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Back to the source

Given a smooth compact Riemannian manifold (M, g) of dimension n ≥ 3, find a
metric conformal to g with constant scalar curvature.
It amounts to finding a positive solution for

−
4(n − 1)

n − 2
∆u + λu = u2∗−1 on M, (1)

or to minimize

µ(M) = inf


∫
M( 4(n−1)

n−2
|∇u|2 + λ|u|2) dVg(∫

M |u|2
∗ dVg

) 2
2∗

; u ∈ D1,2(M), u 6= 0

 ,

where λ is the scalar curvature with respect to g .
(Yamabe, Trudinger, Aubin). The Yamabe problem can be solved on any compact
manifold M with µ(M) < µ(Sn), where Sn is the sphere with its standard metric.

(Aubin). If M has dimension n ≥ 6 and is not locally conformally flat then
µ(M) < µ(Sn).

(Schoen). If M has dimension 3, 4, or 5, or if M is locally conformally flat, then
µ(M) < µ(Sn) unless M is conformal to the standard sphere.

What happens if M ⊂ Rn. Can one still solve (1) with Dirichlet boundary
conditions–say?
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De-trivializing the Yamabe problem on Euclidean space

Now assume Ω ⊂ Rn. Then,

−∆u + λu = u2∗−1 on Ω, (2)

has no solution if λ ≥ 0.
The best constant in the Sobolev inequality

µ(Ω) = inf


∫

Ω |∇u|
2) dx(∫

Ω |u|2
∗ dx

) 2
2∗

; u ∈ D1,2(Ω), u 6= 0

 ,

is never attained unless Ω is essentially Rn. Actually, µ(Ω) = µ(Rn) for every Ω ⊂ Rn.
Three ways to break the homogeneity of the problem:

1. Brezis-Nirenberg (1983) −∆u + λu = u2∗−1 has a positive solution if
−λ1(Ω) < λ < 0 and n ≥ 4. Dimension n = 3 is different!: Druet.

2. Bahri-Coron (1987 ) −∆u = u2∗−1 has a positive solution, if Ω is an annular
domain (or if Hd (Ω,Z2) 6= 0 for some d > 0, e.g., Ω non-contractible in R3.)

3. Ghoussoub-Kang (2003) Singularize the problem!!!
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Classical inequalities on Rn, n ≥ 3,

Hardy’s inequality:

(n−2)2

4

∫
Rn

u2

|x|2 dx ≤
∫
Rn |∇u|2 dx for all u ∈ C∞c (Rn).

Sobolev inequality:(∫
Rn |u|

2n
n−2 dx

) n−2
n ≤ C(n)

∫
Rn |∇u|2 dx for all u ∈ C∞c (Rn).

Hardy-Sobolev inequality: For s ∈ [0, 2] , 2?(s) := 2(n−s)
n−2

.(∫
Rn
|u|2

?(s)

|x|s dx

) 2
2?(s)

≤ C(n, s)
∫
Rn |∇u|2 dx for all u ∈ C∞c (Rn).

Caffarelli-Kohn-Nirenberg: For a ≤ b ≤ b + 1, a < n−2
2

, and p := 2n
n−2+2(b−a)

,

(∫
Rn |x |−bp |u|p dx

) 2
p ≤ C(a, b, n)

∫
Rn |x |−2a|∇u|2 dx for all u ∈ C∞c (Rn).

Writing v(x) := |x |−au(x), this rewrites with γ := a(n − 2− a) < (n−2)2

4
as:

(∫
Rn

|u|2?(s)

|x |s
dx

) 2
2?(s)

≤ C(n, γ, s)

∫
Rn

(
|∇u|2 − γ

u2

|x |2

)
dx for u ∈ C∞c (Rn).
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Singular Yamabe -type problems

Define for any Ω ⊂ Rn, the best constant

µγ,s(Ω) := inf
u∈D1,2(Ω)\{0}

∫
Ω

(
|∇u|2 − γ u2

|x|2

)
dx(∫

Ω
|u|2?(s)

|x|s dx
) 2

2?(s)

,

Again, if the singularity 0 ∈ Ω, then for 0 ≤ s < 2 and γ < (n − 2)2/4,

µγ,s(Ω) = µγ,s(Rn).

The infimum is never attained unless Ω = Rn.

What about domains such that 0 ∈ ∂Ω?
Are there extremals for µγ,s(Ω)? i.e., positive solutions to the Euler-Lagrange equation

−∆u − γ u
|x|2 = u2?(s)−1

|x|s on Ω

u > 0 on Ω
u = 0 on ∂Ω.

(3)
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I Gh-Robert (2006) If γ = 0 and s > 0, then there are extremals for all n ≥ 3,
provided the mean curvature of ∂Ω at 0 is negative. Hence, there are positive
solutions for 

−∆u = u2?(s)−1

|x|s on Ω

u > 0 on Ω
u = 0 on ∂Ω.

(4)

Note: There is no small-dimension phenomenon!

I Chern-C.S.Lin (2010) If γ < (n−2)2

4
and s > 0, then there are extremals for all

n ≥ 3, provided the mean curvature of ∂Ω at 0 is negative, i.e., there are positive
solutions for 

−∆u − γ u
|x|2 = u2?(s)−1

|x|s on Ω

u > 0 on Ω
u = 0 on ∂Ω.

(5)

Same for s = 0 provided n ≥ 4 and γ > 0.
What happens if:

1. s = 0 and n = 3.

2. γ ≥ (n−2)2

4
.
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Best constants in Hardy’s inequality?

Consider first the best constant in the Hardy inequality

γH(Ω) := inf


∫

Ω |∇u|
2 dx∫

Ω
u2

|x|2 dx
; u ∈ D1,2(Ω) \ {0}

 D1,2(Ω) := C∞c (Ω)
‖·‖

, ‖u‖ := ‖∇u‖2.

Easy to see that if 0 ∈ Ω, then γH(Ω) does not depend on the domain Ω ⊂ Rn

γH(Ω) = γH(Rn) =
(n − 2)2

4
.

HOWEVER,

Proposition: For 1 ≤ k ≤ n, we have:

(
n + 2k − 2

2

)2

= inf
u

∫
Rk

+×Rn−k |∇u|2 dx∫
Rk

+×Rn−k
u2

|x|2 dx
,

where the infimum is taken on u ∈ D1,2(Rk
+ × Rn−k ) \ {0} is never achieved. In

particular,

γH(Rn
+) =

n2

4
.
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Hardy best constants when 0 ∈ ∂Ω

Unlike the case when 0 is in the interior of a domain, we have the following

Proposition: If 0 ∈ ∂Ω, then

1. (n−2)2

4
< γH(Ω) ≤ n2

4
.

2. γH(Ω) = n2

4
for every Ω such that 0 ∈ ∂Ω and Ω ⊂ Rn

+.

3. inf{γH(Ω); 0 ∈ ∂Ω} = (n−2)2

4
.

4. For every ε > 0, there exists a smooth domain Ωε such that 0 ∈ ∂Ωε,

Rn
+ ( Ωε ( Rn and n2

4
− ε ≤ γH(Ωε) <

n2

4
.

.... and a Caffarelli-Kohn-Nirenberg inequality on Rn
+:

There exists C := C(a, b, n) > 0 such that for u ∈ C∞c (Rk
+ × Rn−k ),

(∫
Rk

+×Rn−k
|x |−bq

(
Πk
i=1xi

)q
|u|q

) 2
q

≤ C

∫
Rk

+×Rn−k

(
Πk

i=1xi

)2
|x |−2a|∇u|2dx ,

where

−∞ < a <
n − 2 + 2k

2
, 0 ≤ b − a ≤ 1, q =

2n

n − 2 + 2(b − a)
. (6)
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Back to the best constant

More importantly, we then have for any γ < n2/4, 0 ≤ s ≤ 2, 2?(s) := 2(n−s)
n−2

,

(∫
Rn

+

|u|2?(s)

|x |s
dx

) 2
2?(s)

≤ C ′′n,γ,s

∫
Rn

+

(
|∇u|2 − γ

u2

|x |2

)
dx for u ∈ C∞c (Rn).

For Ω ⊂ Rn, the best constant µγ,s(Ω) := inf{Is,γ(Ω); u ∈ C∞c (Ω) \ {0}}, where

Is,γ(u) :=

∫
Ω

(
|∇u|2 − γ u2

|x|2

)
dx(∫

Ω
|u|2?(s)

|x|s dx
) 2

2?(s)

,

Again, for any Ω with 0 ∈ Ω, we have for 0 ≤ s < 2 and γ < γH(Ω) = (n − 2)2/4

µγ,s(Ω) = µγ,s(Rn).

The infimum is never attained unless Ω = Rn.

What about domains such that 0 ∈ ∂Ω?
We already know that

I µγ,s(Ω) > 0, whenever 0 ≤ s < 2 and γ < γH(Ω) < n2/4.

I µγ,s(Ω) < µγ,s(Rn
+), hence is attained if s > 0, n ≥ 3 and γ < (n−2)2

4
.

What happens in the remaining cases? that is when

γ ∈
[

(n − 2)2

4
, γH(Ω)

)
⊂
[

(n − 2)2

4
,
n2

4

)
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The full range of γ when s > 0

Theorem
Let Ω be a bounded smooth domain of Rn (n ≥ 3) such that 0 ∈ ∂Ω. In particular
(n−2)2

4
< γH(Ω) ≤ n2

4
. Let 0 ≤ s < 2.

1. If γH(Ω) ≤ γ < n2

4
, then there are extremals for µγ,s(Ω) for every s ∈ [0, 2) and

any n ≥ 3.

2. If γ < γH(Ω) and s > 0, then

I γ ≤ n2−1
4 and the mean curvature of ∂Ω at 0 is negative.

I γ > n2−1
4 and the Hardy b-mass mγ(Ω) is positive.

Table: Singular Sobolev-Critical term: s > 0

Hardy term Dimension Geometric condition Extremal

−∞ < γ ≤ n2−1
4

n ≥ 3 Negative mean curvature at 0 Yes
n2−1

4
< γ < n2

4
n ≥ 3 Positive boundary-mass Yes
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Critical cases: s = 0

Table: Non-singular Sobolev-Critical term: s = 0

Hardy term Dim. Geometric condition Extremal

0 < γ ≤ n2−1
4 n = 3 Negative mean curvature at 0 & Positive internal mass Yes

n ≥ 4 Negative mean curvature at 0 Yes
n2−1

4 < γ < n2

4 n = 3 Positive boundary-mass & Positive internal mass Yes
n ≥ 4 Positive boundary mass Yes

γ ≤ 0 n ≥ 3 – No

Theorem Let Ω be a bounded smooth domain of R3 such that 0 ∈ ∂Ω. In particular
1
4
< γH(Ω) ≤ 9

4
.

I If γH(Ω) ≤ γ < 9
4

, then there are extremals for µγ,0(Ω).

I If 0 < γ < γH(Ω), and if there exists x0 ∈ Ω such that Rγ(Ω, x0) > 0, then there
are extremals for µγ,0(Ω), under either one of the following conditions:

1. γ ≤ 2 and the mean curvature of ∂Ω at 0 is negative.
2. γ > 2 and the mass mγ(Ω) is positive.
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Standard scheme but the challenge is in the implementation

Standard fact: (Dating back to the Yamabe problem (Trudinger, Aubin)

IF µγ,s(Ω) < µγ,s(Rn
+), then there are extremals for µγ,s(Ω).

Another standard fact: Use the nonnegative extremal U ∈ D1,2(Rn
+) for µγ,s(Rn

+) (if
it exists) to build test functions. Besides existence, one needs information on the
profile i.e. behavior at 0 and at infinity.

Proposition (Existence on Rn
+): Fix γ < n2

4
and s ∈ [0, 2) with n ≥ 3. Then,

1. If either {s > 0} or {s = 0, γ > 0 and n ≥ 4}, then µγ,s(Rn
+) is attained.

2. If {s = 0 and γ ≤ 0}, there are no extremals for µγ,0(Rn
+).

3. The only unknown situation on Rn
+ is when {s = 0, n = 3 and γ > 0}, BUT:

If µγ,0(Rn
+) is not attained, then µγ,0(Rn

+) = inf
u∈D1,2(Rn)\{0}

∫
Rn |∇u|2 dx

(
∫
Rn |u|2

?
dx)

2
2?
.

Theorem (Symmetry on Rn
+): If u ∈ D1,2(Rn

+) is an extremal for µγ,0(Rn
+), then

u ◦ σ = u for all isometry of Rn such that σ(Rn
+) = Rn

+. In particular, there exists

v ∈ C∞((0,+∞)× R) such that for all x1 > 0 and all x ′ ∈ Rn−1, we have that
u(x1, x ′) = v(x1, |x ′|).

Question (Behavior at 0 and ∞)
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The three main cases

Define uε(x) := η(x)
(
ε−

n−2
2 U(ε−1·)

)
◦ ϕ−1(x), where η is a cut-off around 0 and ϕ

is a chart mapping locally Rn
+ on Ω.

1. If γ < n2−1
4

, then
∫
∂Rn

+
|x |2|∇U|2 dx < +∞, then the test functions uε work:

Is,γ(uε) = µγ,s(Rn
+) + Cn,s,γ · H(0) · ε+ o(ε)

where H(0) is the mean curvature of ∂Ω at 0.

2. For γ = n2−1
4

one needs a finer analysis of the linear operator Lγ := −∆− γ
|x|2

to establish that U behaves exactly like x1|x |−α+ at infinity.

Is,γ(uε) = µγ,s(Rn
+) + Cn,s,γ · H(0) · ε ln(1/ε) + o(ε ln(1/ε))

3. For n2−1
4

< γ < n2

4
, then one constructs global profiles vε,

vε(x) := uε(x) + ε
α+−α−

2 β(x), where

β(x) = mγ(Ω) d(x,∂Ω)

|x|α− + o
(

d(x,∂Ω)

|x|α−

)
as x → 0.

in such a way that

Is,γ(vε) = µγ,s(Rn
+)− Cn,s,γ ·mγ(Ω) · εα+−α− + o(εα+−α− )

where mγ(Ω) is the Hardy-singular boundary mass of Ω.
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The three main cases

Define uε(x) := η(x)
(
ε−

n−2
2 U(ε−1·)

)
◦ ϕ−1(x), where η is a cut-off around 0 and ϕ

is a chart mapping locally Rn
+ on Ω.
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The analysis of the linear operator

On Rn
+, we define uα(x) := x1|x |−α for α ∈ R. The first remark is that

∆uα −
γ

|x |2
uα = 0 in Rn

+ ⇔ {α = α−(γ) or α = α+(γ)}

where

α−(γ) :=
n

2
−

√
n2

4
− γ and α+(γ) :=

n

2
+

√
n2

4
− γ

Note: α− <
n
2
< α+, which points to the difference between the two canonical

solutions, one is variational namely x 7→ x1|x |−α−(γ) is locally in D1,2(Rn
+), and the

“large one” x 7→ x1|x |−α+(γ) is not.

Note: the analogy with the case of harmonic functions on Rn (i.e., solutions of
∆u = 0 on Rn \ {0}):

∆|x |−β = 0 in Rn \ {0} ⇔ {β = 0 or β = n − 2}.
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A classification of all solutions on Rn
+

All non-negative solutions of Lγu = 0 on Rn
+ turned out to be a linear combination of

the two basic ones. Indeed, we prove the following:

Theorem: Let u ∈ C2(Rn
+ \ {0}) be a nonnegative function such that

−∆u −
γ

|x |2
u = 0 in Rn

+ ; u = 0 on ∂Rn
+.

Then there exist λ−, λ+ ≥ 0 such that

u(x) = λ−x1|x |−α− + λ+x1|x |−α+ for all x ∈ Rn
+.

Remark: We eventually show that x 7→ d(x , ∂Ω)|x |−α−(γ) is essentially the profile at
0 of any variational solution –positive or not– of equations of the form Lγu = f (x , u),

as long as the nonlinearity f is dominated by C(|v |+ |v|2
∗(s)

|x|s ).
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Regularity and Hopf-type lemma

Theorem: Consider u ∈ D1,2(Ω) that is locally (around 0) a solution to

−∆u −
γ + O(|x |τ )

|x |2
u = f (x , u)

where |f (x , u)| ≤ C |u|
(

1 + |u|2
?(s)−2

|x|s

)
, τ > 0. Then there exists K ∈ R such that

u(x) = K
d(x , ∂Ω)

|x |α−
+ o

(
d(x , ∂Ω)

|x |α−

)
when x → 0.

Moreover, if u ≥ 0, u 6≡ 0, then K > 0.

Remark 1: when γ = 0, we have α− = 0 and this is exactly Hopf’s lemma
(K = −∂νu(0) > 0).

Remark 2: Unlike the case when Lγ = L0 = −∆) or when the singularity 0 is in the
interior, the standard DeGiorgi-Nash-Moser iterative scheme is not sufficient to obtain
the required regularity. It only yields that u ∈ Lp for all p < p0 <

n
α−(γ)−1

.

Remark 3: However, the improved order p0 is enough to allow for the inclusion of the
nonlinearity f (x , u) in the linear term, hence reducing the analysis to when f (x , u) ≡ 0.
We get the conclusion by constructing super- and sub- solutions to the linear equation
behaving like the canonical solutions.
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Profile of the limiting solution

Theorem: Assume γ < n2

4
and let u ∈ D1,2(Rn

+), u ≥ 0, u 6≡ 0 be a weak solution to

−∆u −
γ

|x |2
u =

u2?(s)−1

|x |s
in Rn

+.

Then, there exist K1,K2 > 0 such that

u(x) ∼x→0 K1
x1

|x |α−(γ)
and u(x) ∼|x|→+∞ K2

x1

|x |α+(γ)
.

Remark: This description of the profile of variational solutions allows to construct

sharper test functions and to prove existence of extremals up to γ = n2−1
4

.
Indeed, the estimates

u(x) ≤ Cx1|x |−α+(γ) and |∇u(x)| ≤ C |x |−α+(γ) for all x ∈ Rn
+. (7)

and the fact that

γ <
n2 − 1

4
⇔ α+(γ)− α−(γ) > 1

yield that if γ < n2−1
4

, then |x ′|2|∂1u|2 = O(|x ′|2−2α+(γ)) as |x ′| → +∞ on

∂Rn
+ = Rn−1, from which we could deduce that x ′ 7→ |x ′|2|∂1u(x ′)|2 is in L1(∂Rn

+).

This estimate does not hold when γ ≥ n2−1
4

.
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Classification of positive singular solutions

To deal with the remaining cases for γ, we need the following result which describes
the general profile of any positive solution of Lγu = a(x)u, albeit variational or not.

Theorem: Let u ∈ C2(Ω ∩ Bδ(0) \ {0}) be a positive solution to

∆u −
γ

|x |2
u = 0 in Ω ∩ Bδ(0) \ {0}; u = 0 on (∂Ω) ∩ Bδ(0).

Then, either u behaves like d(·, ∂Ω)|x |−α−(γ) or like d(·, ∂Ω)|x |−α+(γ).

A Harnack inequality: Let Ω be a smooth bounded domain of Rn, a ∈ L∞(Ω) and U
an open subset of Rn. Consider u ∈ C2(U ∩ Ω) to be a solution of −∆gu + au = 0 in U ∩ Ω

u ≥ 0 in U ∩ Ω
u = 0 on U ∩ ∂Ω,

where g is a smooth metric on U. If U′ ⊂⊂ U is such that U′ ∩ Ω is connected, then
there exists C > 0 depending only on Ω,U′, ‖a‖∞ and g such that

u(x)

d(x , ∂Ω)
≤ C

u(y)

d(y , ∂Ω)
for all x , y ∈ U′ ∩ Ω. (8)

I Sub- super-solutions of the linear equations that behave like the two models (one
needs to compensate the mean curvature).

I A notion of distributional solutions that distinguish the variational and the
non-variational solutions.
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A notion of singular boundary mass

What about the case γ > n2−1
4

?

This involves a notion of mass in the spirit of Schoen-Yau:

Proposition: Fix n2−1
4

< γ < γH(Ω). Then, up to a positive multiplicative constant,

∃!G ∈ C2(Ω \ {0}) such that
∆G − γ

|x|2 G = 0 in Ω

G > 0 in Ω
G = 0 on ∂Ω \ {0}


Moreover, there exists C1,C2 ∈ R, C1 > 0, such that

G(x) = C1
d(x , ∂Ω)

|x |α+
+ C2

d(x , ∂Ω)

|x |α−
+ o

(
d(x , ∂Ω)

|x |α−

)
when x → 0. We define the mass as

mγ(Ω) :=
C2

C1
∈ R.

Nassif Ghoussoub, UBC (Joint work with Frédéric Robert (Université de Lorraine)On the Hardy-Sobolev operator with a boundary singularity



Is there any domain in Rn with positive singular mass?

1. The map Ω→ mγ(Ω) is a monotone increasing function on the class of domains
having zero on their boundary, once ordered by inclusion.

2. mγ(Rn
+) = 0 for any n2−1

4
< γ < n2

4
, and therefore the mass of any one of its

subsets having zero on its boundary is non-positive.
In particular, mγ(Ω) < 0 whenever Ω is convex and 0 ∈ ∂Ω.

3. On the other hand, we have examples of bounded domains Ω in Rn with 0 ∈ ∂Ω
and with positive mass mγ(Ω) > 0.

4. We have examples of domains with positive/negative mass with any local
behavior at 0.

In other words, the sign of the Hardy b-mass is totally independent of the local
properties of ∂Ω around 0.
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The remaining case, i.e., n = 3 and s = 0 and γ ∈ (0, n
2

4 )

In this situation, there may or may not be extremals for µγ,0(Rn
+).

1. If they do exist, one can argue as before –using the same test functions– to get:

I Either γ ≤ n2−1
4 and the mean curvature of ∂Ω at 0 is negative

I Or γ > n2−1
4 and the mass mγ(Ω) is positive.

2. If no extremal exist for µγ,0(Rn
+), then µγ,0(Rn

+) = µ0,0(Rn
+), the best constant

in the Sobolev inequality. We are back to the case of the Yamabe problem with
no boundary singularity.

One then resorts to a more standard notion of mass Rγ(Ω, x0) associated to an
interior point x0 ∈ Ω and construct test-functions in the spirit of Schoen: For
γ ∈ (0, γH(Ω)), any solution G of

−∆G − γ
|x|2 G = 0 in Ω \ {x0}

G > 0 in Ω \ {x0}
G = 0 on ∂Ω \ {0},

is unique up to multiplication by a constant, and that for any x0 ∈ Ω, there exists
Rγ(Ω, x0) ∈ R (independent of G) and cG > 0 such that

G(x) = cG

(
1

|x − x0|n−2
+ Rγ(Ω, x0)

)
+ o(1) as x → x0.

The quantity Rγ(Ω, x0) is well defined.
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Table: The critical cases: s = 0

Hardy term Dim. Geometric condition Extremal

0 < γ ≤ n2−1
4 n = 3 Negative mean curvature at 0 & Positive internal mass Yes

n ≥ 4 Negative mean curvature at 0 Yes
n2−1

4 < γ < n2

4 n = 3 Positive boundary-mass & Positive internal mass Yes
n ≥ 4 Positive boundary mass Yes

γ ≤ 0 n ≥ 3 – No
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