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Introduction

This talk discusses classical models more comprehensive than
standard PNP models for ion transport.

• For the first part of the talk, we will review:
1 One-Fluid/Ionic transport model (Rubinstein model);
2 Hydrodynamic model (three-moment model: BBW).

• For the second part, we summarize results for a gating model,
and, separately, for some energy transport models.

• For the third part, we wish to consider briefly the challenging
model related to ‘crowded ions’, and discuss why standard
analysis does not appear to be successful for this model.

For parts one and two, we raise some questions: relevance of the
models and resolution of analytical issues. These models do not
include finite size particle potentials.
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Rubinstein Model for Nonlinear Electrophoresis

The ions are considered as points, and the fluid has no nematic
phases. The constitutive relations for the current densities extend the
usual relations by the inclusion of velocity convection terms
[I.Rubinstein, SIAM, 1990].

• v is the velocity of the electrolyte, and the anion and cation
concentrations are n, p, respectively.

• The current densities are (Generalized Ohm’s Law):

Jn = eDn∇n − eµnn∇φ −evn , (1)

Jp = −eDp∇p − eµpp∇φ +evp . (2)

Here, Jn, Jp are the anion and cation current densities, with
corresponding (constant) diffusion and mobility coefficients,
Dn, Dp, µn, µp, respectively. Displacement current is neglected.

• The charge modulus is e.
• φ is the electric potential.
• The Poisson equation describes the coupling.
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Enhanced PNP Subsystem

The enhanced PNP system is, with ǫ the dielectric:

∂n
∂t

−
1
e
∇· Jn = 0, (3)

∂p
∂t

+
1
e
∇· Jp = 0, (4)

E = −∇φ, (5)

∇· (ǫ∇φ) = e(n − p) + ρ0 (Poisson equation). (6)

• The Einstein relations are employed:
Dn = (kT0/e)µn, Dp = (kT0/e)µp.

• Here, T0 is the ambient temperature; k denotes Boltzmann’s
constant. ρ0 is the fixed charge, when present.

• Mixed boundary conditions are specified for n, p, φ.
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Navier-Stokes Subsystem

The velocity of the electrolyte is determined by the Navier-Stokes
equations (with volume force included):

m(vt + v· ∇v) − η∇2v = −∇Pf −e(p − n)∇φ , (7)

∇· v = 0. (8)

• Dirichlet velocity boundary condition is specified, which extends
the no-slip condition: it must be outward pointing.

• m is the constant (mass) density of the electrolyte;

• Pf denotes fluid pressure;

• η is the constant dynamic viscosity.
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Status of Results

• Computationally feasible for both the dynamic and steady cases.
There is an iteration map which switches:

1 The PNP part uses a Gummel type solution, and updates
concentrations and electric field.

2 The Navier-Stokes subsystem uses fixed point iteration based on
Oseen sub-problem solutions; the velocity and pressure are
updated. [(CJLS) J.Comp.Elect.7, 10-13 (2008)].

Theorem
(1) For the dynamic model, there is a local smooth solution theory for
the Cauchy problem, and a global weak solution theory for the initial
mixed boundary value problem. Concentrations are non-negative.
(2) There exists a weak solution to the steady problem under (relative)
assumptions on domain size. A maximum principle is derived for the
concentrations.

Joseph JeromeNorthwestern and George Washington Universi ties () 6 / 25



Status of Results

• Computationally feasible for both the dynamic and steady cases.
There is an iteration map which switches:

1 The PNP part uses a Gummel type solution, and updates
concentrations and electric field.

2 The Navier-Stokes subsystem uses fixed point iteration based on
Oseen sub-problem solutions; the velocity and pressure are
updated. [(CJLS) J.Comp.Elect.7, 10-13 (2008)].

Theorem
(1) For the dynamic model, there is a local smooth solution theory for
the Cauchy problem, and a global weak solution theory for the initial
mixed boundary value problem. Concentrations are non-negative.
(2) There exists a weak solution to the steady problem under (relative)
assumptions on domain size. A maximum principle is derived for the
concentrations.

Joseph JeromeNorthwestern and George Washington Universi ties () 6 / 25



Status of Results

• Computationally feasible for both the dynamic and steady cases.
There is an iteration map which switches:

1 The PNP part uses a Gummel type solution, and updates
concentrations and electric field.

2 The Navier-Stokes subsystem uses fixed point iteration based on
Oseen sub-problem solutions; the velocity and pressure are
updated. [(CJLS) J.Comp.Elect.7, 10-13 (2008)].

Theorem
(1) For the dynamic model, there is a local smooth solution theory for
the Cauchy problem, and a global weak solution theory for the initial
mixed boundary value problem. Concentrations are non-negative.
(2) There exists a weak solution to the steady problem under (relative)
assumptions on domain size. A maximum principle is derived for the
concentrations.

Joseph JeromeNorthwestern and George Washington Universi ties () 6 / 25



Highlights I

Model relevance:

1 The significance of fluid motion on current density is still an open
question in the range of physiological parameters.

2 It is known that a specified pressure drop of approximately one
atmosphere across a (VOC–K +) channel leads to enhanced
current densities at the ends of the channel.

3 The Rubinstein model may be more relevant when connected (as
in a bio-chip) to a transistor sensing device (Fromhertz model), or
in the study of electro-osmosis.
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Highlights II

Mathematical model:

1 A local smooth solution result for the Cauchy problem was
obtained via (equivalent of) evolution operators. [J,
Trans.Th.Stat.Phys.31, 333-366 (2002)]. The interval
of existence/uniqueness was shown stable under vanishing
viscosity η → 0.

2 There are several results for the initial/boundary-value problem.
• Rubinstein model:

[JS, Nonlinear Anal.71, e2487-e2497 (2009)].
[M.Schmuck, MMM Appl.Sc.19, 993-1015 (2009)].
[R.Ryham, ArXiv preprint (2009) ].

• Electro-osmosis: [D.Bothe et al., SIAM
J.Math.Anal.46, 1263-1316 (2014)].

3 For the steady problem, weak solutions have been demonstrated
[J, Nonlin.Anal.74, 7486-7498 (2011)] by a switching
fixed point map.

Joseph JeromeNorthwestern and George Washington Universi ties () 8 / 25



Highlights II

Mathematical model:

1 A local smooth solution result for the Cauchy problem was
obtained via (equivalent of) evolution operators. [J,
Trans.Th.Stat.Phys.31, 333-366 (2002)]. The interval
of existence/uniqueness was shown stable under vanishing
viscosity η → 0.

2 There are several results for the initial/boundary-value problem.
• Rubinstein model:

[JS, Nonlinear Anal.71, e2487-e2497 (2009)].
[M.Schmuck, MMM Appl.Sc.19, 993-1015 (2009)].
[R.Ryham, ArXiv preprint (2009) ].

• Electro-osmosis: [D.Bothe et al., SIAM
J.Math.Anal.46, 1263-1316 (2014)].

3 For the steady problem, weak solutions have been demonstrated
[J, Nonlin.Anal.74, 7486-7498 (2011)] by a switching
fixed point map.

Joseph JeromeNorthwestern and George Washington Universi ties () 8 / 25



Highlights II

Mathematical model:

1 A local smooth solution result for the Cauchy problem was
obtained via (equivalent of) evolution operators. [J,
Trans.Th.Stat.Phys.31, 333-366 (2002)]. The interval
of existence/uniqueness was shown stable under vanishing
viscosity η → 0.

2 There are several results for the initial/boundary-value problem.
• Rubinstein model:

[JS, Nonlinear Anal.71, e2487-e2497 (2009)].
[M.Schmuck, MMM Appl.Sc.19, 993-1015 (2009)].
[R.Ryham, ArXiv preprint (2009) ].

• Electro-osmosis: [D.Bothe et al., SIAM
J.Math.Anal.46, 1263-1316 (2014)].

3 For the steady problem, weak solutions have been demonstrated
[J, Nonlin.Anal.74, 7486-7498 (2011)] by a switching
fixed point map.

Joseph JeromeNorthwestern and George Washington Universi ties () 8 / 25



General Comments on the Hydrodynamic Model

• In 1970, Bløtekjaer introduced a moment model for
semiconductors with two energy valleys, using the Boltzmann
equation as the basic kinetic equation (hydrodynamic scaling).

• The model is consistent with extended thermodynamics, in the
sense that that the Maxwell-Boltzmann distribution is a stationary
distribution for the entropy functional, subject to the three derived
moment constraints.

• Later choices of the heat flux, and the approximation of collision
terms are seen as ‘ad hoc’, however.

• The moment model, together with the choice of these
approximations is called the Bløtekjaer-Baccarani-Wordeman
model (BBW).

• There is a very clear discussion of the model in the thesis of Cory
Hauck (2006), written under the direction of C. David Levermore.
Several of Levermore’s contributions to higher moment models
(1990s) are explained in the thesis.
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Bløtekjaer-Baccarani-Wordeman Model

This model views the charges as a compressible fluid. Its main
features are the following (specialized to one carrier).

• It is based upon three moments of a kinetic equation (Boltzmann
equation), leading to four equations (including the Poisson
equation) for fifteen unknowns.

• The unknowns are moments of a numerical distribution function: n
(carrier density); v (carrier velocity); P (symmetric pressure
tensor); q (heat flux); w (energy density); and, φ (electric
potential).

• Constitutive relations are chosen for P, q, w in order to close the
moment system.

• P is assumed isotropic, of the form Pij = Pδij , where P satisfies
the ideal gas law.

• q satisfies the Fourier law, with a concentration-dependent
conductivity (Wiedemann-Franz law).

• w is defined by an internal energy component and a parabolic
band kinetic energy component.
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Expressions for Heat Flux and Relaxation

• Wiedemann-Franz law: κ = κ0n. As derived, κ0 includes an
adjustable parameter, which varies between 5/2 and 0.

• Heat flux law: q = −∇(κT ).
• The momentum and energy equations possess collision

moments; they incorporate friction, via relaxation times (τp, τw ).
The relaxation approximations of the collision moments are:

Cp = −nv/τp,

Cw = −
w − w0

τw
,

τp = cp/T ,

τw =
τp

2
+ cw

TT∗

v2
s (T + T∗)

.

• cp, cw are physical constants; vs is the saturation velocity. T∗ is the
equilibrium temperature.
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System: Non-conservative Friedrichs Form

For the dependent variables n, v, and T , the non-conservative form of
the system is helpful for analysis:

nt + v· ∇n + n∇· v = 0,

vt + (v · ∇)v +
k
m
∇T +

kT
mn

∇n = −
e
m

E −
v
τp

,

Tt −
κ0

n
∇· (n∇T )+v· ∇T +

2
3

T∇· v = −
2m|v|2

3k

(

1
2τw

−
1
τp

)

−
T − T∗

τw
.

The system admits of a symmetrizing matrix multiplier, in the sense of
Friedrichs, and can be analyzed in this manner. The undefined
constants are: k (Boltzmann’s constant); m (carrier mass).
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Status of Results and Model Utility

• The BBW model is an incompletely parabolic system.
• It admits shocks, but they tend to be less sharp than those of

Euler systems (Gardner).
• The steady model has a so-called sonic region: v2 < kT/m.
• The Cauchy problem has been shown to have local smooth

solutions [VLSI Design 15, 729-742 (2002)].
• The model has been applied to the simulation of K + channels

[(CEJS) Biophysical J.69, 2304-2322 (1995)]. The
predicted velocity was considerably smaller than the nominal PNP
prediction.

• The model has the limitation of not incorporating heat exchange
with the protein.

• In the energy relaxation, a significant parameter is the saturation
velocity; its increasing value moves temperature to the PNP
regime.

• Shock capturing methods are best suited for the hyperbolic part of
the system; ENO was used in the 1995 paper cited above.
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Effect of Saturation Velocity vs
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Figure: The solid curve gives the temperature for vs = 5 × 10−6, the dotted
curve is for vs = 10−5, the short-dashed curve is for vs = 2 × 10−5, and the
long-dashed curve is for vs = 5 × 10−5. The decrease of temperature
coincides with efficient damping of energy exchange. τw depends inversely
on v2

s . The units of vs are µm/ps. From [CEJS].
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Global Solutions and Relaxation Limit

It is natural to ask the following two questions:

1 Can one strengthen the local existence result cited earlier?

2 Can one establish analytically a drift-diffusion limit as relaxation
times tend to zero?

‘Yes’ to both questions in one dimension for electrically neutral
boundary conditions for φ. [(CJZ) Chap.9, Modelling and
Computation for Applications in Mathematics,
Science, and Engineering, Oxford Press (1998)].

1 For sufficiently small initial data, and sufficiently small relaxation
times, there is a global solution which decays in time to a constant
steady state for density, velocity, and temperature.

2 When these solutions are scaled by τp, τw , including time scaling,
the scaled density and electric field converge to solutions of a time
dependent drift diffusion equation as the relaxation times tend to
zero.
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Methodology for Incompletely Parabolic Systems

The results cited for the Cauchy problem (both Rubinstein and BBW
models) depend on non-parabolic methods. This permits:

• The time interval for smooth solutions of the BBW model remains
invariant as κ → 0.

Methods for parabolic problems typically experience blow-up when ‘de
facto’ diffusion is eliminated from the system.

• The underlying theory was developed by Kato in the 1970s, and
uses semi-groups of operators.

• The key idea is that the semi-groups are generated on a ground
space X , but remain invariant on a smooth (relative to X ) space Y .

• The solution may be continued as long as the invariance on Y
persists.

• This does not require diffusion.

Kato’s theory is discussed in chapters 6–7: [(J) Approximation
of Nonlinear Evolution Systems (1983)].
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Remarks on the Energy Transport System

The model is discussed in the monograph of Ansgar Jüngel, including
references to analytical results and the derivation (Transport Equations
for Semiconductors, Lecture Notes in Physics 773 Springer, 2009).

1 It is a two-moment model, including density and energy moments
(diffusion scaling).

2 If entropic variables µ/T and −1/T are used, and thermodynamic
forces Xj are defined in terms of combinations of gradients, then
the thermodynamic fluxes,

Ji =
1

∑

j=0

DijXj , i = 0, 1,

satisfy Onsager’s principle and the entropy constraint.
3 The matrix (Dij) is symmetric and positive definite.

The ET model was seen by some as an alternative to the
hydrodynamic model. Simulations indicated that undesirable features
of the HD model were eliminated, such as velocity overshoot.
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A Gating Model

• An adaptation of the PNP model was introduced for the infinite
channel in [(GJE) SIAM J.Appl.Math.61, 792-802
(2000)].

• The model is capable of producing a traveling wave profile of
flat-top peaks of varying width for the density of a cation, based
upon a quantitative representation for protein charge as a function
of current and of electric field.

• The phase plane portrait produces heteroclinic orbits, moving
around two-fixed points, interpreted as the open and closed states
of the channel.

• The infinite channel can be analyzed by a traveling wave
approach, combined with a stochastic term, which serves to push
the system off the fixed point states in the phase plane.

• The finite channel was simulated in [(GJE)
J.Theoret.Biol.219, 291-299 (2002)].
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Phase Space Orbits

0 1 2 3 4 5 6 7
p

-2

-1

0

1

2

3

4

5

E

Figure: Heteroclinic orbits in phase space (p/p, E/E) for different initial
conditions p0, E0. The line of fixed points is also shown. Reproduced from
[GJE].
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Flat Top Time Profiles
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Figure: Solution p/p vs. τE with random noise added every thousandth
timestep on average. Reproduced from [GJE]
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System for the Deterministic Finite Channel

For a finite channel located on [a, b], transporting a cation carrier:

∂p
∂t

+
1
e

∂j
∂x

= 0,

∂

∂x
(εE) = e(p − ρ0) = ρ(p, E),

The net charge density e(p − ρ0), combining the mobile ions with the
charge on the protein, is expressed by:

ρ(p, E) = −ce(p − p̄)

∣

∣

∣

∣

E
Ē

− 1

∣

∣

∣

∣

,

where c, p̄, Ē are positive constants; p̄, Ē are reference levels. The
formula was derived by Gardner, via a Boltzmann factor [pp. 794–795].
Boundary and initial conditions are:

p(a, t) = pa(t), p(b, t) = pb(t), E(a, t) = Ea(t), φ(b, t) = φb(t),

p(x , 0) = p0(x).
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Results and Remarks

• The minus sign is critical for gating. Simulations show that
rectangular pulses are not observed if ρ 7→ −ρ for positive ions;
there is a type of mirror symmetry for negative charges, and in this
case one obtains rectangular pulses for ρ 7→ −ρ and negative Ē .

• The results depend strongly on the derivation of invariant region
principles. The following hypothesis is directly tied to this fact:

• The supremum norms of pa, pb, p0 do not exceed p̄.
• The article [Dis.Cont.Dyn.Sys.17, 2465-2482 (2012)].

derives existence and uniqueness, and establishes that p̄ is a
bound for p when the data satisfy this condition. This corresponds
to the channel state when the field is increasing.

• It is an open question as to the case when the field is decreasing.
• Is there a connection to binding and unbinding of ions? [(Siwy,
Powell, Petrov, Kalman, Trautmann, Eisenberg)
Nanoletters 6, 1729-1734 (2006)].
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Crowded Ions Model

By including dissipation proportional to the square of the relative
carrier velocity, [(Hsieh, Hyon, Lee, Lin, Liu), (2013)]
have derived an extended PNP model and proven a local
existence/uniqueness result, including nonnegative properties for the
concentrations cn, cp. The system reads,

∂cn

∂t
= ∇·

[

1
1+cn+cp

(

(1 + cn )(∇cn − cn∇ φ ) + cn )(∇cp + cp∇ φ )
)

]

∂cp

∂t
= ∇·

[

1
1+cn+cp

(

(1 + cp )(∇cp + cp∇ φ ) + cp )(∇cn − cn∇ φ )
)

]

∇2 φ = cn − cp .

Initial and (no flux) boundary conditions are specified for the
concentrations; a Robin boundary condition for the potential. The
system includes the boxes; if a fixed point mapping is defined for
existence, the truncated input is included in the boxes, and one solves
the linear parabolic problem for the output.
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Non-Coerciveness

The key property missing in the spatial part of the operator is
coerciveness; this makes the analysis very challenging. The
non-coerciveness of the system is induced by the quadratic form,

A|∇cn|
2 − (A + B)|∇cn||∇cp| + B|∇cp|

2,

where each term is a function of space and time. The functions A and
B are derived from the input (boxes). It can be shown that a sharp
lower bound is given by,

−
1
4
|A − B|(|∇cn|

2 + |∇cp|
2)

which indicates that this expression can be negative. This explains the
lack of the coerciveness property.
One does have Galerkin coerciveness.
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Conjecture and Comments

A preliminary analysis suggests the following conjecture.

• Rothe’s method, combined with a spatial Galerkin method on
each time subinterval, leads to a convergent space-time sequence
for the linear output problem.

1 This is a fully discrete characterization of approximation of the
linear problem.

2 This is preliminary to the local fixed point analysis.

3 Are there any biophysical implications of the fact that the result is
local?

4 This represents a new frontier for PNP modeling!
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