient mechanisms: VCG mechanism, Roberts’ theorem

— optimal mechanisms: Myerson optimal auction

— equivalence between Bayesian and dominant strategy
implementation

@ Quasilinear; multidimensional, independent, private types
@ Nontransferrable utilities: single-peaked preferences
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Quasilinear Environment

@ How to get around this impossibility theorem?

— relax the dominant strategy requirement
— focus on restricted domain of preferences:

@ quasilinear preferences
@ single-peaked preferences

@ Quasilinear preferences: u; (x,0;) = v; (x,0;) + t;.

— social choice function: f () = (x(-),t (-), ..., (+)) , with allocation
x(0) € X and transfer ¢; € T;.

— set of social allocations ¥ = X x T.

— an allocation x* (0) is ex-post efficient if

1 1
> v (o Z ) forall x € X.
=1 =
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VCG Mechanism

Theorem (Vickrey-Clarke-Groves)

The social choice functionf (-) = (x* (-) ,t1 () , ..., t1 (+)) is truthfully

implementable in dominant strategies if, foralli =1, ...,1,

G (05,0-0) = | > v (" (0:,0-0),0) | — | D> v (x4 (6-0),6))

J#i J#i

@ Remarks:

— agent i is pivotal iff x*(6;,6_;) # x*, (0_;).

— agent i pays only when pivotal: pivotal mechanism.

— agent i payoff in a pivotal mechanism equals his marginal
contribution to social surplus:

Z}. Vi (x™ (0;,0—;) 791') - Zﬁéi Vi (xti (0-) ’91') :
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Proof

@ Suppose truth-telling is not a dominant strategy for some agent i.
@ Then there exist 05,55, and 6_; such that

Vil (01, 0-4), 0:) + 1:(05,0_7) > vi (x* (05,01, 05) + 1; (0;,0;)
@ Substituting #(6;,6_;) and 1, (6;,0_;) yields
I
Z V] 01, 0 > Z VJ 7 )
j=1

which contradicts x* (-) being an optimal policy.
@ Thus, f (-) must be truthfully implementable in dominant strategies.
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Form of VCG Mechanisms

@ Vickrey auctions (second-price sealed-bid auctions)

— 1 (9,‘, 9_,‘) =0if X; (0,‘, 9_,‘) =0, and
— 1 (9,‘, 9_,‘) = —max;x; Vj (X, 0]) if X; (9,‘7 9_5) =1.
— a special case of VCG mechanism

@ More general form of VCG mechanism
— set the transfer function7; (9;,0_;) as

7 (0;,0-;) = 1; (0;,0_;) + hi (0_))

where &; (§_;) some functions does not depend on 6.
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Uniqueness of VCG Mechanism

Theorem (Green and Laffont, 1977)

Suppose that for each i, ©; = [6;,0;] , or that ©; is smoothly path
connected. That is, for each two points 0,0’ € ©, there is a
differentiable function f : [0,1] — © such thatf (0) = 6 andf (1) =¢'. In
addition, for each decision outcome x, v; (x, 0;) is differentiable in its
second argument. Then any efficient, dominant strategy incentive
compatible direct mechanism is a VCG mechanism.
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Roberts’ Theorem

Theorem (Roberts, 1979)

Letv; (x) € Vi denote agent i’s resulting value if alternative x is chosen,
where V; is the space of all possible types of agenti. Suppose the set
of allocation X is finite, |X| > 3, and the domain of preferences is
unrestricted with V. = RIX|. Then, for every DIC allocation rule

x:V — X, there exist non-negative weights k1, ...., k;, not all of them
equal to zero, and a deterministic real-valued function C : X — R such
that, for allv € V,

1
x(v) € arg max {Zk,-vi (x) + C(x)} :
i=1
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Remark

@ If x(v) is DIC, then

1
x(v) € arg max {Zkl-v,- (x)+C (x)} .
i=1

— quasilinear preferences, but possibly multi-dimensional types.

@ Every DIC allocation rule must be weighted VCG.
@ Relation to Gibbard-Satterthwaite Theorem:

— suppose transfers are not allowed.

— with unrestricted domain, if k; > 0, agent i can misreport some v;
such that v; (x) — v; (y) for all y # x is suitably large, so that agent i
can ensure that any alternative x is chosen; thus, if k; > 0, we must
have v; (x (v)) > v; (y) for all y.

— similarly, if k; > 0, j # i, it must be v; (x (v)) > v; (y) for all y.

— but by suitable choice of v, this is not always possible, so only one
k; > 0, i.e., dictatorship.
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Bayesian (Efficient) Implementation

@ Implementation in dominant strategies often too demanding.

— VCG is ex post efficient, but
— it generally does not satisfy budget balance.

@ Under a weaker solution concept of Bayesian Nash equilibrium,
we can implement ex post efficient outcome with budget balance

— expected externality mechanism or AGV mechanisms
— d’Aspremont and Gerard-Varet (1979), and Arrow (1979).

@ Myerson-Satterthwaite impossibility theorem
— no efficient mechanism satisfies interim IR, IC and BB.
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Optimal Auction Design

@ Auction design problem:
— how to sell an object to I potential bidders to maximize revenue?

@ We follow a two-step procedure to characterize optimal
mechanisms:

— first characterize the implementable mechanisms,
— then find the one that maximizes the seller’s revenue.

@ As a by-product, we also prove the revenue equivalence theorem.
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Setup

@ A seller wants to sell an indivisible object to one of I buyers.
@ Independent private values, one-dimensional types

— the value of the object to individual i is 6,

— 0, is randomly drawn from commonly known distribution F; with
support [6;,6:],

— types are assumed to be statistically independent.

@ The seller’s reservation value for the object is normalized to 0.
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Direct Revelation Mechanisms

@ By the revelation principle, we can focus on direct mechanisms.
@ A direct mechanism consists of a pair of functions:
— allocation rule x; (9): the probability of agent i getting the object

O x; = 0 if agent i does not get the object,
O x; = 1 if agent i gets the object.

— payment rule 7; (6): the monetary transfer from agent i.
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IC and IR Constraints

@ Given the selling mechanism (x(-),#()), a type-6; bidder’s

~

expected payoff by reporting 6; is
Eq_, {ui(éiaeﬁe—i)} = 0;Eg_, [xi(éiae—i)} —Eq_, {li(éiﬁ—i)} .
@ Feasible mechanisms
— individually rational:
I[*:gi1 [Lt,‘ (0,‘, 9,‘; 9_,‘)} >0 for all 9,‘ (|R)

— incentive compatible:

0; € arg max Eo {u,»(é,»,@,-;e,,-)} for all 6; (IC)
9;‘6[@,»75,']
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Envelope Condition

@ Define bidder i’s expected utility with truth-telling as

U; (6)) Eq_, [u; (0;,0i;0_)]

= rrg?xE@ﬂ [ui(é,-,G,-;Q_i)}

— maxEg [aixi(é,-, 6_.) — 16, e,,-)] .
0;

@ The envelope theorem implies

0;
Ui (6:) = Us (6) + Eo._, / %t (s,0_) ds.

Zi
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Characterization of IC Constraints

Theorem (Myerson 1981)

A selling mechanism (x(0),t(0)) is Bayesian incentive compatible (BIC)
iff, for all i and 0;, (i) Eg_, [x; (6;,6_;)] is nondecreasing in 6;, and (ii)
Ui (0) = U; (0,) + Jy Bo_, [xi(s,0-1)) ds.

Theorem (Maskin and Laffont, 1979)

A selling mechanism (x(0),1(0)) is dominant strategy incentive
compatible (DIC) iff, for all i, and for all 0, (i) x; (0;,0—;) is nondecreasing
in 0;, and (i) u; (0;,0:;0 ;) = u; (0;,0;;0_;) + f;i x; (s,0_;)ds.

v

@ Remark: we also say allocation rule x (¢) is BIC (DIC) if there
exists a transfer 7 (9) such that (x, ¢) is BIC (DIC).

@ Remark: allocation rule x () is BIC (DIC) if it is “average”
(component-wise) monotone.
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Proof of Necessity (BIC)

@ |C constraints imply that for 6; > 0;,

Eo_;[0ixi (0i,0—i) — 1; (6, 6;)]
EG_i[éixl(é - ) (é - )]

(AVARAY
=
e
1
5
Rl
—
= S
D
Nv
|
-
—~
o
=
=

Add two inequalities together and simplify

(0; — 0.)Eq_, |x; (0:,0—;) — xi(8;,0—;)

—i

Thus, Eg_[x; (0;,0_;) — xi(6;,0_)] >0
@ The FOC condition follows from the envelope theorem.

Introduction to Mechanism Design September 2014 38/75



Proof of Sufficiency (BIC)

@ Suppose 6; wants to pretend 0; < 6.
@ By FOC, we have

Ui (0:) — Ui(0y) = /: Eo, [xi (s5,0_1)] ds > /:E@ [x(0:,09)] s
= (6= BBy, [xi(0:,0-)]
Hence
Ui (6:) > U(@;) + (6 — 0)Eq_, [ 91,9_,)]
= o, [0 (0r,0-0) — 1(6;,0-)|
+(0; = 0o, [x1(0:,0-)
= Ey_,[0x:(0:,0_0) — 1:(6:,0_))]

@ The case with 6; < 6; can proved analogously.
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From Allocation-Transfers to Allocation-Utilities

@ By definition of U; (0,) ,

Eo_, [1i (0;,0-))] = Eg_[0ixi (6:,6-)] — Ui (6:)

0;
— By [0 (01,0 — U (6,) — By | / %i (5,0_7) ds.
[}

Zi

@ Hence, we can write Ey [1; (0)] as

0; 0;
Eg [Hl-x,- (9)] - Ui (Qz) - Egﬂ. /0 [/0 Xi (S, (9,,') dS] ﬁ ((9,) d9,

=i =i

0;
= E9 [9,‘)(,' (9)] — Ul' (Ql) — Ee,,« \/9 (1 — F,' (Qi))xi (91', 9_1') d0,

I [(9" - 1}@%‘”) X (9)] — U (6))
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Reformulating the Seller’s Problem

@ Thus, the seller’s revenue can be written as
1 1 1
1 - F,' 91’
=SBl (0) = — S U (0)+E) > Ke,- _ f(e())> M (0)}
i=1 i=1 i=1 LA

@ Therefore, the seller's maximization problem is to choose {x; ()}
to maximize II subject to

IR : U;(9;,) >0foralli
Monotonicity : Eg_, [x; (6;,0—;)] is nondecreasing in ;.
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Revenue Equivalence Theorem

Theorem

Suppose a pair of BNEs of two different auction procedures are such
that, for every buyer i,

@ buyeri has the same probability of winning the object for each
possible realization of 0 = (6, ...,0;);

@ buyer i with type 0, has the same expected utility.
Then these two auctions generate the same revenue.
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Solving Optimal Mechanism

@ First notice that the optimal selling mechanism should set
Ui (8;) = 0.

@ Second, since there is only one object, the allocation function
x; (0) has to satisfy

1
x;(0) €[0,1] and Y "x; (0) < 1.
i=1
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Virtual Surplus Function

@ Define the virtue surplus function J; (6;) as

L 1-F(5)
7il6) = fi(6:))

@ The optimal allocation rule should maximize
Eo [Yoi_y Ji (6:) x; (6)} , subject to

I
€0,1],) x(9) <
i=1

Eg_, [xi (6;,6_;)] is nondecreasing in 6,
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Pointwise Maximization

@ Since x; (0) is nonnegative and Zle x; (0) < 1, we can write

S RO =3 @56+ (1-3 x(0)-0

which is just a weighted average of I + 1 numbers:

Ji (9]) 7']2 (62) 9 ""7"1 (91) 707

with weights being

51 (0),(0), 0 (0), (1= % (0))

@ Optimal allocation (weight):

- Xi (0) =0 |f Ji (9,)
- x(0)=0ifJ; (0;) < Jk (0) with k # i,
— x; (0) = 1if J; (6;) > max {0, maxy; Ji (6f)} .

Introduction to Mechanism Design September 2014

45/75



Optimal Auction

@ The optimal probability for agent i to win the object is

ooy if Ji(0;) > max {0, maxg; Ji (6k) }
% (01, 0-1) = { 0 otherwise

— note that J; (6;) = max {0, max,; Jx (6x)} has probability zero.

@ If we assume J; (6;) is nondecreasing in 6;, then x; (6;,0_;) is
nondecreasing in 6;, which in turn implies

Eq_, [x: (6;,0_;)] is nondecreasing in 6;.

Therefore, above x; (0;,6_;) actually solves the original problem.
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Symmetric Environment

@ Suppose buyers are ex-ante symmetric, i.e., F; = F for all i.

@ Suppose further that F has monotone hazard rate, that is,
f(0;) /[1 — F(6;)] is nondecreasing in 6.
@ As aresult J; (0;) = J (6;) for all i and J (6;) is increasing in 6;.
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Optimal Auction: SPA with Reserve Price

@ The optimal selling mechanism sets

xi (0,0 =4 L1 T80 > max {0, maxe 7 (G0)))
0 otherwise

or equivalently

0y J 1 it 6; > max {r,max;,; 6i}
X (0i,0-i) = { 0 otherwise

@ Optimal selling mechanism: SPA with optimal reserve r solves

r=[=F@]/f{r)=0.

@ RET: all standard auctions with optimal r are optimal.
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Equivalence between Bayesian and Dominant
Strategy Implementation

@ Revenue (more generally payoff) equivalence theorem

— first price auction (BIC) = second price auction (DIC)
— equivalence in terms of allocation and transfers

@ Equivalence in terms of interim utility holds more generally.

— linear utilities, private, uni-dimensional, independent types

— Gershkov et al. (2013), applying a theorem due to Gutmann et al.
(1991)

— for any BIC mechanism, there exists a DIC mechanism that delivers
the same interim utilities for all agents and the same ex ante
expected social surplus.
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Gutmann et al. (1991)

Theorem

Let x (01,0,) be measurable on [0,1]* and such that 0 < x (6,,0,) < 1,
1
£(01) = / x(61,0,) db, is nondecreasing in 6,
0
1
n(th) = / x(01,02)db, is nondecreasing in 0,.
0

Then there exists % (0, 0,) measurable [0, 1]* satisfying
0 <X (0,,0,) < 1, having the same marginals as x, and such that
X (01, 6,) is nondecreasing in 0, and 6, separately.
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Recall BIC and DIC Characterization in Auction Setting

Theorem (Myerson 1981)

A selling mechanism (x(6),t(9)) is Bayesian incentive compatible (BIC)
iff, for all i and 9,, (i) Eq_, [x; (6;,0_;)] is nondecreasing in 6;, and (ii)
Ui (0;) =U; (0;) + fo Eg_, [xi (s,0—;)] ds.

Theorem (Maskin and Laffont, 1979)

A selling mechanism (x(0),t(0)) is dominant strategy incentive
compatible (DIC) iff, for all i, and for all , (i) x; (0;,0_;) is nondecreasing
in6;, and (ii) u; (0:,0:;0_) = u; (0;, 0 0-1) + [y xi (5,0_;) ds

R4 3]

v
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Discrete Version

Theorem

Let (x;5) be m x n matrix with 0 < x;; < 1 having nondecreasing row
sums and nondecreasing column sums. Then there exists another
m x n matrix (x;;) with0 <X; < 1, which has exactly the same row sums
and column sums as (x;;), such thatXx;; is nondecreasing in both i andj.

Proof.

@ Consider the (unique) m x n matrix (x;) with 0 <X; < 1, having the
same row sum and column sum as (x;;), and minimizing » . (x,,) .

@ Suppose 0 <Xxjy1,; <x; < 1 for some i,j. Since ), xix < ka,ﬂ,k
(row-sum monotonicity), there exists 1 < k < n for which
0 <X <Xip1x < L.

@ Now increase Xy, and X by ¢, and decrease X;; and X1 x by «.
We get a new matrix (x;) with 0 <X;; < 1, with the same row sums
and column sums, but ", (xl]) < Z,.J(f,-j)z. A contradiction.
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Example

@ Symmetric single-unit auction, two bidders, two equally-likely
types, 6 and 6.
— allocation rule can be represented by a 2 x 2 matrix.

@ Consider the BIC but not DIC allocation rule:

o= (12 4)

— rows = agent 1’s type, columns = agent 2’s type.
— entries = probabilities that the object is assigned to either agent.
@ Family of allocation rules with the same marginals (0 <e <1):

C(1)2—¢ 1/4+e R _ [ 3/8 3/8
x5(61,02)_<1/4+€ 1/2_E>:>x(91792)—<3/8 3/8>‘

— minimizing the sum of squared entries of x. (6, 6,) yields e = 1/8.
— % (64, 06,) is everywhere non-decreasing, so DIC.
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Gershkov et al. (2013)

@ Consider the following general social choice environment
— linear utilities, private, uni-dimensional, independent types
— K alternatives: u¥ (60;,1,) = a*0, + c* +1;
— direct mechanisms: {x* (8)}, , and {1; (6)}'

i=1
— relevant function: v; (9) = 5| akx* ()

@ Allocation rule {x* (6)} is BIC (DIC) iff v; (6;,6—;) is average
(component-wise) monotone.
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Gershkov et al. (2013)

Theorem

Let ©; be connected for all i € T and let (x,t) denote a BIC mechanism.

An interim-utility equivalent DIC mechanism is given by (x,t), where
the allocation rule x solves

. ~ 1\12
Jin Eo ), DO,

subject to 3 (9) > 0,Y6,Vk, &7 (0) = 1, V0, and

Eo_, [0:(0)] = Eo_ [vi(0)], vez,w
Eg[&* (0)] = Eqo[¥(0)],V

@ Limits of BIC-DIC equivalence

— stronger equivalence concept; interdependent values;
multi-dimensional types; nonlinear utilities
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Outline

@ Introduction to Bayesian games and mechanism design

@ Quasilinear; uni-dimensional, independent, private types

@ Quasilinear; multidimensional, independent, private types
— Rochet theorem: cyclical monotonicity

@ Nontransferrable utilities: single-peaked preferences
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Rochet (1987): Setup

@ Quasilinear preferences
u(f,x,t) =v(x,0)—t

— allocation rule x, transfer ¢, and type 6 € ©
— DIC and private values: without loss to consider single agent
problem

@ An allocation rule x is DIC if there exists ¢ : © — R such that

v(x(0),0)—1(0) >v(x(¢),0) —1(0) V8,6 € ©
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Rochet’s Theorem

Theorem (Rochet, 1987)
A necessary and sufficient condition for x (-) to be DIC is that, for all
finite cycles 0,01, ...,0n+1 = 6y in O,

N

v (x(0x) , Ory1) — v (x (), 0x)] <O.
k=0

If types are one dimensional, the above theorem is equvalent to
Theorem (Spence 1974, Mirrless 1976)
Suppose © = [9,6], and v is twice differentiable satisfying

0%v (x,0)

0o > 0 for all § and x

Then cyclical monotonicity is equivalent to the monotonicity of x (0).
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Proof of Rochet’s Theorem: Necessity

@ Letx(-) be DIC with transfer ¢ (-), and 6y, 01, ..., On+1 = 6y be a
finite cycle.
@ DIC implies that, for all k € {0, ..., N}, type 60+ will not mimic type
9](:
V(X (Okg1) , Okg1) — 1 (O1) = v (x(0k) 5 Okrr) — 1 (0)

which is equivalent to
t(0k) =t (Okr1) = v (x (0k) , Ok1) — v (x (O41) 5 Ok1)

@ Adding up yields
N

D (00 Orr) = v (x (1), Okr1)] 0,
k=0
which is equivalent to
N
v (x (0k)  Orr1) — v (x (6x) , k)] <O
k=0
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Proof: Sufficiency

@ Suppose cyclic mononicity holds.
@ Take an arbitrary 0y € ©, and set for any 6 in ©

N

U(f) = — frosrglgo _— kz:(:) v (x(0k) , Ort1) — v (x (O) , O0)] -
@ By definition, U (0y) = 0 and U (0) is finite because

U(6o) > U(0) +v(x(0),00) —v(x(0),0).
@ By definition again,
U@)=>U(0)+v(x(0).0)—v(x(¢),0).
@ By setting 7 (0) =v(x(0),0) — U (0), we have
v(x(8),0) —1(6) > v (x (6),0) —1(8') V6,0 € ©.
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Linear Utilities

Theorem

Let © be a convex subset of R*, v be linear in § and twice continuously
differentiable in x. Then a continuously differentiable allocation rule
x (-) is DIC iff there exists a function U : © — R such that, V0 € ©,

v (x(0).0)
S = VU (0)

andvé,, 0, € 0,

v(x(@o),é?]) —v(x(@o),Ho)—l—v(x(G]),Ho) —V(x(9]),91) <O0.

@ Remark

— multidimensional analoge of Myerson (1981), Maskin and Laffont
(1979).

— the first condition is often called integrability condition.
— the second condition is called weak (2-cycle) monotonicity.
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DIC Implementation with Multi-dimensional Types

@ Private, independent types, and quasilinear preferences
@ Any domain:

— cyclical monotonicity (Rochet 1987, Rockafellar 1970)
@ Restricted domain

— finite # of alternatives and convex domain: weak (2-cycle)
monotonicity sufficient

— Bikhchandani et al. (2006), Saks and Yu (2005), Ashlagi et al.
(2010)

@ Unrestricted domain
— all DIC rules are weighted VCGs (Roberts 1979).

Introduction to Mechanism Design September 2014 62/75



Outline

@ Introduction to Bayesian games and mechanism design
@ Quasilinear; uni-dimensional, independent, private types
@ Quasilinear; multidimensional, independent, private types
@ Nontransferrable utilities: single-peaked preferences
— Moulin (1980)’s theorem: generalized median voter schemes
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Moulin (1980)

@ / agents and a linearly ordered set A of alternatives (say, A = R).
@ Full domain of single-peaked preferences on A.

@ Each agent i is assumed to report only the peak x; of their
preferences.

Theorem

A voting scheme 7 : R! — R s strategy-proof, efficient, and
anonymous if, and only if there exist (I — 1) real numbers
apy .y 0y € RU{—00} U{+o0} such that, V (xi, ..., x1),

T (X1, ey Xp) = median (X1, ..., X1, Q1 ooy Qp_1) .

@ Remark: later literature shows that “top-only” restriction can be
removed.
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Implementation without Transfers

@ Strategy proof rules with single-peaked preferences

| Preferences | Quasilinear | Single-peaked
simple rule | VCG median voter scheme
full domain | weighted VCG generalized median (Moulin, 1980)
any domain | cyclical monotonicity | ???7?
restricted many papers many papers

@ Gershkov, Moldovanu and Shi (2014): single-crossing preferences

— a modified successive voting procedure can replicate the outcome
of any anonymous, unanimous and strategy-proof rule.

— alternatives are voted in a pre-specified order, and at each step an
alternative is either adopted (and voting stops), or eliminated from
further consideration (and the next alternative is considered).

— characterize utitilarian optimal voting rule.
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Other Topics

@ Correlated types, full surplus extraction, robust mechanism design

— Myerson (1981)
— Cremer/MclLean (1985, 1988), Bergemann/Morris (2005)

@ Interdependent values and information externality
— impossibility theorem (Maskin, 1992, Jehiel and Moldovanu, 2001)
@ Dynamic mechanism design

— Courty and Li (2000), Eso and Szentes (2007), Gershkov and
Moldovanu (2009), Pavan, Segal and Toikka (2013)
— Bergemann and Valimaki (2010), Athey and Segal (2014)

@ Endogenous information structure

— Bergemann and Valimaki (2002), Shi (2012)
— Bergemann and Pesendorfer (2007), Eso and Szentes (2007), Li
and Shi (2013)
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It is one of the first duties of a professor, for example, in any
subject, to exaggerate a little both the importance of his
subject and his own importance in it.

— G. H. Hardy (1940), A Mathematician’s Apology
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Linear Utilities with General Allocation Rule

Theorem

Let © be a convex subset of R¥, v be linear in § and continuously

differentiable in x. Then an allocation rule x (-) is DIC iff there exists a

convex function U : © — R such that

v (x(0),0)
00

where 0U (6) is the subdifferential of U at 6.

Vo € O, € 0U (0)

Proof. (=) Define U (6) = supycg {v (6,x(¢')) —(¢) }. This implies
U@)>U(¢)+v(0,x(0)) —v(¢,x(¢)). It follows from linearity that
U(0) > U (8) + 2009 (9 _¢'). («<) Set1(8) = v (6,x(8)) — U (6)
and apply the definition of OU () and linearity of v.
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Correlated Types/Signals

@ Two bidders, each may have a valuation 6; = 10 or 6; = 100.
@ Joint probability distribution for (61, 6,) is

6, = 10 | 6, = 100
6, =10 | 1/3 1/6
6, =100 | 1/6 1/3

so these two values are not independent.
@ The seller’s valuation is 0.
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Full Surplus Extraction Mechanism

@ Consider the following auction mechanism

— (100, 100): sell it to either bidder for $100 with equal probability.

— (100, 10) or (10, 100): sell it to high bidder for $100 and charge low
bidder $30.

— (10,10): give $15 to one of them, and give the object and $5 to the
other, with equal probability.

@ Seller extracts the full surplus (10/3 4 100/6 + 100/6 + 100/3 = 70):

m=(—=15—15) /3 + (100 + 30) /3 + 100/3 = 70
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The Mechanism Is Feasible

@ IR constraints:

— 0, =10: U, (6;) = (15)2/3 + (=30) /3 = 0;

@ |IC constraints:
- 0, =10,0] =100 :

U (61,0)) =

W

(10 — 100) + % (; (10 — 100)) =-75<0.

— 0, =100,6, = 10 :

U (61,07) = % (; (15) + % (5+ 100)) + % (—=30) = 0.
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Decomposition of the Mechanism

@ We can decompose the mechanism into two parts

— sell the object to one of the highest bidders at the highest bidders’
valuations.

— if a bidder reports value 10, invite the bidder to accept a side-bet:
pay 30 if the other bidder’s value is 100, get 15 if the other bidder’s
value is 10.

@ The side-bet has zero expected payoff if the bidder’s true value is
10, but if he lies then this side-bet would have negative value.

@ What's wrong?
— one-to-one mapping between beliefs and (payoff) types.
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Generalization

@ Cremer and McLean (1985, 1988): finite type space

— if types are statistically correlated, seller can fully extract the surplus
— can be implemented in dominant strategies

@ McAfee and Reny (1992): infinite type space
— extend it to a more general mechanism design setting
@ Solution:

— Neeman (2004): beliefs determines preferences (BDP) property
— Bergemann and Morris (2005): robust mechanism design
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Information Externality: Example

@ Single object auction with n agents
— valuation functions v; (¢,07") = g'(¢") + n'(67").
- o= (0’{, 0@) for some agent k, and all other agent signals are

one-dimensional

suppose private marginal rate of substitution of bidder’s information
differ from social rate of substitution:

>, 0vi/00) |, o, /oot
> 0vi/005 " Ovi /05

solution concept: Bayesian Nash equilibrium
two agent (k and j) example: u; = 6% + 265 and u; = 26% + 65.

@ No efficient auction exists

— consider 6,8 such that g“(6*) = g“(4").
— agent k indifferent but not efficient allocation.
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