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5 Treating density constraints and penalizations for second order

stationary MFGs
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A short history of Mean Field Games

This theory was introduced recently (in 2006-2007) by J.-M.
Lasry and P.-L. Lions12 3 in a series of papers and a series of
lectures by P.-L. Lions at Collège de France;

Analysis of differential games with a very large number of “small”
players (agents);
The models are derived from a “continuum limit”, letting the
number of agents go to infinity (similarly to mean field limit in
Statistical Mechanics and Physics→ Bolzmann or Vlasov
equations)
Real life applications in Economy, Finance and Social Sciences

1Lasry, J.-M., Lions, P.-L. Jeux à champ moyen I. Le cas stationnaire, C. R. Math.
Acad. Sci. Paris, (2006).

2Lasry, J.-M., Lions, P.-L. Jeux à champ moyen II. Horizon fini et contrôle optimal, C.
R. Math. Acad. Sci. Paris, (2006).

3Lasry, J.-M., Lions, P.-L. Mean field games, Jpn. J. Math., (2007).
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A typical model for second order MFG


(i) −∂tu + ν∆u + H(x ,m,∇u) = f (x ,m) in (0,T )× Rd

(ii) ∂tm − ν∆m −∇ · (∇pH(x ,m,∇u)m) = 0 in (0,T )× Rd

(iii) m(0) = m0,u(T , x) = G(x ,m(T )) in Rd .
(1)

Assumptions: ν ≥ 0 is a parameter; the Hamiltonian H is convex
in its last variable; m0 (and m(t)) is the density of a probability
measure;
u is the value function of an arbitrary agent, m is the distribution
of the agents;
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A heustistical interpretation

An arbitrary agent controls the stochastic differential equation

dXt = αt dt +
√

2νdBt ,

where Bt is a standard Brownian motion.

He aims at minimizing the quantity

E

[∫ T

0
L(Xs,m(s), αs) + f (Xs,m(s))ds + G(XT ,m(T ))

]
,

where L is the usual Legendre-Flenchel conjugate of H w.r.t. the
p variable.
His optimal control is (at least heuristically) given in feedback
form by α∗(t , x) = −∇pH(x ,m,∇u).
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A typical model of first order MFG system

A typical model for a first order (deterministic) MFG system is the
following:

 (i) −∂tu(t , x) + 1
2 |∇u(t , x)|2 = f (x ,m(t)) in (0,T )× Rd

(ii) ∂tm(t , x)−∇ · (∇u(t , x)m(t , x)) = 0 in (0,T )× Rd

(iii) m(0) = m0,u(T , x) = G(x ,m(T )) in Rd .
(2)

u corresponds to the value function of a typical agent who
controls his velocity α(t) and has to minimize his cost∫ T

0

(
1
2
|α(t)|2 + f (x(t),m(t))

)
dt + G(x(T ),m(T )),

where x ′(s) = α(s) and x(0) = x0.
The distribution of the other agents is represented by the density
m(t). Then their “feedback strategy” is given by
α(t , x) = −∇u(t , x).
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The variational formulation

We can obtain the solution of the system (2) by minimization of a
global functional:

min
∫ T

0

∫
Ω

(
1
2
|α(t , x)|2ρ(t , x) + F (ρ(t , x))

)
dxdt−

∫
Ω

G(x)ρ(T , x) dx ,

among solutions (ρ, α) of the continuity equation
∂tρ+∇ · (ρα) = 0 with the initial datum ρ(0, x) = ρ0(x).

Recently many interesting results in this variational direction, see
for instance the works of P. Cardaliaguet and P. J. Graber4, 5

F (x , ·)′ = f (x , ·) and it is convex. The above functional recalls the
functional studied by Benamou and Brenier to give a dynamical
formulation of optimal transport.

4P. Cardaliaguet, Week solutions for first order mean field games with local
coupling, preprint

5P. Cardaliaguet, P.J. Graber, Mean field games systems of first order, preprint
7 / 18
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Optimal transportation and its Benamou-Brenier
formulation

For two (regular enough) probability measures µ, ν ∈ P(Ω) we
define

W 2
2 (µ, ν) := inf

{∫
Ω

1
2
|x − T (x)|2 dµ : T : Ω→ Ω,T#µ = ν

}
Teorem [Y. Brenier, ’87]: Under suitable assumptions there exists
T (optimal transport map) which is a gradient of a convex
function.
We can solve this problem via a dynamic formulation due to J.-D.
Benamou and Y. Brenier, ’00:

min
α

{∫ 1

0

∫
Ω

1
2
|αt |2 dρt dt : ∂tρt +∇ · (ρtαt ) = 0, ρ0 = µ, ρ1 = ν

}
.

W2 metrizes the weak-* topology on P(Ω) for compact domains
Ω.
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The case of density penalization

To treat density constraints for MFGs we consider the case
f (ρ) = ρn−1(n > 1) (in this case F (ρ) = 1

nρ
n)

Now the question is what happens in the above minimization
problem as n→∞.
We will have in the limit

min
∫ T

0

∫
Ω

1
2
|α(t , x)|2ρ(t , x) dxdt −

∫
Ω

G(x)ρ(T , x)dx ,

with the same assumptions as above and with the additional
assumption that ρ(t , x) ≤ 1 a.e.
However it is not not that clear how to define the equilibria and
what are the optimality conditions (the MFG system) in the limit
→ subject of an ongoing work with P. Cardaliaguet and F.
Santambrogio.
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Stationary second order MFGs

Stationary MFG systems could be seen as long time average of
time-dependent ones (see the original papers of Lasry and Lions
and 6)

One can prove the convergence (in a reasonable sense as
T → +∞) of the solutions of the system −∂tuT −∆uT + 1

2

∣∣∇uT
∣∣2 = f (x ,mT ),

∂tmT −∆mT −∇ · (mT∇uT ) = 0,
mT (0) = m0, uT (T ) = G

to the solutions of the ergodic system λ−∆u + 1
2 |∇u|2 = f (x ,m),

−∆m −∇ · (m∇u) = 0,∫
Ω

m = 1,
∫

Ω
u = 0.

6P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta, Long time average of mean
field games with a nonlocal coupling, SIAM J. Contr. Optim., (2013).
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Treating directly the density constraint

The ergodic problem corresponds to the optimality conditions of
the following optimization problem in a bounded open set Ω ⊂ Rd

min
(m,w)

L2(m,w) + F(m), (P2)

subject to −∆m +∇ ·w = 0 with Neumann b.c. (∇m−w) · n = 0
on ∂Ω and

∫
Ω

m = 1.

Here we define for q > 1, `q : R× Rd → R,

`q(a,b) :=


1
q
|b|q
aq−1 , if a > 0,

0, if (a,b) = (0,0),
+∞, otherwise.

We use the notation F(m) :=
∫

Ω
F (x,m(x)) dx and Lq(m,w) :=

∫
Ω
`q(m,w) dx.

Our objective is to study (Pq) + “m ≤ 1”→ joint work with F. J.
Silva.
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Interior point condition and subdifferentiability

We work in the space w ∈ Lq(Ω)d , for a q > d , hence by a
Calderón-Zygmund-type argument we obtain m ∈W 1,q(Ω).

As q > d , we have W 1,q(Ω) ↪→ C0,1− d
q (Ω),→ good topology to

ensure the interior point condition for the constraint m ≤ 1.

Proposition

Denote Em
0 := {m = 0} ∩ {w = 0} and Em

1 = {m > 0}. Let us set
v := (w/m)1{m>0}. Then, if v /∈ Lq(Ω), we have that ∂Lq(m,w) = ∅.
Otherwise we have that Lq is subdifferentiable at (m,w) and

∂Lq(m,w) =

{
(α, β) ∈ A : spt(αs) ⊆ Em

0 , α
ac Em

1 = −
1
q′
|v |q and β Em

1 = |v |q−2v
}
,

where
A =

{
(α, β) ∈M(Ω)× Lq′ (Ω)d ; α +

1
q′
|β|q
′
≤ 0
}
,

and α = αac + αs is the Lebesgue decomposition of the measure α.

12 / 18
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Interior point condition and subdifferentiability

We work in the space w ∈ Lq(Ω)d , for a q > d , hence by a
Calderón-Zygmund-type argument we obtain m ∈W 1,q(Ω).

As q > d , we have W 1,q(Ω) ↪→ C0,1− d
q (Ω),→ good topology to

ensure the interior point condition for the constraint m ≤ 1.

Proposition

Denote Em
0 := {m = 0} ∩ {w = 0} and Em

1 = {m > 0}. Let us set
v := (w/m)1{m>0}. Then, if v /∈ Lq(Ω), we have that ∂Lq(m,w) = ∅.
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Existence and optimality conditions

Theorem

The problem (Pq) has a solution (m,w) ∈W 1,q(Ω)× Lq(Ω)d .

Theorem

Let (m,w) be a solution of problem (Pq). Then,
v := (w/m)1{m>0} ∈ Lq(Ω)d and there exist
(u,p, λ) ∈W 1,q′

� (Ω)×M+(Ω)× R and (α, β) ∈ A such that
−∆u ∈M(Ω) and the following optimality conditions hold true



−∆u + 1
q′ |∇u|q

′
− p − λ− α = f (m),

β −∇u = 0,

−∆m +∇ · w = 0,

spt(p) ⊆ {m = 1},

+Neumann b.c. on ∂Ω

(3)

where the first equality holds in M(Ω).

13 / 18



Introduction Variational formulations Density constraints and penalizations for MFGs Summary and perspectives

Existence and optimality conditions

Theorem

The problem (Pq) has a solution (m,w) ∈W 1,q(Ω)× Lq(Ω)d .

Theorem

Let (m,w) be a solution of problem (Pq). Then,
v := (w/m)1{m>0} ∈ Lq(Ω)d and there exist
(u,p, λ) ∈W 1,q′

� (Ω)×M+(Ω)× R and (α, β) ∈ A such that
−∆u ∈M(Ω) and the following optimality conditions hold true



−∆u + 1
q′ |∇u|q

′
− p − λ− α = f (m),

β −∇u = 0,

−∆m +∇ · w = 0,

spt(p) ⊆ {m = 1},

+Neumann b.c. on ∂Ω

(3)

where the first equality holds in M(Ω).
13 / 18



Introduction Variational formulations Density constraints and penalizations for MFGs Summary and perspectives

Regularity of the solutions

Corollary

Let (m,w ,u,p, λ) be as in the previous theorem. Then,


−∆u + 1
q′ |∇u|q

′
− p − λ = f (m),

∇u · n = 0 on ∂Em
1

−∆m −∇ · (m|∇u|
2−q
q−1∇u) = 0,

∇m · n = 0 on ∂Em
1

(4)

where the first equality is satisfied in the sense of measures while the
second one in the sense of distributions over Em

1 . In particular if
f ∈ C∞(Ω), setting Em

2 := {0 < m < 1}, we have that
(m,u) ∈ C∞(Em

2 )× C∞(Em
2 ) is a classical solution of



−∆u + 1
q′ |∇u|q

′
− λ = f (m),

∇u · n = 0 on ∂Em
2

−∆m −∇ · (m|∇u|
2−q
q−1∇u) = 0,

∇m · n = 0 on ∂Em
2

(5)
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The dual problem

Proposition

The dual problem of (Pq) has at least one solution and can be written
as

− min
(u,p,λ,a)∈KD

{∫
Ω

F ∗(x ,a) dx + λ+ σC(p)

}
(PDq)

where

KD :=

{
(u, p, λ, a) ∈ W 1,q′

� (Ω)×M+(Ω)× R×Mac(Ω) : −∆u +
1
q′
|∇u|q

′
− p − λ ≤ a

}
,

C := {y ∈ C(Ω) : y ≤ 1}, σC(p) := supy∈C〈p, y〉M(Ω),C(Ω) and the PDE
in the definition of the set has to be understood in the sense of
measures.

→ Moreover (Pq) = (PDq) from where we obtain an alternative way
to derive first order optimality conditions.
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An approximation argument for less regular cases

Let us consider in the problem (Pq) a cost Lq for a q ≤ d . By this
the interior point condition for the constraint m ≤ 1 will be
destroyed.

Indeed, for instance for q = 2 and d ≥ 2 the natural space for w
is L2(Ω)d , hence the maximal regularity for m is H1(Ω).→ no
interior point for m ≤ 1.
A natural procedure to solve this issue: use an approximation of
type L2 + εLq for L2, where q > d and take the limit as ε→ 0.
For this we proved uniform (in ε) estimates for each term. We
have

|λε|+ ‖pε‖M + ‖mε‖H1 + ‖Hε(∇uε)‖L1 ≤ C.

This implies in particular that ‖∆uε‖M ≤ C, which is enough to
use again a Calderón-Zygmund-type argument and get
compactness for ∇uε.
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Summary, perspectives and open problems

Summary
We established existence results and characterization of the
solutions of stationary second order MFG systems with density
constraints.

For regular enough Hamiltonians we could use some results
from optimal control theory for mixed PDE and state constraint.
For less regular Hamiltonians we propose a possible approach
by approximation.

Work in progress, future work and open questions:
Work in progress: similar analysis for the time dependent
systems (both first and second order cases) with density
constraints.
Future work: study the long time average of time dependent
systems with density constraints.
Open question: find a good notion of equilibria.

17 / 18



Introduction Variational formulations Density constraints and penalizations for MFGs Summary and perspectives

Summary, perspectives and open problems

Summary
We established existence results and characterization of the
solutions of stationary second order MFG systems with density
constraints.
For regular enough Hamiltonians we could use some results
from optimal control theory for mixed PDE and state constraint.

For less regular Hamiltonians we propose a possible approach
by approximation.

Work in progress, future work and open questions:
Work in progress: similar analysis for the time dependent
systems (both first and second order cases) with density
constraints.
Future work: study the long time average of time dependent
systems with density constraints.
Open question: find a good notion of equilibria.

17 / 18



Introduction Variational formulations Density constraints and penalizations for MFGs Summary and perspectives

Summary, perspectives and open problems

Summary
We established existence results and characterization of the
solutions of stationary second order MFG systems with density
constraints.
For regular enough Hamiltonians we could use some results
from optimal control theory for mixed PDE and state constraint.
For less regular Hamiltonians we propose a possible approach
by approximation.

Work in progress, future work and open questions:
Work in progress: similar analysis for the time dependent
systems (both first and second order cases) with density
constraints.
Future work: study the long time average of time dependent
systems with density constraints.
Open question: find a good notion of equilibria.

17 / 18



Introduction Variational formulations Density constraints and penalizations for MFGs Summary and perspectives

Summary, perspectives and open problems

Summary
We established existence results and characterization of the
solutions of stationary second order MFG systems with density
constraints.
For regular enough Hamiltonians we could use some results
from optimal control theory for mixed PDE and state constraint.
For less regular Hamiltonians we propose a possible approach
by approximation.

Work in progress, future work and open questions:
Work in progress: similar analysis for the time dependent
systems (both first and second order cases) with density
constraints.
Future work: study the long time average of time dependent
systems with density constraints.
Open question: find a good notion of equilibria.

17 / 18



Introduction Variational formulations Density constraints and penalizations for MFGs Summary and perspectives

Summary, perspectives and open problems

Summary
We established existence results and characterization of the
solutions of stationary second order MFG systems with density
constraints.
For regular enough Hamiltonians we could use some results
from optimal control theory for mixed PDE and state constraint.
For less regular Hamiltonians we propose a possible approach
by approximation.

Work in progress, future work and open questions:
Work in progress: similar analysis for the time dependent
systems (both first and second order cases) with density
constraints.

Future work: study the long time average of time dependent
systems with density constraints.
Open question: find a good notion of equilibria.

17 / 18



Introduction Variational formulations Density constraints and penalizations for MFGs Summary and perspectives

Summary, perspectives and open problems

Summary
We established existence results and characterization of the
solutions of stationary second order MFG systems with density
constraints.
For regular enough Hamiltonians we could use some results
from optimal control theory for mixed PDE and state constraint.
For less regular Hamiltonians we propose a possible approach
by approximation.

Work in progress, future work and open questions:
Work in progress: similar analysis for the time dependent
systems (both first and second order cases) with density
constraints.
Future work: study the long time average of time dependent
systems with density constraints.

Open question: find a good notion of equilibria.

17 / 18



Introduction Variational formulations Density constraints and penalizations for MFGs Summary and perspectives

Summary, perspectives and open problems

Summary
We established existence results and characterization of the
solutions of stationary second order MFG systems with density
constraints.
For regular enough Hamiltonians we could use some results
from optimal control theory for mixed PDE and state constraint.
For less regular Hamiltonians we propose a possible approach
by approximation.

Work in progress, future work and open questions:
Work in progress: similar analysis for the time dependent
systems (both first and second order cases) with density
constraints.
Future work: study the long time average of time dependent
systems with density constraints.
Open question: find a good notion of equilibria.

17 / 18



Introduction Variational formulations Density constraints and penalizations for MFGs Summary and perspectives

Thank you for your attention!

18 / 18


	Introduction
	Variational formulations
	Density constraints and penalizations for MFGs
	Summary and perspectives

