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OUTLINE

Closed Models
I model review
I dynamics→ bistability
I bifurcation analysis→ insufficiency of ion pumps

Open Models with External Reservoirs
I dynamics→ CSD
I time scales→ slow–fast analysis

Oscillatory Dynamics
I seizure–like activity (SLA) and SD
I bifurcation analysis→ assign specific bifurcations to SLA and SD
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INTRODUCTION
Trying to find and analyze the simplest possible model of local ion
dynamics that. . .

. . . can be biophysically interpreted.

. . . shows spreading depression dynamics.

What has been done?
A lot! An incomplete list. . .
I Hodgkin–Huxley
I cardiac models

(DiFrancesco, Noble, 1980s)
I cortical ion dynamics:

Kager, Wadman, Somjen
I Barreto, Cressman
I Schiff, Ullah
I Bazhenov, Fröhlich
I Zandt

What do we do?

I investigate entire repertoire of
ion dynamics in simple model

I bifurcation analysis of ion
dynamics

I slow–fast interpretation of ion
dynamics in SD

I phase space interpretation of
ion dynamics
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HODGKIN–HUXLEY MODEL (HH)

Developed for the description of action potentials.

equivalent electrical circuit

I lipid bilayer is a capacitor
I channel is a conductor in series with a battery
I energy from batteries not dissipated
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HODGKIN–HUXLEY MODEL (HH)

Four rate equations of HH

dV
dt

= − 1
Cm

(INa + IK + ICl − Iapp)

dx
dt

=
x∞(V)− x
τx(V)

for x ∈ {n,m, h}

Model parameters
I capitance Cm

I leak conductances gl
ion

I max. gated conductances gg
ion

I ion concentrations ioni/e

Three ion currents

INa = (gl
Na + gg

Nam3h)(V − ENa)

IK = (gl
K + gg

Kn4)(V − EK)

ICl = gl
Cl(V − ECl)

Nernst potentials

Eion = −26.6mV
z

ln(ioni/ione)

for ion ∈ {Na+,K+,Cl−}
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HH APPROXIMATIONS
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The action potential dynamics can be approximated by
I an adiabatic approximation for the sodium activation:

m = m∞(V)
I assuming a functional dependence between sodium inactivation

and potassium activation: h = f (n)

Two–dimensional HH model
rate eqations:

V̇ = − 1
Cm

∑
ion

Iion

ṅ =
n∞ − n
τn

gating constraints:

m = m∞(V)

h = − 1
1 + exp(−6.5(n− 0.35))
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ION–BASED MODEL
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The ion–based model contains
I intracellular space (ICS)
I extracellular space (ECS)

Note: The membrane separates ICS and
ECS. Effects from surroundings are not
included here −→ closed system

Ion dynamics

The flux of ions across the
membrane is induced by
the transmembrane currents.

The novel effects include:
I Nernst potentials are

dynamic:
Eion = − 26.6mV

z ln
(

ioni
ione

)
I Ion pumps are needed

to maintain the resting
state.

Ip = ρ

(
1 + exp

(
25−Nai

3

))−1

·
(

1 + exp (5.5− Ke)

)−1
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ION–BASED MODEL

Rate equations

V̇ = − 1
Cm

(INa + IK + ICl − Ip)

ṅ =
n∞ − n
τn

Ṅai = − γ
ωi

(INa + 3Ip)

K̇i = − γ
ωi

(IK − 2Ip)

Ċli = +
γ

ωi
ICl

Note: Ṅai + K̇i − Ċli − Cmγ
ωi

V̇ = 0

⇒ conservation law
⇒ four–dimensional dynamics

Constraints
Gating constraints:

m = m∞(V)

h = hsig(n)

Mass conservation:

Nae = Na0
e +

ωi

ωe
(Na0

i −Nai)

Ke = K0
e +

ωi

ωe
(K0

i − Ki)

Cle = Cl0e +
ωi

ωe
(Cl0i − Cli)

Parameters:
I volumes ωi/e

I conversion factor γ
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DONNAN EQUILIBRIUM IN ION–BASED MODEL
The conservation law implies electroneutrality:

0 = Ṅai + K̇i − Ċli −
Cmγ

ωi
V̇

⇒ ∆Qi = ∆(Nai + Ki − Cli) =
Cmγ

ωi︸ ︷︷ ︸
O(10−4 mM

mV )

∆V

ωi 2,160µm3

ωe 720µm3

F 96485C/mol
Am 922µm2

γ 9.556e–3µm2mol
C

The equilibrium without pumps...

0 =
dioni

dt
= ± γ

ωi
(gl

ion + . . .)(V − Eion) ⇒ ENa = EK = ECl

ENa = EK = ECl
∆Qi ≈ 0

}
. . . is the Donnan equilibrium!

Note: No impermeant anions included!
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DONNAN EQUILIBRIUM IN ION–BASED MODEL
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The pump is switched off after 50sec. The transition from the
physiological resting state to the Donnan equilibrium follows.
I ion fluxes until spiking begin
I spiking until depolarization block is reached
I final asymptotic phase until Donnan equilibrium is attained

What if we turn the pumps on again?
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⇒ Another stable state shows up!
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FREE ENERGY–STARVATION (FES)
Symbol Physiological Donnan FES Units
V −68 −24.6 −24.7 mV
n 0.065 0.611 0.609 1
Nai 27 59.2 58.1 mM
Nae 120 23.5 26.6 mM
Ki 131 116.9 117.9 mM
Ke 4 46.4 43.4 mM
Cli 9.7 27.7 27.7 mM
Cle 124 70.0 70.0 mM
ENa 39.7 −24.6 −20.8 mV
EK −92.9 −24.6 −26.6 mV
ECl −68 −24.6 −24.7 mV

Despite normal pump activity a stable state exists which...
... has largely reduced ion gradients (dissipated energy).
... is depolarized and cannot spike.

We frame the term ”free energy–starvation (FES)” for this condition.
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Phys. resting state

Pumps compensate for leak
currents.

FES
Pumps compensate for
gated currents. They cannot
re–establish physiological
conditions.

Symbol phys. FES Units
Il
Na −1.89 −0.07 µA/cm2

Ig
Na −0.01 −15.68 µA/cm2

Il
K 1.25 0.09 µA/cm2

Ig
K 0.02 10.41 µA/cm2

Ip 0.63 5.25 µA/cm2

Note: This only holds for the closed
model.
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MINIMAL PHYSIOLOGICAL AND RECOVERY PUMP RATE

If we increase the pump rate ρ of

Ip = ρ

(
1 + exp

(
25−Nai

3

))−1

· (1 + exp (5.5− Ke))
−1

drastically (normally
ρ = 5.25µA/cm2), recovery from
FES after pump interruption is
possible.
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Two stable FP branches

I physiological (lower)
I FES (upper)

Two critical pump rates

I minimal phys. pump rate:
0.89µA/cm2 (LP1)

I recovery pump rate:
24.63µA/cm2 (HB3)
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SUMMARY
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I The closed neuron system can be driven into FES by pump
interruption and long/strong stimulation with applied currents
(not shown).

I The transition is permanent. The ion pumps would have to be
five times stronger to recover the physiological state.

Robustness?
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ROBUSTNESS?

Model variants
We tested the
effect of:
I gating
I leak currents
I pump model
I GHK
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Result

I Model variants with voltage–gated ion channels are bistable.
I Variants without voltage–gated ion channels are not.
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EVEN KAGER–WADMAN–SOMJEN

Also for the (single compartment)
Kager–Wadman–Somjen model we
find a minimal physiological
pump rate 9.8µA/cm2 and a
recovery pump rate 107µA/cm2

that is large compared to the
normal value (13µA/cm2).
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Bifurcations of model by Kager et al.
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⇒ Bistability of FES and physiological conditions
apparently a generic feature of closed neuron models.
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REMARK ON ”FIXED LEAK CURRENTS”

Many models contain ”fixed leak
currents”:

V̇ = − 1
Cm

(INa + IK + ICl − Ip)

...
Ċli = 0

Such a current with a
fixed Nernst potential
changes the dynamics
dramatically!
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OPEN MODELS
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Coupling to a reservoir
will resolve the bistability!

So far we have considered
I isolated −→ Donnan
I closed −→ bistability

Potassium exchange with a reservoir

Instead of potassium conservation we have:

Ke = K0
e +

ωi

ωe
(K0

i − Ki) + K̃e

K̃e measures the potassium gain or loss.

Dynamics of K̃e

I diffusion to ECS
bath or vasculature

I glial buffering
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CSD IN BUFFERED MODELS

Name Value & unit
k̄1 5e–5/sec/mM
k1 5e–5/sec
B0 500mM

With buffering...

... bistability becomes ionic
excitability in both KWS
and reduced ion–base
model! This is CSD!
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Ke + B
k2


k1

Kb

k2 = k̄1
1+exp(−(Ke−15)/1.09)

B0 = Kb + B


dK̃e

dt
= −k2Ke(B0 − Kb) + k1Kb
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TIME SCALES IN BUFFERED MODEL
Time scale for ion dynamics from GHK equation with dimensionless
potential ξ, permeability Pion:

dioni

dt
=

Am

ωi
Pionz︸ ︷︷ ︸

1/τion

·ξ · ione exp(−ξ)− ioni

exp(−ξ)− 1

(with mphq ≈ 0.1 for gated channels Pion ≈ 5µm/sec, leak
Pion ≈ 0.5µm/sec)

Forward and backward
buffering time scale:

τ
fw
buff =

1
k̄1B0

τ bw
buff =

1
k1

Time scales
τV 0.05msec
τn 1msec
τion 0.5sec
τ

fw
buff 50sec
τ bw

buff 5h

For CSD dynamics in this
model particle exchange
with reservoirs is by far
the slowest process!

→ slow–fast analysis
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POTASSIUM GAIN/LOSS AS BIFURCATION PARAMETER

Slow–fast analysis

I use the slowest
variable K̃e as a
bifurcation parameter

I superimpose full
dynamics on
bifurcation diagram

→ Phase space explanation
for observed dynamics?

Two stable fixed points

physiological branch Bphys
free energy–starved BFES
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IMPLICATIONS OF BIFURCATION DIAGRAM

Critical Ke values
6.7mM HB1
10.2mM LP3lc
17.8mM LP2lc
21.1mM LP1lc
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Implications

I maximal physiological potassium content (end of Bphys at
28.7mM)

I potassium reduction for recovery from FES (end of BFES at
−44mM)

I well–defined levels of stable ECS potassium concentration (limit
cycle have almost constant ion concentrations)
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SLOW CHLORIDE

Chloride is slower
than sodium and
potassium
(τCl ≈ 50sec)
→ vary chloride as a
prameter

Result: family of
topologically
equivalent FP curves
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Recovery threshold

The recovery threshold is then the
line of Hopf bifurcations.

Arrows indicate Ke changes due to
(m) flux across membrane
(r) exchange with reservoir
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CSD IN PHASE SPACE
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SD in reduced
ion–based model
and KWS. Ignition
by potassium
elevation and pump
interruption.

Course of events after stimulation

1. vertical transition from Bphys to BFES

2. diagonal transition along BFES until threshold
3. abrupt vertical depolarization from BFES to Bphys

4. slow asymptotic recovery
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SCHEMATIC VIEW ON CSD
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Phase space scheme for SD New insights concerning
I ignition threshold
I recovery mechanism
I recovery threshold
I SD duration

Note: Recovery is not due to the
ion pumps!

SD phases and time scales
AB stimulation (instantaneous)
BC ECS potassium accumulation, depolarization τion ≈ 0.5sec
CD buffering, diffusion τ

fw
buff ≈ 50sec

DE abrupt repolarization τion ≈ 0.5sec
EA final recovery τ bw

buff ≈ 5h
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OSCILLATORY DYNAMICS

We investigate oscillatory dynamics for bath coupling with elevated
potassium concentrations (λ = 3e− 2/sec).

Jdiff = λ(Kbath − Ke)

dK̃e

dt
= Jdiff

Bifurcation analysis

Classify these pathologically
important types of ion dynamics.

Oscillation Types

I seizures for
8.5mM

I tonic firing for
12mM

I periodic SD
15mM
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BIFURCATION DIAGRAM FOR Kbath

Result

I seizure–like
activity (SLA) via
supercr. torus bif.

I TSLA is 16–45sec
I periodic SD via

subcrit. torus bif.
I TSD is 350–550sec
I hysteresis

conclusion
→ SLA graded
→ SD all–or–none
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5 10 15 20

Kbath / mM

0

10

20

30

40

50

60

70

80

90

K
e

/m
M

HB1
LP2 LP1

HB2
HB3

HB4

Bifurcations (reduced model): extrac. potassium

stable FP
unstable FP
stable LC
unstable LC
stable torus

a)

b)



CLOSED MODELS OPEN MODELS OSCILLATORY DYNAMICS SUMMARY

BIFURCATION DIAGRAM FOR Kbath AND FOR K̃e
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Bifurcations (reduced model): potassiumgain/loss, bath coupling

stable FP
unstable FP
stable LC
unstable LC
stable torus

Bifurcations can be
related:
LP1lc ↔ TR1
LP2lc ↔ TR2
LP3lc ↔ TR3
LP4lc ↔ TR4

Relevance of Close Model
Phase Space

Many results for parametrical K̃e
translate almost directly to the full
system.
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SLA VS SD IN PHASE SPACE
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SLA is oscillation around
physiological conditions and LCs
at low ECS potassium.

SD is a large excursion to FES and
subsequent return.

→ SLA and SD are of fundamentally different nature!
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SUMMARY AND OVERVIEW: OPEN, CLOSED AND ISOLATED
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Phase space scheme for SD

Open vs Closed Model

I Pumps cannot recover
physiological conditions from
FES.

I In ionic excitability ion
exchange with surroundings
leads to recovery.

I time scales, thresholds. . .
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SUMMARY: OSCILLATORY DYNAMICS

Key results

I SLA and SD related to
different bifuractions

I SD and SLA of fundamentally
different nature

I SD is all–or–none
I SLA is graded (probably

model specific)
I approximative values of SD

and SLA thresholds can be
obtained from K̃e bifurcation
diagram
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5 10 15 20

Kbath / mM

0

10

20

30

40

50

60

70

80

90

K
e

/m
M

HB1
LP2 LP1

HB2
HB3

HB4

Bifurcations (reduced model): extrac. potassium

stable FP
unstable FP
stable LC
unstable LC
stable torus

a)

b)

−100 −80 −60 −40 −20 0 20 40

K̃e / mM

0

10

20

30

40

50

60

70

K
e

/m
M

extrac. potassium: SLA

−100 −80 −60 −40 −20 0 20 40

K̃e / mM

0

10

20

30

40

50

60

70

K
e

/m
M

extrac. potassium: SD

trajectory

24 29

7

11

a) b)



CLOSED MODELS OPEN MODELS OSCILLATORY DYNAMICS SUMMARY

Thank you and. . .

Markus Dahlem
Eckehard Schöll
Frederike Kneer
Steven Schiff
. . .
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