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Overview

Long term goal: non-invasive continuous measurement of
cerebral blood flow (CBF)

• “cheap" measurements: Transcranial Doppler to measure
blood flow velocity (BFV)

• patient database and analysis thereof
• computational hemodynamics



Challenges

In increasing order of “stochasticity"

• closures for hemodynamics models:
how to model what isn’t in the computational domain (BCs)

• uncertainties in models, geometries and parameters
• uncertainties in data:

lack of gold standard method, patient biases

We need error bars to our predictions



This talk

• impedance boundary conditions (outflow)
• machine learning for CBF data (inflow)



Example: systemic arterial tree



Outflow BCs are fundamental

• inflow vessels: few and "easy" to measure⇐ DATA
• outflow vessels: many and hard to measure⇐ MODEL
• vasculature is reactive (autoregulation)



Arterial flow model: single vessel

approach
• not interested in flow details but in vascular networks

"throughput"
• one-d is often (but not always!) good enough

• computational justification (Grinberg et al., ABE, (2011))
• derived BCs are general: can be adapted to multi-d



Arterial flow model: single vessel

material assumptions

• incompressible Navier-Stokes
• flow is axisymmetric without swirls
• equations are averaged on cross-sections
• vessels are elastic



Arterial flow model: single vessel

equations (Barnard et al., Biophys. J., 1966)
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where
• A = A(x , t) surface area
• Q = Q(x , t) flowrate

• P = P(A) = P0 + 4Eh
3r0
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pressure

• µ, ρ viscosity and density
• γ flow profile (γ = 2⇔ Poiseuille)



Arterial flow model: single vessel

Above equations are a system of hyperbolic balance laws
At operating regime
• solutions are smooth (no shock!)
• Jacobian has one positive and one negative eigenvalue

We need

• one inflow condition (measured velocity)
• one outflow condition

At junctions

• conservation of mass
• continuity of pressure



Outflow BCs must

• mimic the part of the vasculature that is not modeled
(downstream from computational domain)

• not create numerical artifacts
• be cheap to run
• be simple to implement
• require a minimum of calibration



Outflow BCs: the classics

• Dirichlet (or Neumann) BC
• impose a relationship between P and Q

• resistance:
P = R Q

• RCR Windkessel:

P + R2 C ∂tP = (R1 + R2)Q + R1R2C ∂tQ

R. Saouti et al., Euro. Respir. Rev., 2010



Outflow BCs: the classics

• Dirichlet (or Neumann) BC
• impose a relationship between P and Q

• resistance:
P = R Q

• RCR Windkessel:

P + R2 C ∂tP = (R1 + R2)Q + R1R2C ∂tQ

Issues

• limited physiological basis
• determination of parameter values



Impedance bc
• takes the form of a convolution
• zj ’s: impedance weights

Pn =
n∑

j=0

zjQn−j + Pterm



Structured tree BC

Proposed by M.G. Taylor (1966), developed by M. Olufsen
(1999)

• assumes simplified fractal
geometry of downstream
vascular tree

• linearizes flow equations
• uses Fourier and junction

conditions to define tree
impedance



New impedance BC

• Fourier→ Laplace:
allows general flows (instead of just periodic ones)

• fractal structure→ effective tiered structure:
greatly reduces need for calibration

• can be used in lieu of calibration for other BCs
• better termination criterion



Tree geometry

Governed by four rules

rule 0: there are only bifurcations
rule 1: rd1 = α rp, rd2 = β rp

rule 2: ` = λ r
rule 3: terminate vessel if r < rmin

where r is radius, ` is length and p and di are parent/daughters

Potential issue
• scaling parameters are not constant (more later)



Linearization (in A about A0)

C ∂tP + ∂xQ = 0

∂tQ +
A0

ρ
∂xP = −2π(γ + 2)

µ
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Q
A0

where C = dA/dP is the vessel compliance.

We Laplace transform and solve exactly
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Vessel impedance
Defined through its Laplace transform

Ẑ (x , s) =
P̂(x , s)

Q̂(x , s)

and thus

Ẑ (0, s) =
Ẑ (`, s) + 1

sdsC tanh L/ds

sdsC Ẑ (`, s) tanh L/ds + 1

• links the impedance at beginning and end of the vessel
• for imaginary s, i.e., s = iω, ω ∈ R, Ẑ is the "old"

impedance



Tree impedance

can be defined recursively using junction conditions

• conservation of mass: Qp(`, t) = Qd1(0, t) + Qd2(0, t)
• continuity of pressure: Pp(`, t) = Pd1(0, t) = Pd2(0, t)

⇒ 1
Ẑpa(`, s)

=
1

Ẑd1(0, s)
+

1
Ẑd2(0, s)



First set Ẑ (s) = Ẑterm at terminals



Use Single Vessel Solution



Use Junction Relation



Use Single Vessel Solution



Use Junction Relation
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Use Single Vessel Solution



Use Junction Relation



Use Single Vessel Solution



Use Junction Relation



Use Single Vessel Solution



Algorithm to compute impedance

procedure IMPEDANCE

Input: r - radius of vessel
Output: ZPA_0

if r < rmin then
ZPA_L = Zterm

else
ZD1 = IMPEDANCE(α · r )
ZD2 = IMPEDANCE(β · r )
ZPA_L = ZD1 · ZD2/(ZD1 + ZD2)

end if
ZPA_0 = singleVesselImp(ZPA_L)

end procedure



Implementation: intro

• we have just computed Ẑ (s)

• convolution⇒ P(t) =
∫ t

0 Z (τ) Q(t − τ) dτ

Problem: we need Z = L−1(Ẑ ) and

L−1 is an ill-posed numerical nightmare



Implementation: trick

convolution quadrature (Lubich, 1988)
allows the calculation of (an approximation to) P

P(t) =

∫ t

0
Z (τ)Q(t − τ)dτ ≈

n∑
j=0

zn−jQ(j∆t)

without having to compute Z



Implementation: CQ details

• Mellin’s inversion formula Z (τ) = 1
2πi

∫ ν+i∞
ν−i∞ Ẑ (λ)eλτ dλ

• Theorem If Ẑterm has nonnegative real part, then Ẑ (s) is
analytic for all <s ≥ 0 except at s = 0, where it has a
removable singularity

• P(t) = 1
2πi

∫ ν+i∞
ν−i∞ Ẑ (λ) y(λ; t) dλ, y(λ; t) =

∫ t
0 eλtQ(t − τ) dτ

• y as solution to ODE
• discretize ODE through multistep method
• re-express integral and efficient quadratures for Cauchy

integrals...



Implementation
procedure IMPEDANCEWEIGHTS

Input:
tf = final simulation time
∆t = time step size
N = number of time steps (N = tf/∆t)
ε = accuracy of computation of Ẑ

Output:
impedance weights zn, n = 0, ...,N

M = 2N
r = ε1/2N

for m = 0 : M − 1 do
ζ = rei2πm/M

Ξ = 1
2ζ

2 − 2ζ + 3
2

Z (m) = Ẑ (Ξ/∆t)
end for
for n = 0 : N do

zn = r−n

M

∑M−1
m=0 Z (m)e−i2πmn/M

end for
end procedure



Implementation: cost

• impedance weights computed for each outflow prior to
simulation

• requires 2N evaluations of Ẑ
• one eval. of Ẑ = O((#generations)2) operations (a few

thousand)
• in short: it is cheap



Computational example

• consider specific network (Circle of Willis, "full body")
• use 1D nonlinear model

∂tA + ∂xQ = 0

∂tQ +
γ + 2
γ + 1

∂x

(
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)
+

A
ρ
∂xP = −2π(γ + 2)

µ
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Q
A

• pseudospectral Chebyshev collocation in space
• 2nd order Backward Difference Formula in time
• inflow bc velocity measurements from V. Novak, BIDMC,

Harvard
• outflow bc impedance



Look Ma’ No calibration!



Some implementation details

• rmin taken as 30µm
• Zterm = 0 is a terrible idea

Can be corrected through

Pn =
n∑

j=0

zjQn−j + Pterm

with Pterm ≈ 45 mmHg



Towards autoregulation
What happens to the impedance under radii change?

• multiply tree vessel radii by CAR

• observe zk (CAR) ≈ zk (1) eMARk∆t , k = 0, . . . ,N



Towards autoregulation (2)

• match has been checked over wide range of parameters
• “memory" of structured tree ≈ .25 sec
• time scale of autoregulation responses ≈ 5-20 sec
• ⇒ auto-regulation induced microvascular changes

z̃k (MAR(t)) = zkeMAR(t)k∆t , k = 0, . . . ,N.

• scalar (!) MAR is obtained from specific autoregulation
model



Towards autoregulation (3)

• variation of tree resistance away from baseline value
Req = (Peq − Pterm)/Qeq

• auxiliary equation

dxAR

dt
= GAR

(
Q(t)−Qeq

Qeq

)
• RAR obtained from xAR by imposing limits (sigmoid)
• MAR obtained from

N∑
k=0

z̃k (MAR) = RAR

N∑
k=0

zk



Towards autoregulation (4)
• impose P(t) = Pbaseline(t)f (t) at aorta
• 20% drop in MAP
• immediate flow decrease followed by return to baseline
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Database from BIDMC

total male female
participants 167 86 81
age 66.5±8 65.6±9 67.3±8.
group hyper % no hyper % total %
control 14 8.4 48 28.7 62 37.1
stroke 26 15.6 16 9.6 42 25.1
DM 36 21.6 27 16.2 63 37.7



Database from BIDMC (2)

For each patient: MCA data

{
BFV post-processed from Trans Cranial Doppler (TCD)
CBF from CASL MRI
HCT, CO2 from lab
age, height, weight from lab
head size (front to back and side to side) from lab
gender, diabetes (y/n), hypertension (y/n) from lab{
radius R from images
insonation angle θ from images

M territory mass from “maps" and post processing



TCD vs MRI
Direct comparison between TCD-BFV and MRI-CBF



TCD vs MRI (2)
Direct estimate: CBFTCD = πR2

M
v

2 cos θ



Sources of uncertainties, TCD

• insonation angle
• velocity profile
• vessel radius
• territory mass



Sources of uncertainties, CASL MRI

CASL MRI CBF is correlated with HCT% (r = −.49,
p = 7.5× 10−6)



Predicting CBF?

• y : response variable CASL MRI CBF
• x: predictor variables, TCD BFV, age, height,...

Prediction: y = f (x) based on

• partitioning the data and applying local models
• regression trees
• random forests



Trees and forests
• yi , i = 1, . . . ,N (N observations)
• xi = (xi,1, . . . , xi,p), i = 1, . . . ,N, p = 14
• parameter space: partitioned in K regions Ωk , k = 1, . . . ,K
• response function approximated by

y ≈ f (x) =
K∑

k=1

ck χk (x)

χk = indicator function of Ωk ; ck = simple local model

• for instance ck = 1/|Ik |
∑|Ik |

j=1 yj , Ik = {j ; xj ∈ Ωk}

• ideally, MSE 1
N
∑N

i=1(yi − f (xi))2 is minimized over all
partitions Ωk , k = 1, . . . ,K

• computational feasibility⇒ Ωk ’s taken as “rectangular" and
minimization replaced by recursive partitioning



Trees and forests (2)
Trees as above can be unstable. Improvements:

• consider an ensemble of trees (bootstrapping)
• consider fixed number of predictive variables for splitting

⇒ decreases tree correlation and estimate variance
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Trees and forests (3)
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Some results: correlation
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Some results: variable importance
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Some results: clustering
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Future work

• organ specific BCs
• analysis of role played by calibration
• efficient uncertainty representation in comp.

hemodynamics
• local regression methods for patient clustering
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