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Matching models in economics

Basic setting:

Two heterogenous populations (X and Y )
When matched, x ∈ X and y ∈ Y create a surplus
Questions:

Who matched with whom?
(In some versions) How is the surplus allocated?

Examples:

Marriage market (X women, Y men)
Labor contract (X workers, Y employers; X CEOs, Y firms; ...)
Credit (X firms, Y banks)
Hedonic models (X buyers, Y sellers, Z products), etc.

Extensions:

Many to one: s (x1, ..., xn , y)
Many to many: s (x1, ..., xn , y1, ..., yk )
Roommate X = Y , etc.

This presentation: marriage market only (although some hedonic)
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A few relevant questions

1. Assortative matching and inequality

Burtless (EER 1999): over 1979-1996,
‘The changing correlation of husband and wife earnings has tended to
reinforce the effect of greater pay disparity.’

Maybe 1/3 of the increase in household-level inequality (Gini) comes
from rise of single-adult households and 1/6 from increased assortative
matching.
Several questions; in particular:

Why did correlation change? Did ‘preferences for assortativeness’
change?
How do we compare single-adult households and couples? What about
intrahousehold inequality?
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A few relevant questions (cont.)

2. College premium and the demand for college education
Motivation: remarkable increase in female education, labor supply,
incomes worldwide during the last decades.

Source: Becker-Hubbard-Murphy 2009

P.A. Chiappori (Columbia University) Economic Applications Toronto, September 2014 4 / 46



College premium and the demand for college education

In the US:

P.A. Chiappori (Columbia University) Economic Applications Toronto, September 2014 5 / 46



College premium and the demand for college education

Questions:

1 Why such different responses by gender?

Answer (CIW 2009): ‘Marital college premium’
→ how can we compute that?
→ how can we identify that?
→ A structural model is needed!

2 In particular, why the surge in demand for ‘College +’

Answer (Lo 2014): Changes in marital prospects
→ Why?
How can we model that?
Testable predictions?
Do they fit the data?
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A few relevant questions (cont.)

3. Abortion and female empowerment

Roe vs. Wade (1973): de facto legalization of abortion in the US

General claim (feminist literature): important source of ‘female
empowerment’

Question: what is the mechanism?

In particular, what about women:

who do want children
who would not use abortion (e.g. for religious reasons), etc.

P.A. Chiappori (Columbia University) Economic Applications Toronto, September 2014 7 / 46



Roadmap

1 Matching models: general presentation
2 The case of Transferable Utility (TU)
3 Applications:

Intra-household allocation: back-of-the-envelope computations
Roe vs Wade and female empowerment
Women’s demand for highest education

4 Extensions

P.A. Chiappori (Columbia University) Economic Applications Toronto, September 2014 8 / 46



Matching models: three main families

1 Matching under NTU (Gale-Shapley)
Idea: no transfer possible between matched partners

2 Matching under TU (Becker-Shapley-Shubik)

Transfers possible without restrictions
Technology: constant ‘exchange rate’between utiles
In particular: (strong) version of interpersonal comparison of utilities
→ requires restrictions on preferences

3 Matching under Imperfectly TU (ITU)

Transfers possible
But no restriction on preferences
→ technology involves variable ‘exchange rate’

... plus ‘general’approaches (’matching with contracts’, from
Crawford-Knoer and Kelso-Crawford to Milgrom-Hatfield-Kominers and
friends)
... and links with: auction theory, general equilibrium.
P.A. Chiappori (Columbia University) Economic Applications Toronto, September 2014 9 / 46



Matching models: three main families

Similarities and differences

All aimed at understanding who is matched with whom

Only the last 2 address how the surplus is divided

Only the third allows for impact on the group’s aggregate behavior

P.A. Chiappori (Columbia University) Economic Applications Toronto, September 2014 10 / 46



Formal structure: Common components

Compact, separable metric spaces X ,Y (‘women, men’) with finite
measures F and G . Note that the spaces may be multidimensional

Spaces X ,Y often ‘completed’to allow for singles:
X̄ = X ∪ {∅} , Ȳ = Y ∪ {∅}
A matching defines of a measure h on X × Y (or X̄ × Ȳ ) such that
the marginals of h are F and G

The matching is pure if the support of the measure is included in the
graph of some function φ
Translation: matching is pure if y = φ (x) a.e.
→ no ‘randomization’

P.A. Chiappori (Columbia University) Economic Applications Toronto, September 2014 11 / 46



Formal structure: differences

Defining the problem: populations X ,Y plus

NTU: two funtions u (x , y) , v (x , y)
TU: one function s (x , y) (intrapair allocation is endogenous)
ITU: Pareto frontier u = F (x , y , v)

Defining the solution

NTU: only the measure h; stability as usual
TU: measure h and two functions u (x) , v (y) such that

u (x) + v (y) = s (x , y) for (x , y) ∈ Supp (h)
and stability

u (x) + v (y) ≥ s (x , y) for all (x , y)
ITU: measure h and two functions u (x) , v (y) such that

u (x) = F (x , y , v (y)) for (x , y) ∈ Supp (h)
and stability

u (x) ≥ F (x , y , v (y)) for all (x , y)
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Formal structure: differences (cont.)

Characterization:

NTU: existence (Gale-Shapley), uniqueness not guaranteed (lattice
structure of the set of stable matchings)
ITU: existence (Kelso-Crawford’s generalization of Gale-Shapley),
uniqueness not guaranteed
TU: highly specific

Stability equivalent to surplus maximization
therefore: existence easy to establish (optimal transportation)
‘generic’uniqueness

In a nutshell

NTU: intragroup allocation exogenously imposed; transfers are ruled
out by assumption
TU and ITU: intragroup allocation endogenous; transfers are
paramount and determined (or constrained) by equilibrium conditions
TU: life much easier (GQL → equivalent to surplus maximization) ...
... but price to pay: couple’s (aggregate) behavior does not depend on
‘powers’, therefore on equilibrium conditions
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Implications (crucial for empirical implementation)

NTU: stable matchings solve

u(x) = max
z
{U(x , z)|V (x , z) ≥ v(z)}

and
v(y) = max

z
{V (z , y)|U(z , y) ≥ u(z)}

for some pair of functions u and v .

TU: stable matchings solve

u(x) = max
z
{s(x , z)− v(z)} and v(y) = max

z
{s(z , y)− u(z)}

for some pair of functions u and v .
ITU: stable matchings solve

u(x) = max
z
{F (x , z , v (z))} and v(y) = max

z
{F−1(z , y , u (z))}

for some pair of functions u and v .
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Roadmap

1 Matching models: general presentation
2 The case of Transferable Utility (TU)
3 Applications:

Intra-household allocation: back-of-the-envelope computations
Roe vs Wade and female empowerment
Women’s demand for highest education

4 Extensions
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Transferable Utility (TU)

Definition
A group satisfies TU if there exists monotone transformations of individual
utilities such that the Pareto frontier is an hyperplane
u (x) + v (y) = s (x , y) for all values of prices and income.

Note that:

TU is a property of a group (not an individual)

TU is an ordinal property; it does not require linear, quasi-linear of
convex preferences
→ in particular, can be applied to risk sharing!
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Transferable Utility on the Marriage Market

Application to the Marriage Market
→ Basic question: when assuming TU, what restrictions on preferences?

Need a model of household decision
→ here: collective model; indeed

assumes effi ciency (which matching models do)
encompasses unitary, bargaining, ‘equilibrium’, ‘separate spheres’,... as
particular cases

Public and private consumptions; utilities ui (qi ,Q)

TU if and only if ‘Generalized Gorman’(Chiappori, Gugl 2014):
conditional indirect utility is affi ne in (private) expenditures, with
identical coeffi cients

Then common model: x , y incomes and s (x , y) = H (x + y)
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Basic result

If a matching is stable, the corresponding measure satisfies the
surplus maximization problem, which is an optimal transportation
problem (Monge-Kantorovitch):
Find a measure h on X × Y such that the marginals of h are F and
G , and h solves

max
h

∫
X×Y

s (x , y) dh (x , y)

Hence: linear programming

Dual problem: dual functions u (x) , v (y) and solve

min
u,v

∫
X
u (x) dF (x) +

∫
Y
v (y) dG (y)

under the constraint

u (x) + v (y) ≥ s (x , y) for all (x , y) ∈ X × Y
In particular, the dual variables u and v describe an intrapair
allocation compatible with a stable matching
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Links with hedonic models

Hedonic models: defined by set of buyers X , sellers Y , products Z
Buyers: utility u (x , z)− P (z) which is maximized over z
Sellers: profit P (z)− c (y , z) which is maximized over z
Equilibrium: P (z) such that markets clear (→ measure over
X × Y × Z )
Canonical correspondence between QL hedonic models and matching
models under TU (Chiappori, McCann, Nesheim 2010). Specifically,
consider a hedonic model and define surplus:

s(x , y) = max
z∈Z

(U(x , z)− c(y , z))

Let η be the marginal of α over X × Y , u (x) and v (y) by
u (x) = max

z∈K
U (x , z)− P (z) and v (y) = max

z∈K
P (z)− c (y , z)

Then (η, u, v) defines a stable matching. Conversely, to each stable
matching corresponds an equilibrium hedonic price
schedule.
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Proof

Start from:

u(x) + v(y) ≥ s (x , y) ≥ U (x , z)− c (y , z) on X × Y × Z ,

hence
c (y , z) + v (y) ≥ U (x , z)− u(x) on X × Y × Z

and
inf
y∈Y
{c (y , z) + v (y)} ≥ sup

x∈X
{U (x , z)− u (x)} on Z .

Take any P (z) such that

inf
y∈Y
{c (y , z) + v (y)} ≥ P (z) ≥ sup

x∈X
{u (x , z)− u (x)} on Z .
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Supermodularity and assortative matching

One-dimensional:

s is supermodular if whenever x ≥ x ′ and y ≥ y ′ then

s (x , y) + s
(
x ′, y ′

)
≥ s

(
x , y ′

)
+ s

(
x ′, y

)
Then stable matching is assortative; indeed, surplus maximization

Interpretation: single crossing (Spence - Mirrlees). Assume that s is
C 1 then

s (x , y)− s
(
x ′, y

)
≥ s

(
x , y ′

)
− s

(
x ′, y ′

)
and ∂s/∂x increasing in y ; if s is C 2 then

∂2s
∂x∂y

≥ 0

Of course, similar results with submodularity (∂s/∂x decreasing in y)

In both case, ∂s/∂x monotonic in y ; if strict then injective
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Supermodularity and assortative matching

Problem: both super- (or sub-) modularity and assortative matching
are typically one-dimensional

Generalization (CMcCN ET 2010):

Definition
A surplus function s : X ×Y −→ [0,∞[ is said to be X−twisted if there is
a set XL ⊂ X0 of zero volume such that ∂x s(x0, y1) is disjoint from
∂x s(x0, y2) for all x0 ∈ X0 \ XL and y1 6= y2 in Y .

Then the stable matching is unique and pure

Definition
The matching is pure if the measure µ is born by the graph of a function:
for almost all x there exists exactly one y such that x matched with y .

→ excludes ‘mixed strategies’
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Roadmap

1 Matching models: general presentation
2 The case of Transferable Utility (TU)
3 Applications:

Intra-household allocation: back-of-the-envelope computations
Roe vs Wade and female empowerment
Women’s demand for highest education

4 Extensions
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Intra-household allocation

Simple framework:

One-dimensional heterogeneity (income, actual or potential)

Surplus: convex function of total income → s (x , y) = H (x + y)
Note that supermodular → assortative matching: if F and G
respective CDFs,

1− F (x) = 1− G (y)⇒ x = φ (y) = F−1 [G (y)]

⇒ y = ψ (x) = G−1 [F (x)]

Income distributions: ‘linear shift’: F (t) = G (αt − β) for some
α < 1, β > 0
In particular, φ and ψ affi ne:

ψ (x) = αx − β, φ (y) =
y + β

α

Works pretty well in practice, even with β = 0
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Intra-household allocation

Then:

Stability:
u (x) = max

y
(s (x , y)− v (y))

therefore

u′ (x) =
∂s
∂x
(x ,ψ (x)) = H ′ (x + ψ (x)) and v ′ (y) = H ′ (y + φ (y))

⇒ u (x) = K ′ +
1

1+ α
H (x + ψ (x)) ,

v (y) = K +
α

1+ α
H (φ (y) + y)

Pinning down K and K ′:

the sum is known (from the surplus function)
if more women than men, the last married woman is indifferent
between marriage and singlehood
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Intra-household allocation

Consider an upward shift in female income: y becomes ky with k > 1.
Then:

same matching patterns,

but changes in the redistribution of surplus:

∂vk
∂k

=
αy

α+ 1
H ′ (y + x) +

α

(α+ 1)2
H (y + x) and

∂uk
∂k

=
y

α+ 1
H ′ (y + x)− α

(α+ 1)2
H (y + x)

Note the 2 components: increased total surplus and redistribution!
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Abortion and female empowerment

Background
73: Roe vs Wade

Did all women benefit?

Some obviously did
But what about women who would not use abortion?
In particular, what about ‘GE’effect?

Model:

Men: identical, income Y , preferences

UH (cH , k) = cH + uH k

Women: income y if no child, y ′ < y if child; preferences:

U(c , k) = c + uk

where u distributed over [0,U ] → single women have a child if

u ≥ ū = y − y ′

Couples: may have a child; unwanted children possible, proba. p
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Abortion and female empowerment

Couples: benefit of a child uH + u, cost y − y ′ → married couple
plans to have a child if

u ≥ y − y ′ − uH = u

Therefore:

women of ‘high’type (u ≥ ū) always choose to have a child
women of ‘intermediate’type (u < u < ū) choose to have a child only
when married, and need compensation y − y ′ − u
women of ‘low’type (u ≤ u) never choose to have a child (may have
unwanted child)
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Abortion and female empowerment

Matching: Maximum husband’s utility as a function of the wife’s taste
Assumption: more women than men

u(M)

Y + uH

Y + p.uH

uuu

MarriedSingles
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Three possible regimes

1 Males very scarce → no surplus for women
2 Males scarce → marginal woman intermediate, determines surplus
3 Males abundant → maximum female surplus
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Impact of birth control

Definition: changes the probability of unwanted pregnancies

Therefore: increase in total surplus for some couples ....

... but changes in allocation of surplus for all couples
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Impact of birth control

Graph:
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Roadmap

1 Matching models: general presentation
2 The case of Transferable Utility (TU)
3 Applications:

Intra-household allocation: back-of-the-envelope computations
Roe vs Wade and female empowerment
Women’s demand for highest education

4 Extensions
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Reproductive capital and women’s demand for higher
education

Source: Corinne Low’s dissertation (2014)

Basic remark: sharp decline in female fertility between 35 and 45

Consequence: matching patterns and age

Consider the choice between

entering the MM after college
delaying, in order to acquire a ‘college +’degree

Pros and cons of delaying:

Pro: higher education → higher wage, etc.
Con: delayed entry → loss of ‘reproductive capital’

Impact on marital prospects?
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Literature Model Experiment Census Data Conclusion

The Biological Clock

Rates of Infertility and Miscarriage Increasing Sharply with Age

Source: Heffner 2004, ”Advanced Maternal Age: How old is too old?”

Pricing the Biological Clock Corinne Low Columbia University 2/55
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Literature Model Experiment Census Data Conclusion

Spousal income varies systematically with age at marriage for women

Spousal Income vs Age at Marriage (1955-1966 birth cohort, 2010 ACS)
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Model

Two commodities, private consumption and child expenditures; utility:

ui = ci (Q + 1) , i = h,w

and budget constraint (yi denotes i’s income)

ch + cw +Q = yh + yw

Transferable utility: any effi cient allocation maximizes uh + uw ;
therefore surplus with a child

s (yh, yw ) =
(yh + yw + 1)

2

4
and without a child (Q = 0)

s (yh, yw ) = yh + yw

therefore, if π probability of a child:

s (yh, yw ) = π
(yh + yw + 1)

2

4
+ (1− π) (yh + yw )
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Populations

Men: differ in income → yh uniform on [1,Y ]

Women: more complex

differ in skills → s uniform on [0,S ]
may choose to invest → income:

yw = λs if invest (with λ > 1)
yw = s if not

but investment implies fertility loss

π = p if invest
π = P > p if not

Therefore: once investment decisions have been made, bidimensional
matching model, and three questions:

who marries whom?
how is the surplus distributed?
what is the impact on (ex ante) investment?
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Resolution

Two stage: invest in stage 1, match in stage 2

Resolution: backwards (start with stage 2 cond. on stage 1, then
stage 1)
Assumption: there exists some s̄ such that

invest iff s ≥ s̄
Then:
There exists a stable match; generically unique
For given fertility, assortative matching on income
Matching and fertility: three possible regimes

Regime 1: negative assortative matching (can be discarded)
Regime 2: positive assortative matching
Regime 3: intermediate

Which regime? Depends on the parameters. In particular:

If λ small and P/p large, regime 3
If λ large and P/p not too large, regime 2
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Literature Model Experiment Census Data Conclusion

Form of the match depends on parameters (1/2)

Theorem
There will be three cases:

1. if λ ≤ c1(Y , S , P
p
, ŝ), then s∗ = 0

2. if c1 < λ < c2, then interior solution

3. if λ ≥ c2(Y , S , P
p
, ŝ), then s∗ = ŝ

yw

yh

1. Negative assortative

s∗=0 ŝ λŝ λS

1

ȳ

Y

2

3

yw

yh

2. Non-monotonic

0 s ŝ λŝ λS

1

y

ȳ

Y

1

2

3

yw

yh

3. Positive assortative

0 s∗=ŝ λŝ λS

1

y

Y

1

3

Pricing the Biological Clock Corinne Low Columbia University 18/55



Resolution

Two stage: invest in stage 1, match in stage 2
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Figure 1.6: High λ equilibrium match

yw

yh

0 r∗ = t λt λS

1

x

Y

1

3

or her spouse to maximize his or her own payoff, under the constraint that the spouse will

accept that match.

Let vi(s), i ∈ {1, 2, 3} represent the value function of a woman of skill s matching in

segment i, and ui(y), i ∈ {1, 2, 3} the value function of a man of income y matching in

segment i.

Note that for any individuals of skill s and income y, ui(y)+vi(s) ≥ Ti(y, s). For married

individuals, this holds with equality, and we can solve for the slope of the value function:

ui(y) = Maxs{Ti(y, s)− vi(s)} ⇒ v′i(s) =
∂Ti(y, s)

∂s

and

vi(s) = Maxy{Ti(y, s)− ui(y)} ⇒ u′i(y) =
∂Ti(y, s)

∂y
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shown in Figure 1.4.

Figure 1.4: Non-monotonic equilibrium match

yw

yh

0 r t λt λS

1

x

z

Y

1

2

3

Let x and z represent the lower and upper ends of the second segment of men, and r and

t represent the lower and upper cutoffs for women. Poor men, from 1 to x, marry low-skill,

fertile women (matching assortatively). On the other side of the threshold, the richest group

of women matches assortatively with the middle group of men, from x to z. But, the richest

men, from z to Y , marry the “best of the rest”—the more high-skilled women among those

who have not invested and are thus still fertile.5

This general form allows for the match to be non-monotonic, as depicted, or collapse to

positive assortative matching, when r∗ = t (and thus segment 2 in Figure 1.4 has zero mass),

5The matching functions in this uniform case are linear, but in the general case, their form will be
determined by the distribution so that the number of women above any point on each “segment” exactly
matches the number of men above that point.
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Stage 1: investment choice

→ Graph
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Figure 1.7: Matching equilibrium for varying λ and p
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Empirical predictions

Basic intuition: we have moved from ‘λ small, P/p large’to ‘λ large,
P/p not too large’
Why?

Increase in λ: dramatic increase in ‘college + premium’

Decrease in P/p: two factors

progress in assisted reproduction
(much more important): dramatic change in desired family size

Consequence: according to the model:

Before the 80s: college + women marry ‘below’college graduate
After the 80s: college + women marry ‘above’college graduate

What about data?
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Literature Model Experiment Census Data Conclusion

Women’s wage premium

Wage income premium over women with some college
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Literature Model Experiment Census Data Conclusion

Higher education only recently offers a “marriage premium”

Spousal income by wife’s education level, white women 41-50

Regression
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Literature Model Experiment Census Data Conclusion

Dramatic shift in marriage rates for highly educated

Marriage rates by education level, white women 41-50
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Literature Model Experiment Census Data Conclusion

Divorce rates follow similar pattern

Currently divorced rates by education level, white women 41-50
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Generalization: the ‘true’bidimensional model

Source: Chiappori, McCann, Pass (in progress)

Idea: same model, but both incomes and probabilities are continuous

Therefore: X ⊂ R2,Y ⊂ R

Stability:
u (x1, x2) = max

y
s (x1, x2, y)− v (y)

Assume purity, then y = f (x1, x2) and envelope theorem:

∂u
∂x1

=
∂s
∂x1

(x1, x2, f (x1, x2))

∂u
∂x2

=
∂s
∂x2

(x1, x2, f (x1, x2))

CDR give the pdf in f

∂2s
∂x1∂y

∂f
∂x2

=
∂2s

∂x2∂y
∂f
∂x1
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Generalization: the ‘true’bidimensional model

Actually, if φ defined by

f (x1, x2) = y → x2 = φ (x1, y)

then DE in φ:

∂φ

∂x1
=

∂2s(x1,φ(x1,y ),y )
∂x1∂y

∂2s(x1,φ(x1,y ),y )
∂x2∂y

In our case:
∂φ

∂p
= −1

p
(φ (p, y) + y − 1)

gives

φ (p, y) = 1− y + K (y)
p

and K (y) pinned down by the measure conditions
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The uniform case: iso-husband curves
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A stochastic version

Finally, how can we capture traits that are unobservable (to the
econometrician)?
→ Usual idea: unobserved heterogeneity represented by a random
component (say, in the surplus function)
→ A simple framework:

Men and women belong to observable classes (e.g. education)

If i ∈ I and j ∈ J, surplus
si ,j = Z I ,J + εi ,j

Question: what distribution for the εs? → various ideas:

iid (hard to support)
separable (Choo-Siow, Chiappori-Salanié-Weiss)

εi ,j = αJi + βIj

both:
εi ,j = αJi + βIj + ηij
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A stochastic version (cont.)

Therefore model: stochastic OT...

... and main issue: distribution of dual variables?
In general: nothing known on the distributions of the us and vs
One result (CSW):
Theorem: In the Choo Siow specification, there exists U I ,J and
V I ,J , I , J = 1, ...,K, with U I ,J + V I ,J = Z I ,J , such that for any
matched couple (i ∈ Ī , j ∈ J̄)

ui = U Ī ,J̄ + αJ̄i and ui = V Ī ,J̄ + βĪj

Corollary: a NSC for i ∈ I being matched with a spouse in J is:
U IJ + αIJi ≥ U I 0 + αI 0i and U IJ + αIJi ≥ U IK + αIKi for all K

Estimation by logits; then one can compute

G (I ) = E
[
max
J
U Ī ,J + αJi | i ∈ I

]
and G (I )− G (I ′) is the marital premium from getting I instead of I ′
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A stochastic version (cont.)

Identification

Static framework (CS): exactly identified under strong parametric
restrictions on the distribution
Generalization (CSW): several ‘markets’(here cohorts), common value
(or trend) of the ‘supermodular kernel’(the Z s)
Then overidentification of a more general model (e.g.
heteroskedasticity)

Results
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College premia (men)
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College premia (women)
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Conclusion

1 Frictionless matching: a powerful and tractable tool for theoretical
analysis, especially when not interested in frictions

2 Crucial property: intramatch allocation of surplus derived from
equilibrium conditions

3 Applied theory: many applications (abortion, female education,
divorce laws, children, ...)

4 Can be taken to data; structural econometric model, over identified
5 Multidimensional versions: index (COQD 2010), general (GS 2010)
6 Extensions

ITU: theory; empirical applications still to be developed

Endogenous distributions (two stage game): preferences shocks,
investement in education, etc.
Econometrics: continuous variables (Dupuy-Galichon 2012)
Dynamics

P.A. Chiappori (Columbia University) Economic Applications Toronto, September 2014 50 / 50



Conclusion

1 Frictionless matching: a powerful and tractable tool for theoretical
analysis, especially when not interested in frictions

2 Crucial property: intramatch allocation of surplus derived from
equilibrium conditions

3 Applied theory: many applications (abortion, female education,
divorce laws, children, ...)

4 Can be taken to data; structural econometric model, over identified
5 Multidimensional versions: index (COQD 2010), general (GS 2010)
6 Extensions

ITU: theory; empirical applications still to be developed
Endogenous distributions (two stage game): preferences shocks,
investement in education, etc.

Econometrics: continuous variables (Dupuy-Galichon 2012)
Dynamics

P.A. Chiappori (Columbia University) Economic Applications Toronto, September 2014 50 / 50



Conclusion

1 Frictionless matching: a powerful and tractable tool for theoretical
analysis, especially when not interested in frictions

2 Crucial property: intramatch allocation of surplus derived from
equilibrium conditions

3 Applied theory: many applications (abortion, female education,
divorce laws, children, ...)

4 Can be taken to data; structural econometric model, over identified
5 Multidimensional versions: index (COQD 2010), general (GS 2010)
6 Extensions

ITU: theory; empirical applications still to be developed
Endogenous distributions (two stage game): preferences shocks,
investement in education, etc.
Econometrics: continuous variables (Dupuy-Galichon 2012)

Dynamics

P.A. Chiappori (Columbia University) Economic Applications Toronto, September 2014 50 / 50



Conclusion

1 Frictionless matching: a powerful and tractable tool for theoretical
analysis, especially when not interested in frictions

2 Crucial property: intramatch allocation of surplus derived from
equilibrium conditions

3 Applied theory: many applications (abortion, female education,
divorce laws, children, ...)

4 Can be taken to data; structural econometric model, over identified
5 Multidimensional versions: index (COQD 2010), general (GS 2010)
6 Extensions

ITU: theory; empirical applications still to be developed
Endogenous distributions (two stage game): preferences shocks,
investement in education, etc.
Econometrics: continuous variables (Dupuy-Galichon 2012)
Dynamics

P.A. Chiappori (Columbia University) Economic Applications Toronto, September 2014 50 / 50


	Introduction
	Matching models: general presentation
	The case of Transferable Utility (TU)
	Applications

