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Charge Carrier Transport

Charge carrier transport refers to phenomena where charged
particles interact with one another through an electric field.

These systems are often encountered in biological and engineering
settings, and simulation can help improve understanding the role of
charged particles in cellular nanochannels, microfluidic chips, solar
cells, etc.
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A brief history of time-dependent PNP

We are interested in charged particle transport in electrostatic
systems when magnetic forces are negligible.

Nernst and Planck modeled these phenomena using a continuum
model dating back to 1889, where the distribution of charged
particles are distributed according to processes of drift and
diffusion.
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Connection to the Maxwell’s equations

The PNP equations take root in the Maxwell equations:

ε0∇ · ~E = ρ, (Gauß’s Law)

∇ · ~B = 0, (Gauß’s Law for Magnetism)

∇× ~E =
∂ ~B

∂t
, (Faraday’s Law of Induction)

∇× ~B = µ0

(
~j + ε0

∂ ~E

∂t

)
. (Ampère’s Circuital Law)
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Connection to the Maxwell’s equations

In simple cases:

Magnetic field is absent: ~B = ~0

∇× ~E = ~0 =⇒ ~E = −εr∇φ

Ion flux driven by drift-diffusion

~ji = −Di∇ρi + µiρi ~E

Mass conservation
∂ρi
∂t

= −∇ · ~ji
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What modifications are permitted?

The PNP equations are used to model many devices that produce
a wide variety of functionality

generating electrical energy in a solar cell

controlling fluid flow in microchannels

gating ionic particles from proteins

What are permissible (consistent with Maxwell’s equations)
modifications that to generate this variety in functionality?

PSU Center for Computational Mathematics and Applications Slide 7/65, July 31, 2014



Overview Applications Discretization Solvers

What modifications are permitted?

The PNP equations are used to model many devices that produce
a wide variety of functionality

generating electrical energy in a solar cell

controlling fluid flow in microchannels

gating ionic particles from proteins

What are permissible (consistent with Maxwell’s equations)
modifications that to generate this variety in functionality?

PSU Center for Computational Mathematics and Applications Slide 7/65, July 31, 2014



Overview Applications Discretization Solvers

Multi-Functionality
Material Parameters

A simple rescaling of the variables, in addition to the Einstein
relation (κBT )µi = eDi , shows that all qualitative behavior of a
simple PNP system can be reproduced by varying the electric
permitivitty and ionic diffusivities.

∂
∂t
p = ∇ · [Dp(∇p + p∇φ)] ,

∂
∂t
n = ∇ · [Dn(∇n − n∇φ)] ,

−∇ · (ε∇φ) = p − n.

A broad spectrum of qualitative behavior follows from relative
scalings between coefficients and discontinuities of the coefficients,
where we note ε = ε(L,T , ρref).

Analyses should be flexible with the values of these parameters in
order to be applicable to many devices.
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Multi-Functionality
Ionic Flux

While the Nernst-Planck equations describe ion diffusivity and
electrostatic forces, additional physical forces can be taken into
account in the ion flux

~j = −D∇ρ+ µρ~E + ~F

These additional forces are often nonlinear expressions and may
couple to other PDEs.
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Multi-Functionality
Mass Conservation

In the context of devices, we typically deal with finite domains.

Mass conservation then requires a prescribed boundary and a set of
boundary conditions, which indirectly influence the total ionic mass
in a device.

Additionally, we may add terms to specify ion sources and sinks:

∂ρ

∂t
= −∇ · ~j + S
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Multi-Functionality

Thus, a broad spectrum of qualitative behavior follows from:

scalings of coefficients and discontinuities of the coefficients

modification to the ionic fluxes

device-specific statement of mass conservation

domain geometry and boundary conditions

PSU Center for Computational Mathematics and Applications Slide 11/65, July 31, 2014



Overview Applications Discretization Solvers

Multi-Functionality

We are primarily interested modeling devices using that PNP
equations.

The takeaway: chairs are held together by nails and glue, a book is
held together by its binding, and devices in this talk are held
together by PNP.

The PNP equations serve as a platform to connect a prescribed
domain geometry, material parameters, and expressions for ion
fluxes to create a device that subsequently yields some
functionality, which depends on applied boundary conditions.
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Applications and Collaborations

This work focuses on applications, discretizations, and numerical
solvers for PNP equations and is led by Prof. Jinchao Xu, with
Xiaozhe Hu and M. M.

Biology, Nanochannels (Profs Liu & Eisenberg, Penn State &
Rush Medical)

Electrokinetics (Department of Energy, Collaboratory on
Mathematics for Mesoscopic Modeling of Materials)

Solar Cell (Prof. Fonash, Penn State)

LiPON Battery (Dr. G. Lin and Dr. B. Zheng, PNNL)

Ion Filtration using Poly-Membranes (Prof. Hickner and Dr.
H. Xie, Penn State)

Semi-conductors (Prof. Bank, UCSD)

PSU Center for Computational Mathematics and Applications Slide 13/65, July 31, 2014



Overview Applications Discretization Solvers

Applications and Collaborations

This work focuses on applications, discretizations, and numerical
solvers for PNP equations and is led by Prof. Jinchao Xu, with
Xiaozhe Hu and M. M.

Biology, Nanochannels (Profs Liu & Eisenberg, Penn State &
Rush Medical)

Electrokinetics (Department of Energy, Collaboratory on
Mathematics for Mesoscopic Modeling of Materials)

Solar Cell (Prof. Fonash, Penn State)

LiPON Battery (Dr. G. Lin and Dr. B. Zheng, PNNL)

Ion Filtration using Poly-Membranes (Prof. Hickner and Dr.
H. Xie, Penn State)

Semi-conductors (Prof. Bank, UCSD)

PSU Center for Computational Mathematics and Applications Slide 13/65, July 31, 2014



Overview Applications Discretization Solvers

Applications and Collaborations

This work focuses on applications, discretizations, and numerical
solvers for PNP equations and is led by Prof. Jinchao Xu, with
Xiaozhe Hu and M. M.

Biology, Nanochannels (Profs Liu & Eisenberg, Penn State &
Rush Medical)

Electrokinetics (Department of Energy, Collaboratory on
Mathematics for Mesoscopic Modeling of Materials)

Solar Cell (Prof. Fonash, Penn State)

LiPON Battery (Dr. G. Lin and Dr. B. Zheng, PNNL)

Ion Filtration using Poly-Membranes (Prof. Hickner and Dr.
H. Xie, Penn State)

Semi-conductors (Prof. Bank, UCSD)

PSU Center for Computational Mathematics and Applications Slide 13/65, July 31, 2014



Overview Applications Discretization Solvers

Applications and Collaborations

This work focuses on applications, discretizations, and numerical
solvers for PNP equations and is led by Prof. Jinchao Xu, with
Xiaozhe Hu and M. M.

Biology, Nanochannels (Profs Liu & Eisenberg, Penn State &
Rush Medical)

Electrokinetics (Department of Energy, Collaboratory on
Mathematics for Mesoscopic Modeling of Materials)

Solar Cell (Prof. Fonash, Penn State)

LiPON Battery (Dr. G. Lin and Dr. B. Zheng, PNNL)

Ion Filtration using Poly-Membranes (Prof. Hickner and Dr.
H. Xie, Penn State)

Semi-conductors (Prof. Bank, UCSD)

PSU Center for Computational Mathematics and Applications Slide 13/65, July 31, 2014



Overview Applications Discretization Solvers

Applications and Collaborations

This work focuses on applications, discretizations, and numerical
solvers for PNP equations and is led by Prof. Jinchao Xu, with
Xiaozhe Hu and M. M.

Biology, Nanochannels (Profs Liu & Eisenberg, Penn State &
Rush Medical)

Electrokinetics (Department of Energy, Collaboratory on
Mathematics for Mesoscopic Modeling of Materials)

Solar Cell (Prof. Fonash, Penn State)

LiPON Battery (Dr. G. Lin and Dr. B. Zheng, PNNL)

Ion Filtration using Poly-Membranes (Prof. Hickner and Dr.
H. Xie, Penn State)

Semi-conductors (Prof. Bank, UCSD)

PSU Center for Computational Mathematics and Applications Slide 13/65, July 31, 2014



Overview Applications Discretization Solvers

Applications and Collaborations

This work focuses on applications, discretizations, and numerical
solvers for PNP equations and is led by Prof. Jinchao Xu, with
Xiaozhe Hu and M. M.

Biology, Nanochannels (Profs Liu & Eisenberg, Penn State &
Rush Medical)

Electrokinetics (Department of Energy, Collaboratory on
Mathematics for Mesoscopic Modeling of Materials)

Solar Cell (Prof. Fonash, Penn State)

LiPON Battery (Dr. G. Lin and Dr. B. Zheng, PNNL)

Ion Filtration using Poly-Membranes (Prof. Hickner and Dr.
H. Xie, Penn State)

Semi-conductors (Prof. Bank, UCSD)

PSU Center for Computational Mathematics and Applications Slide 13/65, July 31, 2014



Overview Applications Discretization Solvers

Applications and Collaborations

This work focuses on applications, discretizations, and numerical
solvers for PNP equations and is led by Prof. Jinchao Xu, with
Xiaozhe Hu and M. M.

Biology, Nanochannels (Profs Liu & Eisenberg, Penn State &
Rush Medical)

Electrokinetics (Department of Energy, Collaboratory on
Mathematics for Mesoscopic Modeling of Materials)

Solar Cell (Prof. Fonash, Penn State)

LiPON Battery (Dr. G. Lin and Dr. B. Zheng, PNNL)

Ion Filtration using Poly-Membranes (Prof. Hickner and Dr.
H. Xie, Penn State)

Semi-conductors (Prof. Bank, UCSD)

PSU Center for Computational Mathematics and Applications Slide 13/65, July 31, 2014



Overview Applications Discretization Solvers

Semi-conductors
A prominent application of PNP in engineering applications is to
explore the efficiency and capability of various configurations of
semi-conductor devices, such as transistors and diodes, numerically.

Figure: Semi-conductor

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/intrin.html
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Semi-conductors

By constructing a device using distinct semi-conductor materials,
interactions between “electrons” and “holes” can modify current
through the device.

We require:

Discontinuous material parameters

Modifications to ion fluxes

Source terms added to mass conservation eqns
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Semi-conductors
Doping

Combining several “doped” materials is modeled by using materials
with distinct diffusivities and electric permittivity

~jp = −Dp(∇p + p∇φ),

~jn = −Dn(∇n − n∇φ),

−∇ · (εrε0∇φ) = p + pf − (n + nf ),

and fixed charges

~jpf = ~0 and ~jnf = ~0.
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Semi-conductors
Recombination

Furthermore, since holes model the lack of an electron, holes and
electrons are generated stochastically and can annihilate each
other by recombination.

This is modeled by generation and recombination terms

∂p

∂t
= −∇ · ~jp + G (p, n)− R(p, n)

∂n

∂t
= −∇ · ~jn + G (p, n)− R(p, n)
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Semi-conductors
Recombination

In photovoltaic semi-conductors (aka solar cells), electron/hole
pairs are generated by an optical electric field

∇×∇× ~Eopt + κ2 ~Eopt = ~F ,

∂p

∂t
= −∇ · ~jp + G (~Eopt)− R(p, n),

∂n

∂t
= −∇ · ~jn + G (~Eopt)− R(p, n).
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Semi-conductors
Materials, Geometry, and BCs

A specific device is modeled by

material configuration

shape of the device

applied voltages
Figure: Diode

∂p

∂t
= ∇ · [Dp(∇p + p∇φ)]− R(p, n),

∂n

∂t
= ∇ · [Dn(∇n − n∇φ)]− R(p, n),

−∇ · (ε∇φ) = p + pf − n − nf .

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/diod.html
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Semi-conductors
Materials, Geometry, and BCs

A specific device is modeled by

material configuration

shape of the device

applied voltages
Figure: Bipolar Junction
Transistor: forward and reverse
current, saturation, cutoff

∂p

∂t
= ∇ · [Dp(∇p + p∇φ)]− R(p, n),

∂n

∂t
= ∇ · [Dn(∇n − n∇φ)]− R(p, n),

−∇ · (ε∇φ) = p + pf − n − nf .

http://en.wikipedia.org/wiki/Bipolar transistor
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Electrokinetics
We can enrich the functionality of a device by adding kinetic forces
in the ionic flux:

~j = −D∇ρ− µρ∇φ+ ρ~u.

This models electrokinetic systems where charged particles are
suspended in an electrolyte.

Some phenomena modeled by this system are electroosmosis,
electrophoresis, and streaming potentials/currents.

Figure: Electroosmosis in a capillary tube

Wenxiao Pan, PNNL
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Electrokinetics

Coupling the PNP equations with the incompressible Navier-Stokes
equations expands the model to take into account the kinetic
effects of charged particles suspended in an electrolyte.

pt = ∇ · [Dp(∇p + p∇φ)− p~u ] ,

nt = ∇ · [Dn(∇n − n∇φ)− n~u ] ,

−∇ · (ε∇φ) = p − n,

~ut + (~u ·∇)~u = ν∇2~u +∇π − (p − n)∇φ,
∇ · ~u = 0.
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Electrokinetics
Electroosmosis

Electroosmosis refers to the phenomenon where a fluid is driven by
electric forces.

This is an important model for engineering fluidic microchannels.

In these applications, controlling flows with small mechanical
pumps and valves is difficult to design and fabricate without
defects; electrokinetics can be used to remedy these issues.

Figure: Electroosmosis in a capillary tube

Wenxiao Pan, PNNL
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Electrokinetics
Electroosmosis

For more complicated geometries, this can serve as a switch to
control where the fluid flows.

Figure: Controlled flow in T-juction

Dutta, Beskok, & Warburton, Num. Sim. of Mixed Electroosmotic/Pressure Driven Microflows (2002)
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Electrokinetics
Microfluidic Diode and Transistors

Diodes and Bipolar Transistors can be built from a nanochannel
connecting two salt baths.

Surface charges on a nannochannel can control the current in the
channel.

Figure: Nanofluidic Diode and Bipolar Transistor

Daiguji, Oka, & Shirono, Nanofluidic Diode and Bipolar Transistor
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Electrokinetics
Electrophoresis

Another applications where the PNP equations are coupled with
Navier-Stokes includes electrophoresis, where a solid charged
particle is suspended in a charged fluid, and an applied electric
field moves the solid.

In this application, the “boundary” moves as the charged particle
is driven through the device.

Figure: Electrophoresis

Zangle, Mani, & Santiago, Theory and experiments of concentration polarization and ion focusing at
microchannel and nanochannel interfaces (2010)
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Biological Applications
Passive transport through cell membrane

Modeling ions passing through the nanochannels of a cellular membrane
is a well-studied example.

Passive transport through the nanochannel has been modeled using the
PNP equations.

Ion diffusivity and electric
permittivity change from the bath
to channel

Complicated mesh geometries are
needed to resolve proteins

Fixed charges generate surface
charges on protein

Ionic fluxes must account for
fixed charges and inter-ionic
interactions

Figure: Passive Transport

Horng, Lin, Liu, & Eisenberg, PNP Equations with Steric Effects: A Model of Ion Flow through Channels
(2012)
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Biological Applications
Passive transport: Geometry

The function of proteins are extremely sensitive to location of charges in
proteins and protein shape.

Generating accurate, let alone adequate, protein meshes is a difficult task!

There exist software packages for mesh generation, such as TMSmesh,
that are designed to produce high quality meshes for proteins.

Tu, Chen, Xie, Zhang, Eisenberg, & Lu, A Parallel Finite Element Simulator for Ion Transport through
Three-Dimensional Ion Channel Systems (2013)
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Biological Applications
Passive Transport: Permanent Charges

Within each protein, there are many permanent charges, which are
modeled as point charges, to generate the surface charge on the
protein.
The electric potential has a numerically stable decomposition into
three components:

Singular: −∇ · (εp∇φs(x)) =
∑

i δ(|x − xi |)
=⇒ φs =

∑
Coloumb potentials

∣∣
Ωp

Harmonic: −∇ · (εp∇φh) = 0, φh
∣∣
∂Ωp

= −φs
∣∣
∂Ωp

Regular: −∇ · (ε∇φr ) = p − n,
εs
∂φr
∂n − εp

∂φr
∂n = εp

∂
∂n (φs + φh) on ∂Ωp

ε =

{
εp, in protein
εs , in solution
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Biological Applications
Passive Transport: Steric Effects

Due to the small scale of this process, the size of ions becomes
increasingly important. This is especially true when studying
channel selectivity.

Following Horng, Lin, Liu, Eisenberg, we can modify the ionic flux
to account for repulsive size effects between ions:

~jp = −Dp

(
∇p + p∇φ+ p(εpp∇p + εpn∇n)

)
,

~jn = −Dn

(
∇n − n∇φ+ n(εnp∇p + εnn∇n)

)
.

These modifications have recovered some selectivity behavior of
ion nanochannels.

Further modifications employing relative drag have been analyzed
to model ion crowding.
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PNP Models and their Differences

While it has been emphasized that there are some standard classes
of modifications to the PNP system, the effects of these
modifications should not be downplayed.

The resulting behavior of a given device can change drastically, as
well as the analysis that is required to understand the model
mathematically.
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Our Goal

Our focus is on designing and analyzing numerical discretizations
and solvers for the PNP equations.

We seek robust finite element discretizations for the PNP
equations with solvers that have provable convergence and stability
properties to work for a wide variety of applications.
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Formulating the PNP Equations
Primitive Variables

For a system with a single cation and anion, the formulation using
primitive variables is

∂

∂t
p = ∇ · [Dp(∇p + p∇φ)] ,

∂

∂t
n = ∇ · [Dn(∇n − n∇φ)] ,

−∇ · (ε∇φ) = p − n,

plus suitable boundary conditions that depend on the device in question.
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Formulation Selectivity

In proving results for the discrete system, we must choose the
appropriate variables to discretize a priori, as this determines the
restricted class of discrete test functions.

We would like to prove:

An energy estimate for the discrete nonlinear solution

Convergence to the discrete nonlinear solution

Well-posedness of the linearized system
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Energy Estimate for the Continuous Formulation

The solution of the simple PNP system satisfies the known energy
law

d

dt

∫
Ω

ε

2
|∇φ|2 + p log p + n log n dx

= −
∫

Ω
Dpp|∇(log p + φ)|2 + Dnn|∇(log n − φ)|2 dx .

The energy norm used for this system is not typical of finite
element discretizations where p, n, φ ∈ Vh = C0 ∩ {pw linear}

PSU Center for Computational Mathematics and Applications Slide 36/65, July 31, 2014



Overview Applications Discretization Solvers

Energy Estimate for the Continuous Formulation

The solution of the simple PNP system satisfies the known energy
law

d

dt

∫
Ω

ε

2
|∇φ|2 + p log p + n log n dx

= −
∫

Ω
Dpp|∇(log p + φ)|2 + Dnn|∇(log n − φ)|2 dx .

The energy norm used for this system is not typical of finite
element discretizations where p, n, φ ∈ Vh = C0 ∩ {pw linear}
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Formulating the PNP Equations
Slotboom Variables

An alternate formulation to the primitive variables involves the
Slotboom variables,

p̄ = eφp, D̄p = Dpe
−φ,

n̄ = e−φn, D̄n = Dne
φ.

Then,

∂

∂t
e−φp̄ = ∇ ·

(
D̄p∇p̄

)
,

∂

∂t
eφn̄ = ∇ ·

(
D̄n∇n̄

)
,

−∇ · (ε∇φ) = e−φp̄ − eφn̄.
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Formulating the PNP Equations
Slotboom Variables

The Slotboom formulation is useful for proving analytical results
such as a maximum principle, since the Nernst-Planck equations
are symmetrized.

∂
∂t
e−φp̄ = ∇ ·

(
D̄p∇p̄

)
,

∂
∂t
eφn̄ = ∇ ·

(
D̄n∇n̄

)
.

Also, this formulation observes faster convergence numerically for
nonlinear iterates.

One must be careful to account for the conditioning of the stiffness
matrix, since the diffusion coefficient varies exponentially.

D̄p = Dpe
−φ, D̄n = Dne

φ.
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Formulating the PNP Equations
Log-Density Variables

Using a log transformation, we define

p̂ = log p, n̂ = log n.

Then,

∂

∂t
e p̂ = ∇ ·

(
Dpe

p̂∇(p̂ + φ)
)
,

∂

∂t
e n̂ = ∇ ·

(
Dne

n̂∇(n̂ − φ)
)
,

−∇ · (ε∇φ) = e p̂ − e n̂.

This formulation displays nonlinear diffusion and guarantees positivity
of the ionic densities.
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Energy Estimate for Log-Density Weak Form

In order to prove the energy estimate, we assume a closed system
and p̂, n̂ ∈ Vh ⊂ H1 and φ ∈ V ′h ⊆ Vh.
Written in weak form:(

∂
∂t
e p̂, χ

)
+
(
Dpe

p̂∇(p̂ + φ),∇χ
)

= 0,(
∂
∂t
e n̂, λ

)
+
(
Dne

n̂∇(n̂ − φ),∇λ
)

= 0,(
ε∇φ,∇ψ

)
−
(
e p̂ − e n̂, ψ

)
= 0.

Further, we assume the conservation of mass:

d

dt

∫
Ω
e p̂ dx =

d

dt

∫
Ω
e n̂ dx = 0.
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Overview Applications Discretization Solvers

Energy Estimate for Log-Density Weak Form

Choosing χ = p̂ + φ, λ = n̂ − φ, and ψ = φ yields an energy
estimate:(

∂
∂t
e p̂, p̂

)
+
(
∂
∂t
e p̂, φ

)
= −

(
Dpe

p̂∇(p̂ + φ),∇(p̂ + φ)
)
,(

∂
∂t
e n̂, n̂

)
−
(
∂
∂t
e n̂, φ

)
= −

(
Dne

n̂∇(n̂ − φ),∇(n̂ − φ)
)
,(

ε∇
( ∂
∂t
φ
)
,∇φ

)
=
(
∂
∂t
e p̂, φ

)
−
(
∂
∂t
e n̂, φ

)
,
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Energy Estimate for Log-Density Weak Form

Adding the PNP equations gives(
ε∇
( ∂
∂t
φ
)
,∇φ

)
+
(
∂
∂t
e p̂, p̂

)
+
(
∂
∂t
e n̂, n̂

)
= −

(
Dpe

p̂∇(p̂ + φ),∇(p̂ + φ)
)
−
(
Dne

n̂∇(n̂ − φ),∇(n̂ − φ)
)

and

d
dt

(
e p̂, 1

)
=
(
e p̂,

∂
∂t
p̂
)

= 0,

d
dt

(
e n̂, 1

)
=
(
e n̂,

∂
∂t
n̂
)

= 0.
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Energy Estimate for Log-Density Weak Form

Combining these equations, we recover an energy estimate:(
ε∇
( ∂
∂t
φ
)
,∇φ

)
+
(
∂
∂t
e p̂, p̂

)
+
(
∂
∂t
e n̂, n̂

)
+
(
e p̂,

∂
∂t
p̂
)

+
(
e n̂,

∂
∂t
n̂
)

=
d

dt

∫
Ω

ε

2
|∇φ|2 + p̂e p̂ + n̂e n̂ dx

= −
(
Dpe

p̂∇(p̂ + φ),∇(p̂ + φ)
)
−
(
Dne

n̂∇(n̂ − φ),∇(n̂ − φ)
)
.
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Energy Estimate for Log-Density Weak Form

Written in terms of the primitive variables p = e p̂, n = e n̂, we have∫
Ω

ε

2
|∇φ|2 + p̂e p̂ + n̂e n̂ dx =

∫
Ω

ε

2
|∇φ|2 + p log p + n log n dx

and

−
(
Dpe

p̂∇(p̂ + φ),∇(p̂ + φ)
)
−
(
Dne

n̂∇(n̂ − φ),∇(n̂ − φ)
)

= −
∫

Ω
Dpp|∇(log p + φ)|2 + Dnn|∇(log n − φ)|2 dx .

Which shows that the solution for the semi-discrete system
satisfies the same energy law as the continuous.
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A Fully Discrete Energy Estimate

For the fully discrete system, we consider Backward Euler
time-stepping:(e p̂k − e p̂k−1

∆t
, χ
)

+
(
Dpe

p̂k∇(p̂k + φk),∇χ
)

= 0,(e n̂k − e n̂k−1

∆t
, λ
)

+
(
Dne

n̂k∇(n̂k + φk),∇λ
)

= 0,(
ε∇φk ,∇ψ

)
−
(
e p̂k − e n̂k , ψ

)
= 0.

Subscripts denote the time-step.
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A Fully Discrete Energy Estimate

To maintain an analogous energy estimate, there are two
alternative schemes for mass conservation:(e p̂k − e p̂k−1

∆t
, 1
)

= 0 and
(e n̂k − e n̂k−1

∆t
, 1
)

= 0,

or (
e p̂k−1 ,

p̂k − p̂k−1

∆t

)
= 0 and

(
e n̂k−1 ,

n̂k − n̂k−1

∆t

)
= 0.
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A Fully Discrete Energy Estimate

We first consider the conservation scheme(e p̂k − e p̂k−1

∆t
, 1
)

= 0 and
(e n̂k − e n̂k−1

∆t
, 1
)

= 0.

For this discrete energy estimate, we must define an underlying
finite element space.
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A Fully Discrete Energy Estimate

Define e p̂(x ,t) =
∑m

k=1 bk(t)e p̂k (x): then for tk−1 < t ≤ tk ,

∂e p̂(t)

∂t
=

e p̂k − e p̂k−1

∆t

and

∂p̂(t)

∂t
=

∂

∂t
log

( m∑
k=1

bk(t)e p̂k (x)

)

=
1∑m

k=1 bk(t)e p̂k (x)

∂

∂t

m∑
k=1

bk(t)e p̂k (x) =
1

e p̂(t)

e p̂k − e p̂k−1

∆t
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A Fully Discrete Energy Estimate

Thus, the Nernst-Planck equation is(e p̂k − e p̂k−1

∆t
, p̂k + φk

)
=
(
∂
∂t
e p̂k , p̂k

)
+
(e p̂k − e p̂k−1

∆t
, φk

)
= −

(
Dpe

p̂k∇(p̂k + φk),∇(p̂k + φk)
)

and mass conservation is:(e p̂k − e p̂k−1

∆t
, 1
)

=
(
e p̂k ,

∂p̂k
∂t

)
= 0,

which combine into

∂
∂t

(
e p̂k , p̂k

)
+
(e p̂k − e p̂k−1

∆t
, φk

)
= −

(
Dpe

p̂k∇(p̂k + φk),∇(p̂k + φk)
)
.
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A Fully Discrete Energy Estimate

We have

∂
∂t

(
e p̂k , p̂k

)
+
(e p̂k − e p̂k−1

∆t
, φk

)
= −

(
Dpe

p̂k∇(p̂k + φk),∇(p̂k + φk)
)

∂
∂t

(
e n̂k , n̂k

)
−
(e n̂k − e n̂k−1

∆t
, φk

)
= −

(
Dne

n̂k∇(n̂k − φk),∇(n̂k − φk)
)

and(
ε
∇φk −∇φk−1

∆t
,∇φk

)
=
(e p̂k − e p̂k−1

∆t
, φk

)
−
(e n̂k − e n̂k−1

∆t
, φk

)
.
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A Fully Discrete Energy Estimate

We have

∂

∂t

[
ε

2

(
∇φk ,∇φk) +

(
e p̂k , p̂k

)
+
(
e n̂k , n̂k

)]
= −

(
Dpe

p̂k∇(p̂k + φk),∇(p̂k + φk)
)

−
(
Dne

n̂k∇(n̂k − φk),∇(n̂k − φk)
)

It is important to bear in mind that this only holds at discrete time
steps, tk .
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A Fully Discrete Energy Estimate

This implies that mass is exactly conserved over time and

max
k

{
ε

2

∣∣φ(tk)|21 +
(
e p̂(tk ), p̂(tk)

)
+
(
e n̂(tk ), n̂(tk)

)}
≤ ε

2

∣∣φ(0)|21 +
(
e p̂(0), p̂(0)

)
+
(
e n̂(0), n̂(0)

)
−
∑
k

∆t

[(
Dpe

p̂k∇(p̂k + φk),∇(p̂k + φk)
)

+
(
Dne

n̂k∇(n̂k − φk),∇(n̂k − φk)
)]

+ quadrature error
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A Fully Discrete Energy Estimate

The alternate mass conservation scheme requires(
e p̂,

∂
∂t
p̂
)
≈
(
e p̂k−1 ,

p̂k − p̂k−1

∆t

)
= 0.

We note that this mass conservation constraints, together with a
backward difference, yields an algebraic identity(e p̂k − e p̂k−1

∆t
, p̂k

)
+
(
e p̂k−1 ,

p̂k − p̂k−1

∆t

)
=
( p̂ke p̂k − p̂k−1e

p̂k−1

∆t
, 1
)
.
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A Fully Discrete Energy Estimate

The new identity along with same technique as the other
(semi-)discrete energy estimates give

ε

2

|φk |21 − |φk−1|21
∆t

+
( p̂ke p̂k − p̂k−1e

p̂k−1

∆t
, 1
)

+
( n̂ke n̂k − n̂k−1e

n̂k−1

∆t
, 1
)

≤ −
(
Dpe

p̂k∇(p̂k + φk),∇(p̂k + φk)
)

−
(
Dne

n̂k∇(n̂k − φk),∇(n̂k − φk)
)
.
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A Fully Discrete Energy Estimate

Summing over k gives

max
k

{
ε

2
|φk |21 +

(
p̂ke

p̂k , 1
)

+
(
n̂ke

n̂k , 1
)}

≤ ε

2
|φ0|21 +

(
p̂0e

p̂0 , 1
)

+
(
n̂0e

n̂0 , 1
)

−
m∑

k=1

∆t

[(
Dpe

p̂k∇(p̂k + φk),∇(p̂k + φk)
)

+
(
Dne

n̂k∇(n̂k − φk),∇(n̂k − φk)
)]
.
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Comparing the Estimates

The first scheme:
(
e p̂k−e p̂k−1

∆t , 1
)

= 0 conserves mass exactly and

obeys an energy law at each time step, though the final estimate
has an additional quadrature error term.

The second scheme:
(
e p̂, ∂

∂t p̂
)
≈
(
e p̂k−1 ,

p̂k−p̂k−1

∆t

)
= 0 has a

favorable energy estimate, though the mass is only approximately
conserved.
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Software Packages

We leverage the FEniCS and FASP software packages.

FEniCS Software Package:

Open source software, many collaborators

Translates weak form into linear systems

Interfaces with linear solvers

FASP Software Package:

Developed at Penn State

Fast solvers for linear systems

PSU Center for Computational Mathematics and Applications Slide 57/65, July 31, 2014



Overview Applications Discretization Solvers

Robust Discretization
Nonlinear Problem

Our goal is to develop a software that can solve the PNP system
for a wide variety range of parameters and applications with
provable stability and well-posedness properties.

The nonlinearity of the system is believed to provide stability; a
Newton solver is used since the energy is convex.

Convergence is presumed once the relative residual is below a
predefined threshold.
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Overview Applications Discretization Solvers

Robust Discretization
Nonlinear Problem

We take care to mention the case of modified ion fluxes or ion
sources, as in the case of electrokinetics or ionic recombinations.

We take the Frechét derivative with respect to any additional terms
along with the rest of the system to take a monolithic approach.
So,

~jp = −Dp

(
∇p + p∇φ

)
+ ~F (p, n, φ, u)

gives

δ~jp = −Dp

(
∇δp + δp∇φ+ p∇δφ

)
+

∂

∂ε

∣∣∣∣
ε=0

~F (p + εδp, n + εδn, φ+ εδφ, u + εδu).
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Robust Discretization
Nonlinear Problem
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Robust Discretization
Linear Problem

Currently, we employ a block G-S solver with a preconditioner on
the linearized system, which approximately solves PNP equations
given additional forces, updates the solution, then solves any
additional equations with p̂, n̂, φ fixed, updates the solution, and so
cycles back and forth.

In this way, we can precondition the PNP system and the additional
equations separately, while maintaining a monolithic approach.
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Robust Discretization
Linear Problem

In both primitive and log-density variables, the Frechét derivative
yields linear convection-dominated problems:

1

∆t

(
p, χ

)
+
(
αp∇p + ~βpp,∇χ

)
+
(
αp∇φ,∇χ

)
= (Rp, χ),

1

∆t

(
n, λ
)

+
(
αn∇n + ~βnn,∇λ

)
+
(
αn∇φ,∇λ

)
= (Rn, λ),(

ε∇φ,∇ψ
)
−
(
γpp − γnn, ψ

)
= (Rφ, ψ).

We use a quasi-Newton method, where an EAFE flux can be used
to approximate the flux terms on an element-by-element basis:

αp∇p + ~βpp ≈ Jp(p), αp∇p + ~βpp ≈ Jn(n).
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αn∇n + ~βnn,∇λ

)
+
(
αn∇φ,∇λ

)
= (Rn, λ),(

ε∇φ,∇ψ
)
−
(
γpp − γnn, ψ

)
= (Rφ, ψ).

We use a quasi-Newton method, where an EAFE flux can be used
to approximate the flux terms on an element-by-element basis:

αp∇p + ~βpp ≈ Jp(p), αp∇p + ~βpp ≈ Jn(n).
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Robust Discretization
Linear Problem

Figure: The Jacobian matrix
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Robust Discretization
Linear Problem

Preconditioned Jacobi or Gauß-Seidel can be used to solve the
linear system, though convergence depends on the conditioning of
the full linear system.

In addition to the off-diagonal blocks, another difficulty can arise
from the ε-Poisson block:(

ε∇φ,∇ψ
)
−
(
γpp − γnn, ψ

)
= (fφ, ψ).

Often, this is singularly perturbed: 0 < ε� 1.

A posteriori error estimators and mesh adaptivity can be used to
resolve φ.
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Thank you for your attention
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