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Intro

Motivation 1: lon Exchange Processes

Regeneration of exhausted (Cu?*-loaded) ion exchange pellets
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Intro
Regeneration of Single Pellets
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experiment: evolution of regeneration front radius versus time
@ hindered diffusion inside the pellet (resin)

@ radius evolution of single pellet can be describe with/without
electrical forces

@ hindrance factors: 0.072 for Fick, 0.14 for Nernst-Planck fluxes
corresponding H*-diffusivities: 0.67 x 107° m? s (Fick),
1.3 x 1072 m? s=! (Nernst-Planck)



Intro

Regeneration of Single Pellets

Simulated concentration profiles inside the pellet:
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Intro

CSTR Bulk Concentration Dynamics

Bulk concentrations during regeneration process:
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Intro

Motivation 2: Mass Transfer in G/L-Systems

Dissolution of CO, bubbles
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Dissolution of a freely rising carbon dioxide bubble in water. !
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Dissolution of a CO, Taylor bubble in a micro-channel 2




Intro

Chemisorption of CO, in NaOH solution

Simplified situation near interface:

(0% Cin R O)° ionic species:

v=(0,v) Na',OH ,CO; H'

advection

\ \
P Q

» . A mass transfer:
/Q_ // \\,\ Cr <::> diffusion o aq
[ K , CO¢ — Co¥
a— reaction 2 :

\‘ / migration chemical reaction:
| o7 |

r ) CO% +20H — CO> +H,0

.

Preliminary computations: mass transfer results w/o electromigration for
CO» in acidic solutions can be 10-20% off!




Intro

Chemisorption of CO, in NaOH solution

Simulated concentration profiles:




Intro

DNS of Mass Transfer with Volume Effects

Simulated dissolution of a CO, Taylor bubble

Shrinking of a Taylor bubble in a water/glycerol mixture. Left: Initial setup. Right: Concentration fields at
t =0.015,0.035,0.055,0.075,0.09s



Intro

DNS of Conjugated Mass Transfer

Simulated mass transfer at a free CO, bubble

cg cs H
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Dissolved air (N2, Oy) from aqueous phase is transfers into the bubble



Intro

Motivation 3: Cross Diffusion Effects

Classical experiment by Duncan and Toor 1962 on ternary diffusion
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Intro
Anomalous Diffusion

Typical phenomena in ternary systems

osmotic
diffusion .
diffusion :
barrier i
- “normal”

- diffusion

-Vx,

“normal” reverse
diffusion diffusion



TIP

© T.I.P. - Fickean vs. Maxwell-Stefan form



TIP

Chemically Reacting Fluid Mixture

Fluid composed of N chemically reacting components A, ..., Ay
Ngr chemical reactions between the A;:

A+ oAy =BTA+.. . +BAy fora=1,... Ng

with stoichiometric coefficients o, 87 € Ng



TIP

Chemically Reacting Fluid Mixture

Fluid composed of N chemically reacting components A, ..., Ay
Ngr chemical reactions between the A;:

A+ oAy =BTA+.. . +BAy fora=1,... Ng

with stoichiometric coefficients o, 87 € Ng
Let R, = Rf — R® be the (molar) rate of reaction a and v? := 37 — .
Then

= Z MviR, with M; the molar mass of species A;

a=1

is the total rate of change of mass of component A;

Mass conservation in individual reactions: >, Mjy? =0 Va



TIP

Thermodynamics of Irreversible Processes (TIP)

Throughout this talk: v denotes the barycentric velocity of the mixture

Classical mixture balances in T.I.P. (cf. deGroot, Mazur):

partial mass balances:

Ocoi +div (oiv +ji) =ri
total momentum balance:

O(ov) + div (ov ® v — S) = b; ob=>".0ib;
internal energy balance:

O¢(0€) + div (vev +q) = Vv : S + om; om =) ji-bj

Definition of internal energy: pe = peiot — %QVQ




TIP

Thermodynamics of Irreversible Processes (TIP)

Throughout this talk: v denotes the barycentric velocity of the mixture

Classical mixture balances in T.I.P. (cf. deGroot, Mazur):

partial mass balances:

Oroi +div(oiv+ji)=r >,ji=0 & dwo+div(pv) =0
total momentum balance:

Ot(ov) + div (ov @ v — S) = gb; ob=>".0ib;
internal energy balance:

O¢(0€) + div (vev +q) = Vv : S + om; om =) ji-bj

Definition of internal energy: pe = peiot — %QVQ




TIP

The 2"d Law: Entropy Inequality

Entropy production'
TIP __ Hi f 1 irr
(TP —q-V= +Z V———)+7S D——ZRA

S=—pl+S"™ ST:D=S5°D°+Ndivv
Notation:
e T denotes the (absolute) temperature
e 4; denotes the chemical potentials
e S° denotes the traceless part of S
e D° denotes the symmetric, traceless part of Vv
e [1 denotes the dynamic pressure (or, irreversible pressure part)

o A,:=>,niMiv} are the chemical affinities.



TIP

The Phenomenological Equations

Standard closure: fluxes linear in the (so-called) driving forces
= quadratic form

heat flux and diffusive fluxes:

a = LoV - S5 L0i<vw — +(bi — bN))

o= LoVE - S (VA - L~ b)) =1 N1

j=



TIP

The Phenomenological Equations

Standard closure: fluxes linear in the (so-called) driving forces
= quadratic form

heat flux and diffusive fluxes:

a = LoV - S5 L0i<vw — +(bi — bN))

LoVE = L5 L (VY - L(by—by)) =1, N -1

Ji =

viscous stress, dynamic pressure and chemical reaction rates:
S° =LD° 0N =—ldivye—>", haA,, Ry, = —lodivv —)", LpAp

Entropy inequality: [L;j] and [/,5] positive semi-definite and L > 0



TIP

The Phenomenological Equations

Standard closure: fluxes linear in the (so-called) driving forces
= quadratic form

heat flux and diffusive fluxes:

a = LoV - S5 L0i<vw — +(bi — bN))

LoVE = L5 L (VY - L(by—by)) =1, N -1

Ji =

viscous stress, dynamic pressure and chemical reaction rates:
S° =LD° 0N =—ldive—>)", h.A,, Ry, = —lodivv =", LpAp
Entropy inequality: [L;j] and [/,5] positive semi-definite and L > 0

Onsager-Casimir reciprocal relations: [Lj], [/.s] symmetric, but hh, = —/.o



TIP

Remarks on Classical TIP

@ Curie's principle: driving forces couple only to fluxes of the same
tensorial rank

is a rigorous consequence of material frame indifference for linear
constitutive relations
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Remarks on Classical TIP

@ Curie's principle: driving forces couple only to fluxes of the same
tensorial rank

is a rigorous consequence of material frame indifference for linear
constitutive relations

@ Onsager’s reciprocal relations: [L;] and [l,5] are symmetric

relies on microscopic theory; only derived for rates (ODE case),
not for transport coefficients

some couplings are anti-symmetric: Onsager-Casimir relations



TIP

Remarks on Classical TIP

@ Curie's principle: driving forces couple only to fluxes of the same
tensorial rank

is a rigorous consequence of material frame indifference for linear
constitutive relations

@ Onsager’s reciprocal relations: [L;] and [l,5] are symmetric

relies on microscopic theory; only derived for rates (ODE case),
not for transport coefficients

some couplings are anti-symmetric: Onsager-Casimir relations
@ Some disadvantages of classical TIP / Fickean form:
- the L;; show complex nonlinear dependence on the composition
- the linear closure for chemical reaction rates is not appropriate
- in recent applications different species can experience different BCs



TIP

The Maxwell-Stefan Equations

Alternative approach to multicomponent diffusion:
assume local balance between driving and friction forces:
xidi — xiJ;
di=—> fixix(vi—v)=-) F=—
— — C Bj
JF JFi
d; the thermodynamic driving forces, —d; = Zevpue! + 2i2ivp — i (b; —b)
¢ = ), ¢ total concentration, x; = ¢;/c molar fractions, J; = j;/M;

molar mass fluxes; Bj; = 1/f; the Maxwell-Stefan diffusivities; in many
cases: Dj; nearly constant or affine functions of the composition

Origin of the Maxwell-Stefan Equations:

@ James Clerk Maxwell: On the dynamical theory of gases,
Phil. Trans. R. Soc. 157, 49-88 (1866).

@ Josef Stefan: Uber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen,
Sitzber. Akad. Wiss. Wien 63, 63-124 (1871).



TIP

Maxwell-Stefan Equations - Criticism

Problems and open issues:

@ rigorous derivation of the Maxwell-Stefan equations,
including the thermodynamic driving forces

@ proper coupling to the mass and momentum balance
@ extension to non-simple fluid mixtures

@ extension to chemically reacting fluid mixtures

Aim: thermodynamically consistent mathematical modeling of
reacting fluid mixtures, guided by rational thermodynamics

Jjoint work with Wolfgang Dreyer (WIAS, Berlin)
Preprint — arXiv:1401.5991v2 [physics.flu-dyn]



TIP

Maxwell-Stefan Equations - Derivation

Four different derivations of the Maxwell-Stefan equations:

I. Employing only the barycentric momentum balance:

@ naive balance of forces
ad hoc; mixes continuum balances with kinetic theory

@ standard T.I.P. with "resistance form” of the closure

consistency with kinetic theories only achievable via
thermo-diffusive terms
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Four different derivations of the Maxwell-Stefan equations:

I. Employing only the barycentric momentum balance:

@ naive balance of forces
ad hoc; mixes continuum balances with kinetic theory
@ standard T.l.P. with "resistance form” of the closure
consistency with kinetic theories only achievable via

thermo-diffusive terms

Il. Employing partial momentum balances:

e diffusive approximation using time-scale separation

not applicable with chemical reactions

@ entropy invariant model reduction



TIP

Maxwell-Stefan Equations - Derivation

Four different derivations of the Maxwell-Stefan equations:

I. Employing only the barycentric momentum balance:

@ naive balance of forces
ad hoc; mixes continuum balances with kinetic theory
@ standard T.l.P. with "resistance form” of the closure
consistency with kinetic theories only achievable via

thermo-diffusive terms

Il. Employing partial momentum balances:

e diffusive approximation using time-scale separation

not applicable with chemical reactions

@ entropy invariant model reduction



Balances

© Partial Balances and Constitutive Modeling Framework



Balances
Partial Balances of Mass, Momentum and Energy

Continuum mechanical balances of the fluid components A;
mass : 0;0; + div (giv;) = r;
mom. : 8t(g,-v,-) + div (Q,'V,' XV — S,) =f; + oib;
Qi Qi

energy : O:(ojei + Ev’?) + div ((eiei + EV,?)V; —v;S;+q;) =1l +oib; - v;



Balances
Partial Balances of Mass, Momentum and Energy

Continuum mechanical balances of the fluid components A;
mass : 0;0; + div (giv;) = r;
mom. : 8t(g,-v,-) + div (Q,'V,' XV — S,) =f; + oib;
Qi Qi 2

energy : 0:(oje + Ev,?) +div ((ojei + Ev,-)v,- —v;Si+q;) =i + 0ib; - v;

mass conservation: >iri=0
momentum conservation: > fi =0
energy conservation: >ili=0

Note: power due to external forces is g;b; - v;, while internal forces
(mechanical and chemical interactions) contribute to the /;



Balances
Balance of internal energy

Partial balance of internal energy:

8t(g,-e,-) + diV(g;e;V,' + q,-) =Vv;:S;i+1—v;- (f,' — %r,-v,-))

Alternative definition of internal energy:

oe =Y, pie total internal energy = o(etor — 2V2) — Y., S0iu?
P; = f%tr(S,-) partial pressures, P; = p; + I; with [; =0

q:=> ;(q; + (eiei + pi)u;) mixture heat flux, p:=>", p;



Balances
Balance of internal energy

Partial balance of internal energy:

8t(g,-e,-) + diV(g;e;V,' + q,-) =Vv;:S;i+1—v;- (f,' — %r,-v,-))

Alternative definition of internal energy:

oe =Y, pie total internal energy = o(etor — 2V2) — Y., S0iu?

P; = f%tr(S,-) partial pressures, P; = p; + I; with [; =0

q:=> ;(q; + (eiei + pi)u;) mixture heat flux, p:=>", p;

mixture internal energy balance:
O¢(0€e) +div (gev +q) = —pdivv+ >, Vv; : S?
— Zi u; - (f,' — riv; + %r,-u,- — Vp,')



Balances
Constitutive Modeling

Variables: ¢1,...,0n, V1,...,VN, 0€

class-Il model requires constitutive equations for:

Raa sia f,-—r,-v,-7 q

Decompose the partial stresses as S; = —P;1 + S? = —p;l + Si™

We consider non-polar fluids, hence the stresses S; are symmetric.



Balances
Constitutive Modeling

Variables: ¢1,...,0n, V1,...,VN, 0€

class-Il model requires constitutive equations for:
Ra,  Siy fi—rnvi, q
Decompose the partial stresses as S; = —P;1 + S? = —p;l + Si™
We consider non-polar fluids, hence the stresses S; are symmetric.
Universal Principles:
@ material frame indifference

@ entropy principle (second law of thermodynamics)

Notation: any (local) solution of the PDE-system is called
thermodynamic process



The Entropy Principle

The entropy principle comprises the following postulates:

1) There is an entropy/entropy-flux pair (¢s, ®) as a material
dependent quantity, satisfying the principle of material frame
indifference (gs is an objective scalar, ® is an objective vector).



The Entropy Principle

The entropy principle comprises the following postulates:

1) There is an entropy/entropy-flux pair (¢s, ®) as a material
dependent quantity, satisfying the principle of material frame
indifference (gs is an objective scalar, ® is an objective vector).

2) The pair (ps, ®) satisfies the balance equation
Ot(0s) + div (psv + @) = ¢,
where the entropy production ( satisfies

¢ >0 for every thermodynamic process.

Equilibria are characterized by { = 0.



The Entropy Principle

3) Every admissible entropy flux is such that the entropy production
becomes a sum of binary products according to

C = ZNum’

where A,,, P, denote factors of negative, resp. positive parity.



The Entropy Principle

3) Every admissible entropy flux is such that the entropy production
becomes a sum of binary products according to

C = ZNum’

where A,,, P, denote factors of negative, resp. positive parity.

The parity of a time-dependent quantity characterizes its behavior under
time reversal in the unclosed balance equations. Resulting rule:

[-] contains the time units s* with k even = positive parity

[-] contains the time units s with k odd = negative parity

Note: parity replaces the classical concept of "flux x driving force”, since
the latter is misleading!



The Entropy Principle

4) Each binary product in the entropy production describes a
dissipative mechanism which has to be introduced in advance.

Extended principle of detailed balance:

NnPm >0 for every m and any thermodynamic process.



The Entropy Principle

4) Each binary product in the entropy production describes a
dissipative mechanism which has to be introduced in advance.

Extended principle of detailed balance:

NnPm >0 for every m and any thermodynamic process.

Note: the specific form of the decomposition into binary products is not
unique and has to be chosen as part of the modeling. Even the number
of dissipative mechanisms is not fixed, but can be changed.

This non-uniqueness is the basis for:

e introduction of cross-effects via entropy-neutral mixing

e improvement of classical TIP-models



Balances
Consequences of the extended principle of detailed balance

@ the closure between the co-factors in the entropy production,
C=>NmPmn=:(N,P),

decouples. In a linear (in Ny, Pp,) constitutive theory, this enforces
a block-diagonal closure.

Note: NP, refers to a single mechanism, but may itself be a sum.



Balances
Consequences of the extended principle of detailed balance

@ the closure between the co-factors in the entropy production,
C=>NmPmn=:(N,P),

decouples. In a linear (in Ny, Pp,) constitutive theory, this enforces
a block-diagonal closure.

Note: NP, refers to a single mechanism, but may itself be a sum.

@ structure of entropy production as { = Y N;Pp, is not unique
In particular: mixing of different fluxes or forces is possible!

¢=(AN,BP)=(N,ATBP)=(N,P) VYN,P = A~!=RBT
the diagonal closure implies cross-effects with Onsager symmetry:

AN := ABP with A = diag(\;) >0 = N:= BTABP



Balances

Example: Entropy Inequality of T.I.P.

the strengthened entropy principle can be used in T.l.P. !
(TP = qVi+ N e (VE-8)+ 180 Do LNdive — 1 30 R A,

Consider a coupling between volume variations and chemical reactions
Parity of the factors I, divv, R,, A,: +1, -1, -1, +1
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the strengthened entropy principle can be used in T.l.P. !
(TP = qVi+ N e (VE-8)+ 180 Do LNdive — 1 30 R A,

Consider a coupling between volume variations and chemical reactions
Parity of the factors I, divv, R,, A,: +1, -1, -1, +1

Cross-effects via entropy neutral mixing:
divv -+ M RA, = div (M+ XN LA + 30 (R, — Ldivv) A,
diagonal closure (with A > 0, [L,p] pos. def., symmetric):

dive =AM+ XM LA, Ry — Ldive = X0%, LopAs



Balances

Example: Entropy Inequality of T.I.P.

the strengthened entropy principle can be used in T.l.P. !
(TP = qVi+ N e (VE-8)+ 180 Do LNdive — 1 30 R A,

Consider a coupling between volume variations and chemical reactions
Parity of the factors I, divv, R,, A,: +1, -1, -1, +1

Cross-effects via entropy neutral mixing:
divv T+ 30 RoA, = divy (M+ 05 LA,) + S0 (R, — Ldivv) 4,
diagonal closure (with A > 0, [L,p] pos. def., symmetric):
dive =AM+ XM LA, Ry — Ldive = X0%, LopAs
Hence the apparent anti-symmetry (Onsager-Casimir relations):

M=A"dive — XM LA, Ry = Ldive + Y08 LapAp



The Entropy Principle

For the considered fluid mixture class we also postulate:

5) The dissipative mechanisms are: multi-component diffusion,
heat conduction, chemical reaction, viscous flow.



The Entropy Principle

For the considered fluid mixture class we also postulate:

5) The dissipative mechanisms are: multi-component diffusion,
heat conduction, chemical reaction, viscous flow.

6) The entropy density is given as

os = h(oe, 01, ..., on)
with a strictly concave material function h.

The absolute temperature T and chemical potentials u; are defined

as
1 Oos pi  Oos

T Oge’ T o




Balances
Entropy Principle evaluated

Evaluation of the entropy principle:
Q entropy flux: o=3 5, g
@ Gibbs-Duhem equation:  p+ o) — >, 0jpi =0

@ restrictions to constitutive equations for dissipative mechanisms:



Balances
Entropy Principle evaluated

Evaluation of the entropy principle:
Q entropy flux: o=3 5, g
@ Gibbs-Duhem equation:  p+ o) — >, 0jpi =0

@ restrictions to constitutive equations for dissipative mechanisms:

Entropy inequality, i.e. ( > 0 with the entropy production rate
(= =+ X0 Reda + £35S 1D+ X0 V3
—>ui (Q/V“% + +(fi = rvi + 3riuj — Vpi) — (oiei + Pi)v%)

I = M1 +S5, ie. S; = —pil + S



Nonreactive

@ Closure for Non-Reactive Multicomponent Fluids



Nonreactive

Nonreactive fluids without viscosity

entropy production without viscosity, no chemical reactions:
C=-Xu (V5 ++(6-Vp) = hVE)+ a7

with partial enthalpies h; := g;e; + p;.



Nonreactive

Nonreactive fluids without viscosity

entropy production without viscosity, no chemical reactions:
C=-Xu (V5 ++(6-Vp) = hVE)+ a7

with partial enthalpies h; := g;e; + p;.

With short-hand notation:

CZ_Z/UI' (B/“F%f/)“v‘z,q’V%

with 1 i
i

B,‘Z: iV— — — ,‘—h,‘ e

oN'Z — ZVpi— hV =

The Gibbs-Duhem equation implies >, B; = 0!



Nonreactive
Exploiting the second law

The interaction terms f; necessarily satisfy

— ZlNzl u; - (B,‘ + %f,‘) >0 and ZlNzl B; =0, Z;N:1 fi=0

Hence
=3 (wi — up) - (B,- + %fi) >0,

with build-in constraints.



Nonreactive
Exploiting the second law

The interaction terms f; necessarily satisfy

— ZlNzl u; - (B,‘ + %f,‘) >0 and ZlNzl B; =0, Z;N:1 fi=0

Hence
=3 (wi — up) - (B,- + %fi) >0,

with build-in constraints.
The standard linear Ansatz for B; + %f,- is
B+ 1f = — =1 Tij (uj —up) (fori=1,....,N—1)

with a positive (semi-)definite matrix [7;].



Nonreactive
Closure for thermo-mechanical Interactions

Extension to N x N format (positive semi-definite):

N— . N— .
m=—Yrg (=1 N=1), my=-Y/77 (j=1,...,N)
Straight forward computation:

Bi+ +fi = — L 7y (w —un) = = 2 7y (uy — wy)



Nonreactive
Closure for thermo-mechanical Interactions

Extension to N x N format (positive semi-definite):
m=—Shg Ty (=1 N=1), mw=—31""r (=1....N)
Straight forward computation:

Bi+ 1fi=—> " mi(u—un) = -1, 7 (u—up)
Assumption of binary type interactions: (C. Truesdell)

7 = 7ij(T,0i,0;)) = 0 if oi = 0+ or gj — 0+

This implies symmetry of [r;] ! (evaluate }; ; 7 (u; — u;) = 0)

= 7= —fyoio; fori# jwith fy =£; >0, f; = f;(0i, 05, T).



Nonreactive

Momentum Balance with Thermo-mechanical Interactions

partial momentum balances:

i(Oevi +vi - Vv;) + Vp; = f; + oib;

fi=—0iTVE +Vpi+ hiTVE =T Y, fioi0i(vi — v))



Nonreactive

Momentum Balance with Thermo-mechanical Interactions

partial momentum balances:

i(Oevi +vi - Vv;) + Vp; = f; + oib;

fi=—0iTVE +Vpi+ hiTVE =T Y, fioi0i(vi — v))
class-1l momentum balances (no viscosity, no chemical reactions):
0i(0evi +vi - Vvi) = —0; TV + ThiV + — T Y, fj0i0i(vi — vj) + oib;



Nonreactive

Momentum Balance with Thermo-mechanical Interactions

partial momentum balances:

i(Ovi +v; - V) + Vp; =f; + o;b;
with ¢ ( ‘ ) P ©
fi=—0iTVE +Vpi+ hiTVE =T Y, fioi0i(vi — v))
class-1l momentum balances (no viscosity, no chemical reactions):
g;(@tv,- —+v; - VV,') = —Qi TV% -+ Th,V% — TZJ ﬁjg,-gj(v,- — VJ') + oib;

special case of isothermal conditions:

0i(Oevi +vi - Vvi) = —0;V i — T X, f0i0j(vi — vj) + oib;
special case of a simple mixture:  oy)(T,p1,...,0n) = >, 0ii(T, 0i)
0i (Oevi +vi - V) = —=Vp; — T3, fioioj(vi —vj) + oib;



Nonreactive

Partial Momentum Balances due to Stefan

SITZUNGSBERICHTE

-

JIATHENATISCH - NATURWISSENSCHAFTLICHEN  (1ASSE

PE® KAISERLICHEN

AKADEMIE DER WISSENSCHAFTEN.

LXIIL BAND. II. ABTHEILUNG.
JarraANae 1871, — Herr I p1s V.

(it 18 Tafetn und 25 Holsschnitten,)

WIEN.
AUS DER K. K. 1O UND STAATSDEUCKEREL

IN COMMISSION BEI CARL BEROLD'S SOHN,

BECHMINOLER DER XATIERLICHEN AXADENIR DER WISSENSCKAITEX.

RECLEN

Uber das Gleichgewicht und die Bewcgung, insbesondere die
Diffusion von Gasgemengen.

Vou J. Stefan,

e der hate. dbadonis der Wisensehafien

wirklicem i

In einem Gemenge erfilhrt jedes einzelne Theilchen
eines Gases, weun es sich bewegt, von jedem andern
Gase einen Widerstand proportional der Dichte
dieses Gases und der’relativen Geschwindigkeit
beider. Auf die Einheit des Volumens kommt also ein dem Pro-

Tueto der Dichtender beiden Gase und ibver rolativen Geschwindig-
keit proportionaler Widerstand in Rechnung. Besteht das Gemenge
aus melw Gasen, 5o ist der Widerstand fiir jedes einzelne gleich der
Summe der Widerstinde, mit denen ihm dio andern, jedes fiir sich
gedacht, entgegenwirkten. Auf Grund dieser Annahme werden im

Handelt es sich um ein Giemenge von mehr als zwei Gasen,
so kommt zu dem Widerstande, welchen ein Theilchen des ersten
Gases in seiner Bewegung vom zweiten Gase erfilrt, der vom
dritten, vierten Gase u. s. w. hinzu, so dass man z. B. fiir ein
Gemenge von drei Gasen die Gleichungen hat

ity — 4y 1 — 1) — gt (4 — )
o= tuFo— B eyt — ) — Aiara (1) ()
by T S8 Ay (1 — 1) — et (15— 1)

worin die Bedeutungen der mit dem Index 3 versehenen Grlssen
nach den eingeftihrten Bezeichungen ohne weiters klar sind.



© The Maxwell-Stefan Equations and Electromigration



Scale-Reduced Model: Maxwell-Stefan Eqgs

Consider the difference: momentum of species i — y; X total momentum
Q;(at +v- V)u,- + oiu; - Vv; =
YiVp = 0iVii+ T(hi — 0ipi)V+ + 0i(b; — b) — T 3 f0i0(u;i — uj)



Scale-Reduced Model: Maxwell-Stefan Eqgs

Consider the difference: momentum of species i — y; X total momentum
Q;(at +v- V)u,- + oiu; - Vv; =
YiVp = 0iVii+ T(hi — 0ipi)V+ + 0i(b; — b) — T 3 f0i0(u;i — uj)
nondimensionalized form:
GY yi(0fur +v* - V*ul +uf - V'v)) =

NV'pt _ aRToy 7 ¢ _ (bl «@RTy . #)v* *
Yi~or w ViVH (poe* Po Yiti)V*in T

+ Ql;fLy;(b?( — b*) _ cofoTo %Q* T* Zj Mi*?;/}j;jg,}‘- (U;k — UJ*)

some characteristic reference quantities:

U diffusion velocity, V' mixture velocity, 7 = L/V convective time scale,
C = \/po/0o about the speed of sound in gas mixture



Scale-Reduced Model: Maxwell-Stefan Eqgs

Approximation for % % < 1: generalized Maxwell-Stefan equations

yJJI }//JJ i
CM M; Bj; T RT

Yi
oRT

oipi — hi o 1 Yi
VPt R VT T RT

Vu; — (b,' — b)

Phenomena: molecular, pressure, thermo- (partially) & forced diffusion



Scale-Reduced Model: Maxwell-Stefan Eqgs

Approximation for % % < 1: generalized Maxwell-Stefan equations

yJJI yilj _ i Vi Yi

oipi — hi o 1 Yi
_ _ b.—b
< cMiM;D;  RT oRT (bi = b)

VPt R VT T RT

Phenomena: molecular, pressure, thermo- (partially) & forced diffusion

Chemical Eng. version of the generalized MS-egs (isothermal case)*:

xjdi — xiJ; Xi mo i — Vi
_ZJ \v 1+¢ pr

— ~RT P oRT QRT(b —b)

x; molar fractions, J; molar mass fluxes, p°! = M;z; molar based
chemical potential

*R. Taylor, R. Krishna: Multicomponent Mass Transfer, 1993



Scale-Reduced Model: Maxwell-Stefan Eqgs

Thermodynamic consistency?

The mass fluxes j; determined by the gen. Maxwell-Stefan equations
(and >, ji = 0) need to satisfy:

(TP = (V4 + 3 hiuwi) - VE—+30i- (TVH —bj) > 0!



Scale-Reduced Model: Maxwell-Stefan Eqgs

Thermodynamic consistency?

The mass fluxes j; determined by the gen. Maxwell-Stefan equations
(and >, ji = 0) need to satisfy:

(@5 ) T FE (9% ) 201
Instead of inverting the MS-system, we use
~T X, fyoi0(ui — wj) = ;i TVE — y;Vp — hi TV 1 — 0i(b; — b)

to eliminate

i h[
TV —b;— 2TV



Scale-Reduced Model: Maxwell-Stefan Eqgs

Thermodynamic consistency?
The mass fluxes j; determined by the gen. Maxwell-Stefan equations
(and >, ji = 0) need to satisfy:
(TP = (V4 + 3 hiuwi) - VE—+30i- (TVH —bj) > 0!
Instead of inverting the MS-system, we use
—T Y, fjoioj(ui — ;) = 0; TV — y;Vp — TV 3 — pi(b; — b)

to eliminate rok b hTUl
T ! 0i T
This yields:
CP = a(VL)* + 15, feigj(u; —u;)* >0



MS-Eqs

From Maxwell-Stefan to Nernst-Planck

Assume dilute solution: xp ~ 1, x; < 1fori=1,...,N. Then
— i = §FVp i+ Y5 Vp— £ (bj—b) i=1,..,N
chemical potentials: u;(T,p,x) = gi(T,p)+ RT log x;, i=1,...
forces on ions: b; = —ﬁz,-v¢ (z; charge numbers)

electrical potential: — V - (eV¢) = FZQ’ZO ZC



MS-Eqs

From Maxwell-Stefan to Nernst-Planck

Assume dilute solution: xp ~ 1, x; < 1fori=1,...,N. Then
— i = §FVp i+ Y5 Vp— £ (bj—b) i=1,..,N
chemical potentials: u;(T,p,x) = gi(T,p)+ RT log x;, i=1,...,N
forces on ions: b; = —ﬁz,-v¢ (z; charge numbers)

electrical potential: — V - (eV¢) = FZQ’ZO ZC
neglecting pressure diffusion (& assuming ¢ ~ const):

ji=—Di(Vei+ grlzc — il %) Ve), i=1....N.



MS-Eqs

From Maxwell-Stefan to Nernst-Planck

Assume dilute solution: xp ~ 1, x; < 1fori=1,...,N. Then
— i = §FVp i+ Y5 Vp— £ (bj—b) i=1,..,N
chemical potentials: u;(T,p,x) = gi(T,p)+ RT log x;, i=1,...,N
forces on ions: b; = —ﬁz,-v¢ (z; charge numbers)

electrical potential: — V - (eV¢) = FZQ’ZO ZC
neglecting pressure diffusion (& assuming ¢ ~ const):

ji=—Di(Vei+ grlzc — il %) Ve), i=1....N.

bp=0! = b;—b=b; — ZLV:O ykbk = (1 — y,-)b; + Zg’ékzl ykbk ~ b;,

assuming again a dilute solution.



MS-Eqs

From Maxwell-Stefan to Nernst-Planck

Assume dilute solution: xp ~ 1, x; < 1fori=1,..., N. Then
—5obi = Fe Vo i+ S Vp — £2(bj—b) i=1,...,N
chemical potentials: u;(T,p,x) = gi(T,p) + RT log x;, i=1,...,N
forces on ions: b; = —%Z,'V(b (z; charge numbers)

electrical potential: — V- (eV¢) = F ZLV:O zyCk
neglecting pressure diffusion (& assuming ¢ & const):

ji:*Di(VCI‘+R7FTzI'CI'V¢)7 I:].q,N

bp =0 = b;j—b=b; — ZQI:O)/kbk =(1-y)b;+ Z,{\;kzl ykbx = b;,

assuming again a dilute solution.



MS-Eqs
Remarks on the Nernst-Planck fluxes

Shortcomings of the specialization to Nernst-Planck:

@ If used for all constituents, Nernst-Planck (like Fickean) fluxes are
inconsistent with the continuity equation

@ If only used for the dilute components, Nernst-Planck (like Fickean)
fluxes do not yield pointwise upper bounds

@ Even for globally dilute mixtures, the diluteness assumption breaks
down near interfaces (walls). The solvent concentration can actually
approach zero when transversing the double layer at a wall!

@ Pressure effects are usually not negligible (especially near walls).



MS-Eqs
Implications

Implication for modeling transport of ions in solution:

Use the full set of balance equations together with
thermodynamically consistent fluxes from Maxwell-Stefan theory
instead of only mass balances with Nernst-Planck fluxes!



MS-Eqs
Implications

Implication for modeling transport of ions in solution:

Use the full set of balance equations together with
thermodynamically consistent fluxes from Maxwell-Stefan theory
instead of only mass balances with Nernst-Planck fluxes!

For first results from a complete and thermodynamically consistent model
see the recent paper by Dreyer, Guhlke and Miiller: " Overcoming the
shortcomings of the Nernst-Planck model”, Phys. Chem. Chem. Phys.
15, 7075-86 (2013).

In particular, it is shown there that the complete model can be applied
simultaneously inside the bulk and in the boundary layer.



MS-Eqs
Implications

Implication for modeling transport of ions in solution:

Use the full set of balance equations together with
thermodynamically consistent fluxes from Maxwell-Stefan theory
instead of only mass balances with Nernst-Planck fluxes!

For first results from a complete and thermodynamically consistent model
see the recent paper by Dreyer, Guhlke and Miiller: " Overcoming the
shortcomings of the Nernst-Planck model”, Phys. Chem. Chem. Phys.
15, 7075-86 (2013).

In particular, it is shown there that the complete model can be applied
simultaneously inside the bulk and in the boundary layer.

Final Remark: Extension to chemically reacting fluid mixtures exists.



@ The Nernst-Planck-Poisson System in nD

Joint work with A. Fischer, M. Pierre, G. Rolland



NPP

Navier-Stokes-Nernst-Planck-Poisson system (NSNPP)

8tv+(v-V)v—Av—i—Vp—i—Z,N:lz,-c,-VCD = 0 in Q
dive = 0 in Q,
(NS) u = 0 ondQ,
v(0) = v in Q
Osci + div (C,'V —diVe¢ — d,'Z,'C,‘VCD) = 0 in Q,
(NP) o,¢ + zicio,® = 0 on 39,
c(0) = ¢ in Q.
(P) —Ad — Zf\lzl zZiCi = O in Q,
OP+7® = & on 00.

Unknowns: v velocity field, p pressure,
¢; concentration of species i/, ® electrical potential.

Data: d;(t, x) diffusivity, o(x) fixed charges, £(x) boundary datum.
Constants:  z; € Z charge number, 7 > 0 boundary capacity.



NPP

Energy dissipation for (NSNPP)

Exploit the following Lyapunov structure:

@ Define the functionals E and D by

N
E(v,c,®) := = v|© 4+ ciloge + = Vo|© + - P,
(ne®)img WP+ | 3 [ IVor+3 [ 1o

N
1 2
D ) = V2 — |d;V¢i 4+ dizic;Vo|” > 0.
(v,c, ®) /Q| V|+’.z;/§zdici| ¢ + dizicVo|” >
@ Given a regular solution (v, c,®) to (NSNPP), the functional
V(t) = E(v(t), c(t), ®(1))
is non-increasing in time with derivative

V(t) = —D(v(t), c(t), d(t)) < 0.

@ Analogous situation for pure (NPP) without kinetic energy term.



NPP

Global existence for NPP in three or higher dimensions

Theorem (B., Fischer, Pierre, Rolland, Nonl. Anal. TMA '14)

Let n € N, Q Cc R" bounded and sufficiently smooth and
o d;€ L3 (Ry; L®(Q)), 0<d(T)<di(t,x)<d(T)<oc a.e. on Qr.
o ecl2(Q)t, 0 =0, &€ L2(09).

Then there exist ¢ € L°(R; L}(R2)) and ® € L=°(R.; H*(Q)) such that
(NPP) is satisfied in the following sense:

Forall T >0, ¢ € L}(0, T; W2 (), diVei + dizicV € LY(Qr) sit

loc

for all p € C°(Q7) with ¥(T) =0, p € C=(Q),

/ —ci0p + (diVe + dizic;VO)Vp = / c4(0)
QT

/VdJ t) - Vg0+/ TO(t)p /Zz,c,(tgo ae teR,.

Q/l




NPP

Nernst-Planck-Poisson in nD

Global weak solutions in nD - Sketch of proof:

@ A priori estimate for (NPP)

@ Approximate (NPP) by (NPP<) while conserving the Lyapunov
structure

@ Global existence and uniqueness for (NPP<)
@ Compactness for sequence of approximate solutions

@ Limitase — 0



NPP

Global weak solutions in nD - Sketch of proof

Recall from above (without v): V=— ZfV:l fQ |diVc; + dizic;V®|?/dic;
Integration in time yields

1 1%~ ¢2 1
cz/ ZWC“CV' /Z |VC| z?c,\v¢\2+2z,-vc,-v¢)
QT j—1 Qr =1




NPP

Global weak solutions in nD - Sketch of proof

Recall from above (without v): V=— ZfV:l fQ |diVc; + dizic;V®|?/dic;
Integration in time yields

1 1%~ ¢2 1
cz/ ZWC“CV' /Z |VC| z?c,\v¢\2+2z,-vc,-v¢)
QT j—1 Qr =1

Integration by parts and Poisson equation give

/ ZZ,VC,VCD——/ ZZ,C,A¢+/ :/ |A¢|2+/
QT i1 Qr i1 rr QT?&T’ rr



NPP

Global weak solutions in nD - Sketch of proof

Recall from above (without v): V=— ZfV:l fQ |diVc; + dizic;V®|?/dic;
Integration in time yields

2
C > / Z |VCI +Z,C,V¢| / Z |VC,| Z’_ZCI.‘VCD‘Z + 22,'VC,‘V¢ )
Q

T =1 Qr =1

Integration by parts and Poisson equation give

/ZZ,VC,VCD— /ZZ,C,A¢+/ :/ |A¢|2+/
Q Qr i1 rr QT?&T’ rr

T =1

@ Boundary terms difficult to estimate = only local W!-regularity,
except in case n =3, £ € L9(0Q) for g > 2.

@ Appr. problem with global solution and similar Lyapunov structure?



NPP

Global weak solutions in nD - Sketch of proof

Approximate problem (based on an idea of Gajewski/Groger):
oci + diV(*d;Vh(C,’) — d,'Z,'C,'V(D) = 0 inQ,
al,h(C,') + z,-c,-8,,<b = 0 on 69, (NP”)
ci(0) = ¢ inQ,
—Ad—-YN .z = 0 inQ, } (P)
0, +7d = ¢ on 0N,
where h(r) = r + nrP for fixed, large p > 1.



NPP

Global weak solutions in nD - Sketch of proof

Approximate problem (based on an idea of Gajewski/Groger):

deci + div(—diVh(c;) — dizic; Vo)
al,h(C,') + zici0, P

ci(0)

A0 -3V zq

0,P+ 70

where h(r) = r + nrP for fixed, large p > 1.

in Q,
on 09, (NP™)
in Q,

in Q,
on 09, } (P)

The solutions satisfy the same dissipation inequality, if the free
energy >, ¢jlogcj is replaced by Y ;(cilog ¢i + ncf/(p — 1)).



NPP

Global weak solutions in nD - Sketch of proof

Approximate problem (based on an idea of Gajewski/Groger):

deci + div(—diVh(c;) — dizic; Vo)
al,h(C,') + zici0, P

ci(0)

A0 -3V zq

0,P+ 70

where h(r) = r + nrP for fixed, large p > 1.

in Q,
on 09, (NP™)
in Q,

in Q,
on 09, } (P)

The solutions satisfy the same dissipation inequality, if the free
energy >, ¢jlogcj is replaced by Y ;(cilog ¢i + ncf/(p — 1)).
= appr. ¢ a priori bounded in L(0, T; LP(Q)).

= appr. ®" a priori bounded in L*°(0, T; W?P(Q)).

= appr. solution (c;, ®") via fixed point argument for ® in

L>°(0, T; W1>°(Q)), using p > n.



Thank You for Your Attention !
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