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Mechanism

N = set of agents.

" = finite set of at least three outcomes.
T C R set of (multi-dimensional) types.
T" = set of all n-agent profiles of types.
Allocation rule is a function

foT" =T

For each av € T there is a t € T" such that f(t) = «a.
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Mechanism

Payment rule is a function P such that
P:T"— Rr"
In profile (t!,...t") agent i has type t' she makes a payment

of Pi(th, ..., t").

Value agent i with type t € T assigns to allocation a € T is
vi(alt) = t,.
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Incentive Compatability

For all agents i and all types s’ # t':
VI(F(E, )|t — Pi(t, t7)

> VI(F(s', t7)|t) — Pi(s', ) YVt

Suppress dependence on i, t~
v(f(t)lt) — P(t) = v(f(s)|t) — P(s)
tr(e) — P(t) > tr(s) — P(S)
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Incentive Compatability

trey — P(t) = tr(s) — P(s) (1)
Sf(s) — P(s) > Sf(t) — P(t). (2)
Add (1) and (2)

tr(e) T Sr(s) = tr(s) + Sr(1)-

tr(e) — tes) = —[Sr(s) — SF())-
2-cycle inequality

[tece) — tr(s)] + [Sr(s) — Sreey)] = 0.
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Incentive Compatability

f is dominant strategy IC if 9 P such that:
tf(t) — P(t) > tf(s) — P(S)
Fix f, find P such that

P(t) — P(s) < tr(r) — tr(s)- (3)
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Incentive Graph

P(t) = P(s) < tr() — tr(s):
A vertex for each type t

From vertex s to vertex t an edge of length tr(;) — tg(s)
From vertex t to vertex s an edge of length s¢(5) — s¢(y)

System 3 is feasible iff Incentive graph has no (-)ve cycles.
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Incentive Compatability

2-cycle inequality
[tr(e) = tr(s)] + [Sr(s) — Sr(v] = 0.

All 2-cycles in network are of non-negative length.

For many preference domains, 2-cycles non (-)ve = all cycles
are non (-)ve

T is convex
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Roberts’ Theorem

IF| >3, T =R if fis onto and DSIC 3 non-negative
weights {w; };cny and weights {D, },cr such that

f it! — D,

(t) € arg rgggz w;t), — Dy

(equivalent) There is a solution w, {D,},cr to the following:
D,—-D, < Z wi(tl, —t)) Vv, tst f(t) =a

i=1
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Roberts’ Theorem

Fix a non-zero and nonnegative vector w.
Network I',, will have one node for each v € T.

For each ordered pair (3, ) introduce a directed arc from 3 to
a of length

n

I = inf (t — t}).
.0) = o >l 1)

Is there a choice of w for which '), has no negative length
cycles?
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Roberts’ Theorem

UB,a)={deR":Fte T "st. f(t)=a, st. d' =
th, — ti Vi}.

/W(ﬂ, Oé) = infdeu(/&a) w-d.
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Roberts’ Theorem

Suppose a cycle C = a3 — ... — ax — ay through elements
of I'.

From each «; pick a profile t[j] such that f(t[j]) = a;.
Associate with the cycle C a vector b whose i*" component is

b' = (to,[1] = to, [1)+ (8, [2 - £, [2D) +. . .+ (80, [K] =, [K]).

Let K C R" be the set of vectors that can be associated with
some cycle through the elements of .
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Roberts’ Theorem

Asserts the existence of a feasible w such that w- b > 0 for all
beK.

1. If b € K is associated with cycle a; — ... = a) — ag,
then b is associated with the cycle a; — ay — a3.

2. If b € K is associated with a cycle through («, 3), then b
is associated with a cycle through (v, #) for all
(7,0) # (a, B). So, restrict to just one cycle.

3. The set K is convex.

4. K is disjoint from the negative orthant, invoke separating
hyperplane theorem.
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Roberts’ Theorem

Lemma
Suppose f(t) = a and s € T" such that s|, — sj, > t}, — tj for
all i. Then g(s) # .

Consider the profile (s',t™!) and suppose that
sy — s3>t —tyand g(s',t7') = B. This violates 2-cycle.
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Roberts’ Theorem

For every pair o, f € [ define

h = _inf t' —ti= inf d'.
(6,a) eTrgt=a e T BT ety

Lemma
For every pair o, 5 € T, h(5, «) is finite.
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Roberts’ Theorem

Lemma
For all o, B €T, h(a, B) + h(B,a) = 0.
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Roberts’ Theorem

Suppose h(«, 8) + h(S,a) > 0.

Choose t € T" to satisfy

th —th < h(B,a) Vi (4)
th — ti < h(c, B) Vi (5)
t—t) < h(o,7) ViVy #a,p (6)

(4) implies that g(t) # «. (5) implies that g(t) # (.
Together with (6) we deduce that g(t) ¢ I' a contradiction.
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Rationalizability (quasi-linear Afriat)

Set of purchase decisions {p;, x;}7_; is rationalizable by
» locally non-satiated,
» quasi-linear,
» concave utility function v : RT — R
» for some budget B

if for all i,

x; € argmax{u(x) +s:pj-x+s=B,xc R}
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Rationalizability
N~

If at price p;, pi - x; < B, it must be that x; delivers less utility
than x;.

u(x;) + B —pi-xi > u(x;) + B —p; - x

= u(x;) — u(x;) < pi - (X — xi)

Given set {(p;, x;)}7_; we formulate the system:

Yi—Yi<pi-(x—x), Vi,j st. pi-x<B
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Rationalizability Pq

Vi—yi <pi-(xp—x), Yi,j st. pi-x;<B (7)

1. One node for each i.

2. For each ordered pair (i, /) such that p; - x; < B, an arc
with length p; - (x; — x;).

3. The system (7) is feasible iff. associated network has no
negative length cycles.
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Rationalizability
N~

Use any feasible choice of {y;}7_; to construct a concave
utility.

Set U(X,') =Y.

For any other x € R’ set

u(x) = min {u(x) + pi- (x = x)}.
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Cardinal Matching (TU)

Cardinal Matching

Given a graph G = (V/, E), find a matching that maximizes a
weighted sum of the edges.

Bipartite: Poly time, natural LP formulation has integral
extreme points

Non-bipartite: Poly time, natural LP formulation is 1/2
fractional, exact formulation exponential
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Ordinal Matching (NTU)

Given G(V, E) and ‘preferences over edges' find a matching
that ‘respects’ preferences.

Bipartite Stable Matching: (D U H, E), D = doctors and H =
hospitals (unit capacity)

Each d € D has a strict preference ordering >4 over H and
each h € H has a strict =, over D.
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Stable Matching

A matching i : D — H is blocked by the pair (d, h) if
L pu(d) #h
2. h=4 p(d)
3..d = ut(h)

A matching p is stable if it is not blocked.
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Stable Matching

Bipartite Graph

D U H = set of vertices (doctors and hospitals)

E = set of edges

d(v) C E set of edges incident to v e DUH

Each v € D U H has a strict ordering >, over edges in d(v)
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Stable Matching

er§1Vv€DUH
ecd(v)

For all e € E there is a v € D U H such that e € (v) and

fo—l—xezl

f—-ve
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Scarf’'s Lemma

@ = an n X m nonnegative matrix and r € RE.

Q; = the i*" row of matrix Q.
P={xeR7:Qx<r}.

Each row i € [n] of Q has a strict order ~; over the set of
columns j for which g;; > 0 (the columns that intersect it).

A vector x € P dominates column j if there exists a row /
such that Q;x = r; and k >; j for all k € [m] such that
gik > 0 and x, > 0.

We say x dominates column j at row /.
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Scarf’'s Lemma

Kiralyi & Pap version

Let Q be an n x m nonnegative matrix, r € R’} and
P ={xe€RT:Qx<r}. Then, P has a vertex that
dominates every column of Q.
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Stable Matching with Couples

D! = set of single doctors

D? = set of couples, each couple ¢ € D? is denoted
c=(f,m)

D = D'*U{m.|c € D*} U {f|c € D?}.
Each s € D! has a strict preference relation ¢ over H U {(}
Each ¢ € D? has a strict preference relation . over

Hu{0} x HU{0}
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Stable Matching with Couples

Hospital h € H has a capacity k, > 0

Preference of hospital h over subsets of D is summarized by
choice function chy(.) : 2P — 2P,

chy(.) is responsive
h has a strict priority ordering > over elements of D U {(}}.
chy(D*), consists of the (upto) kj highest priority doctors

among the feasible doctors in D*.
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Blocking

4 = matching

1pn = the subset of doctors matched to h

14 position that single doctor s receives

[Lf., m. are the positions that the female member, the male
member of the couple ¢ obtain in the matching
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Blocking

w1 is individual rational if
» chy(pn) = pp for any hospital h
» s = () for any single doctor s
> (1 tme) = (D, fim,)
(1t time) =c (pr, 0)
(ttes tme) =c (0, 0)

for any couple ¢
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Blocking

Ppm O =

Matching 14 can be blocked as follows

1. A pair s € D' and h € H can block p if h = u(s) and
s € chp(u(h) Us).

2. Atriple (c,h, W) € D> x (HU{0}) x (HU{0}) with
h # K" can block p if (h,0') = p(c), fo € chp(p(h) U £)
when h # () and m. € chy (u(h') U m.) when A’ # (.

3. A pair (c, h) € D? x H can block y if (h, h) =, p(c) and
(fe, me) € chp(u(h) U c).
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Matching with Couples
e

Each doctor in D! has a strict preference ordering over the
elements of H U {0}

Each couple in D? has a strict preference ordering over

Hu{0} x Hu {0}

Each hospital has responsive preferences

(Nguyen & Vohra) For any capacity vector k, there exists a k’
and a stable matching with respect to k’, such that
maxpen |kn — ki| < 4. Furthermore,

D oher ko <D pen kb <D pen kn 9.
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Matching with Couples

Apply Scarf’s Lemma to get a ‘fractionally’ stable solution

@ = constraint matrix of a ‘generalized’ transportation
problem

Rows correspond to D' U D? and H

Column corresponds to an assignment of a single doctor to a
hospital or a couple to a pair of slots

Each row has an ordering over the columns that intersect it
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Generalized Transportation Problem

x4(S) =1if S C H is assigned to agent d € D and zero
otherwise.

x4(S) =0 for all |S]| > «

> x4(S) < 1Vd € D (dem)

SCH

> Y x4(S) < ky Yh € H (supp)

ieD S>h
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lterative Rounding

Solve the LP to get a fractional extreme point solution x*.

If every variable is 0 or fractional, there must exist a h € H

such that
DD xS < kn+a—1

deD S>h
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Rounding ,@w

For every extreme point x* and u optimized at x*, there is an
integer y such that u-y > v - x* and

D va(S)<1vdeD

SCH

SN va(S) < knta—1VheH

deD S>h
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