
A microscopic approach to
Souslin trees constructions

Forcing and its Applications Retrospective Workshop
The Fields Institute, Toronto, Canada

01-April-2015

Assaf Rinot
Bar-Ilan University

1 / 32



This is joint work with Ari M. Brodsky, and still in progress..
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Some conventions

I Eκθ = {α < κ | cf(α) = θ}

I CH asserts that 2ℵ0 = ℵ1
I CHλ asserts that 2λ = λ+

I acc(C ) = {α ∈ C | sup(C ∩ α) = α > 0}
I nacc(C ) = C \ acc(C )

I succσ(C ) = {α ∈ C | otp(C ∩ α) = j + 1 for some j < σ}

e.g., succ3(ω1 \ ω) = {ω + 1, ω + 2, ω + 3}.
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κ-trees

Definition

I A tree is a poset T = 〈T ,C〉 in which x↓ := {y ∈ T | y C x}
is well-ordered for all x ∈ T ;

I Tδ = {x ∈ T | otp(x↓,C) = δ} is the δth-level of T ;

I The height of T is min{δ ∈ Ord | Tδ = ∅};
I T is χ−complete if any C-increasing sequence of length < χ

admits a bound;

I T is χ−slim if |Tα| = |α| whenever α ≥ χ.

Definition

I A κ-tree is a tree of height κ whose levels are of size < κ;

I A κ-Aronszajn tree is a κ-tree having no branches of size κ;

I A κ-Souslin tree is a κ-Aronszajn tree having no antichains of
size κ.
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The role of κ

Aronszajn and Souslin trees are useful objects that give rise to rich
counterexamples in mathematics.
The literature concerning these trees splits roughly into two:
I Papers that deal with the construction of Aronszajn/Souslin
trees with some additional features.
I Papers that deal with the construction of the trees from weaker
and weaker hypotheses, or consistency results concerning
non-existence.

We shall now dedicate a few minutes to review some known
results, highlighting that the behavior of κ-Aronszajn and
κ-Souslin trees depends heavily on the identity of κ.
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κ-Aronszajn trees

Theorem (König, 1927)

There exists no ℵ0 -Aronszajn tree.
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Modulo large cardinals, it is consistent with GCH, that for some
singular cardinal λ, there exists no λ+-Aronszajn tree.

Theorem (Erdős-Taski, 1943)

If κ is weakly compact, then there exists no κ-Aronszajn tree.

6 / 32



λ+-Souslin trees

Definition (Jensen, 1972)

For S ⊆ κ, ♦(S) asserts the existence of a sequence 〈Aα | α ∈ S〉
such that {α ∈ S | A ∩ α = Aα} is stationary for all A ⊆ κ.

Theorem (Jensen, 1972)

If λ<λ = λ and ♦(Eλ
+

λ ) holds, then there exists a λ-complete
λ+-Souslin tree.
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Theorem (Jensen, 1972)

If λ<λ = λ and ♦(Eλ
+

λ ) holds, then there exists a λ-complete
λ+-Souslin tree.

This gives a method to construct Souslin tree at the level of
successor of regulars. How to handle successor of singulars?

7 / 32



λ+-Souslin trees

Definition (Jensen, 1972)

For S ⊆ κ, ♦(S) asserts the existence of a sequence 〈Aα | α ∈ S〉
such that {α ∈ S | A ∩ α = Aα} is stationary for all A ⊆ κ.

Theorem (Jensen, 1972)

If λ<λ = λ and ♦(Eλ
+

λ ) holds, then there exists a λ-complete
λ+-Souslin tree.

Definition (Jensen, 1972)

�λ(S) asserts the existence of a sequence 〈Cδ | δ < λ+〉 such that
for all limit δ < λ+:

I Cδ is a club in δ of order-type ≤ λ;

I if β ∈ acc(Cδ), then β 6∈ S and Cδ ∩ β = Cβ.

Write �λ for �λ(∅).
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Theorem (Jensen, 1972)
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Special and specializable λ+-trees

Definition
A λ+-tree is special if it is the union of λ many antichains.

8 / 32



Special and specializable λ+-trees

Definition
A λ+-tree is special if it is the union of λ many antichains.

Note

I A special λ+-tree is λ+-Aronszajn;

I A λ+-Souslin tree is non-special.

8 / 32



Special and specializable λ+-trees

Definition
A λ+-tree is special if it is the union of λ many antichains.

Note

I A special λ+-tree is λ+-Aronszajn;

I A λ+-Souslin tree is non-special.

Remark
Aronszajn’s and Specker’s constructions from λ<λ = λ may be
steered to yield a special λ+-tree.
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Definition
A λ+-tree is specializable if it is special in some extended universe
of ZFC with the same cardinal structure.

Theorem (Baumgartner-Mailtz-Reinhardt, 1970)

An ℵ1 -tree is Aronszajn iff it is specializable.

Theorem (implicit in David, 1990)

If V = L, then for every regular λ, the canonical λ-complete
λ+-Souslin tree constructed using fine structure, is specializable.
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Non-specializable λ+-Souslin trees

Theorem (Baumgartner, 1970’s, building on Laver)

�ℵ1 entails a non-specializable ℵ2-Aronszajn tree.

Theorem (Cummings, 1997)

ℵ1 ≤ λ<λ = λ+ ♦ λ entails a non-specializable λ-complete
λ+-Souslin tree.

Theorem (Cummings, 1997)

If λ is a singular cardinal of countable cofinality, �λ + CHλ and
µℵ1 < λ for all µ < λ, then there exists a non-specializable
λ+-Souslin tree.

Theorem (Cummings, 1997)

If λ is a singular cardinal of uncountable cofinality, �λ + CHλ and
µℵ0 < λ for all µ < λ, then there exists a non-specializable
λ+-Souslin tree.
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To sum up

The construction of λ+-Souslin trees often makes an explicit
distinction between the case that λ is a regular cardinal and the
case that λ is singular.
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The construction of λ+-Souslin trees often makes an explicit
distinction between the case that λ is a regular cardinal and the
case that λ is singular. Some of them also depend on whether or
not λ is of countable cofinality.

Question
Do one really have to come up with such a long list of variations
each time that a fundamental construction is discovered? Isn’t
there any automatic translation between the different cardinals?
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An idea

Find a proxy!

1. Introduce a family of combinatorial principles from which the
constructions can be carried out uniformly;

2. Prove that this operational principle is a consequence of the
“usual” hypotheses.

This part is done only once, and then will
be utilized each time that a new construction is discovered.
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The proxy principle

Goal
The proxy principle will allow to translate constructions from one
cardinal to another, to calibrate the hypotheses needed to carry a
construction, and will capture all known ♦-based constructions.
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The proxy principle

Example of a binary relation R
v, where D v C iff ∃β such that D = C ∩ β.
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A Souslin tree from the weakest principle

Let κ denote a regular uncountable cardinal.

Proposition

P(κ, κ,v∗, 1, {κ}, κ) entails a κ-Souslin tree.
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Sanity check #1

Let λ denote an uncountable cardinal.

Theorem (Jensen, 1972)

If λ<λ = λ and ♦(Eλ
+

λ ) holds, then there exists a λ-complete
λ+-Souslin tree.
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Sanity check #3
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Sanity check #4

Let λ denote an uncountable cardinal.

Theorem (Shelah, 1984)

If 2ℵ0 = ℵ1,NSℵ1 is saturated, then there exists an ℵ2-Souslin tree.
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And so on..

Okay, so you seem to found a way to redirect all ♦-based
constructions of Souslin trees through a single construction.
You haven’t yet shown me anything new!
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κ-trees which cohere modulo finite

Definition
A subtree T of <κκ is said to be coherent if for all δ < κ:

I if x , y ∈ Tδ, then {α < δ | x(α) 6= y(α)} is finite;

I if x , y ∈ δκ, and {α < δ | x(α) 6= y(α)} is finite,
then x ∈ Tδ iff y ∈ Tδ.
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A concept of “being productive” for Souslin trees

Definition
A κ-Souslin tree T is free, if for every nonzero n < ω and any
sequence of distinct nodes 〈ti | i < n〉 from a fixed level δ < κ,
the product tree of the upper cones

⊗
i<n ti

↑ is again κ-Souslin.

21 / 32



A concept of “being productive” for Souslin trees

Definition
A κ-Souslin tree T is free, if for every nonzero n < ω and any
sequence of distinct nodes 〈ti | i < n〉 from a fixed level δ < κ,
the product tree of the upper cones

⊗
i<n ti

↑ is again κ-Souslin.

Theorem (Jensen, 1970’s)

♦(ℵ1) entails a free ℵ1-Souslin tree.

21 / 32



A concept of “being productive” for Souslin trees

Definition
A κ-Souslin tree T is free, if for every nonzero n < ω and any
sequence of distinct nodes 〈ti | i < n〉 from a fixed level δ < κ,
the product tree of the upper cones

⊗
i<n ti

↑ is again κ-Souslin.

Theorem (Jensen, 1970’s)

♦(ℵ1) entails a free ℵ1-Souslin tree.

Jensen construct the levels of the tree by recursion, where the
nodes of limit level α are obtained by forcing with finite conditions
over some countable elementary submodel that knows about the
diamond sequence and the tree constructed so far.

21 / 32



A concept of “being productive” for Souslin trees

Definition
A κ-Souslin tree T is free, if for every nonzero n < ω and any
sequence of distinct nodes 〈ti | i < n〉 from a fixed level δ < κ,
the product tree of the upper cones

⊗
i<n ti

↑ is again κ-Souslin.

Theorem (Jensen, 1970’s)

♦(ℵ1) entails a free ℵ1-Souslin tree.

Jensen construct the levels of the tree by recursion, where the
nodes of limit level α are obtained by forcing with finite conditions
over some countable elementary submodel that knows about the
diamond sequence and the tree constructed so far.
Genericity entails freeness.

21 / 32



A concept of “being productive” for Souslin trees

Definition
A κ-Souslin tree T is free, if for every nonzero n < ω and any
sequence of distinct nodes 〈ti | i < n〉 from a fixed level δ < κ,
the product tree of the upper cones

⊗
i<n ti

↑ is again κ-Souslin.

Observation
CH +♦(Eℵ2ℵ1 ) entails a free ℵ2-Souslin tree.

21 / 32



A concept of “being productive” for Souslin trees

Definition
A κ-Souslin tree T is free, if for every nonzero n < ω and any
sequence of distinct nodes 〈ti | i < n〉 from a fixed level δ < κ,
the product tree of the upper cones

⊗
i<n ti

↑ is again κ-Souslin.

Observation
CH +♦(Eℵ2ℵ1 ) entails a free ℵ2-Souslin tree.

Construct a ℵ1-complete tree by recursion, where the nodes of
level α of uncountable cofinality are obtained by forcing with
countable conditions over some ℵ1-sized elementary submodel that
knows about anything relevant.

21 / 32



A concept of “being productive” for Souslin trees

Definition
A κ-Souslin tree T is free, if for every nonzero n < ω and any
sequence of distinct nodes 〈ti | i < n〉 from a fixed level δ < κ,
the product tree of the upper cones

⊗
i<n ti

↑ is again κ-Souslin.

Observation
CH +♦(Eℵ2ℵ1 ) entails a free ℵ2-Souslin tree.

Construct a ℵ1-complete tree by recursion, where the nodes of
level α of uncountable cofinality are obtained by forcing with
countable conditions over some ℵ1-sized elementary submodel that
knows about anything relevant.
The model is of size ℵ1 to accompany all relevant dense sets.

21 / 32



A concept of “being productive” for Souslin trees

Definition
A κ-Souslin tree T is free, if for every nonzero n < ω and any
sequence of distinct nodes 〈ti | i < n〉 from a fixed level δ < κ,
the product tree of the upper cones

⊗
i<n ti

↑ is again κ-Souslin.

Observation
CH +♦(Eℵ2ℵ1 ) entails a free ℵ2-Souslin tree.

Construct a ℵ1-complete tree by recursion, where the nodes of
level α of uncountable cofinality are obtained by forcing with
countable conditions over some ℵ1-sized elementary submodel that
knows about anything relevant.
The model is of size ℵ1 to accompany all relevant dense sets.
The ℵ1-completeness of the tree and the countable conditions are
necessary for the existence of a generic over the ℵ1-sized model.

21 / 32



A concept of “being productive” for Souslin trees

Question
How about free λ+-Souslin tree for λ singular?

Observation
CH +♦(Eℵ2ℵ1 ) entails a free ℵ2-Souslin tree.

Construct a ℵ1-complete tree by recursion, where the nodes of
level α of uncountable cofinality are obtained by forcing with
countable conditions over some ℵ1-sized elementary submodel that
knows about anything relevant.
The model is of size ℵ1 to accompany all relevant dense sets.
The ℵ1-completeness of the tree and the countable conditions are
necessary for the existence of a generic over the ℵ1-sized model.

21 / 32



A concept of “being productive” for Souslin trees

Question
How about free λ+-Souslin tree for λ singular?
Freeness requires that the generic meet λ many dense sets, but the
tree cannot be λ-complete, and there cannot be a generic for the
relevant poset over a model of size λ.

21 / 32



A concept of “being productive” for Souslin trees

Question
How about free λ+-Souslin tree for λ singular?
Freeness requires that the generic meet λ many dense sets, but the
tree cannot be λ-complete, and there cannot be a generic for the
relevant poset over a model of size λ. But, there is another way:

Theorem
P(κ, µ,v, κ) entails a µ-slim, free κ-Souslin tree.

21 / 32



A concept of “being productive” for Souslin trees

Theorem
P(κ, µ,v, κ) entails a µ-slim, free κ-Souslin tree.

Corollary

If �λ + CHλ holds for λ singular, then there exists a free
λ+-Souslin tree.

21 / 32



A concept of “being productive” for Souslin trees

Corollary

If �λ + CHλ holds for λ singular, then there exists a free
λ+-Souslin tree.

Corollary

If V = L, then any regular uncountable κ is not weakly compact iff
there exists a free κ-Souslin tree.

21 / 32



A concept of “being productive” for Souslin trees

Definition
A κ-Souslin tree T is χ-free, if for every nonzero ν < χ and any
sequence of distinct nodes 〈ti | i < ν〉 from a fixed level δ < κ,
the product tree of the upper cones

⊗
i<ν ti

↑ is again κ-Souslin.

21 / 32



A concept of “being productive” for Souslin trees

Definition
A κ-Souslin tree T is χ-free, if for every nonzero ν < χ and any
sequence of distinct nodes 〈ti | i < ν〉 from a fixed level δ < κ,
the product tree of the upper cones

⊗
i<ν ti

↑ is again κ-Souslin.

From GCH-type assumption, we can also construct χ-free trees for
uncountable χ. For instance:

Corollary

If �λ + CHλ holds for λ singular, then there exists a logλ(λ+)-free
λ+-Souslin tree.
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Calibrating
P. Larson proved that any coherent ℵ1-Souslin tree contains a
regularly emebedded free ℵ1-Souslin tree.

In particular, a coherent ℵ1-Souslin tree entails a free one.

Larson and Zapletal (independently) proved that the following is
consistent: there exists a free ℵ1-Souslin tree, but no coherent
ℵ1-Souslin tree. The same is true for ℵ2-Souslin trees.

So, one would expect that the fact that free is weaker than
coherent be reflected in the hypothesis needed to construct such.

Theorem
P(κ, 2,v, κ) entails a coherent κ-Souslin tree.

Theorem
P(κ, κ,v, κ) entails a free κ-Souslin tree.

Theorem
P(κ, κ,v∗, 1) entails a κ-Souslin tree.
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ℵ1-Souslin tree. The same is true for ℵ2-Souslin trees.

So, one would expect that the fact that free is weaker than
coherent be reflected in the hypothesis needed to construct such.
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Specializable Souslin trees

Recall (implicit in David, 1990)

If V = L, then for every regular λ, there exists a λ+-Souslin tree
which is specializable.
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Recall (implicit in David, 1990)

If V = L, then for every regular λ, there exists a λ+-Souslin tree
which is specializable.
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non-Specializable Souslin trees

Let χ < λ denote infinite cardinals.

Theorem
P(λ+, 2,vχ, 1, {λ+}, 2, ω) entails a non-Specializable λ+-Souslin
tree.
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A model of “all Aronszajn trees are nonspecial”

It is consistent that κ is supercompact, λ = κ+ω, and there exists
a non-Specializable λ+-Souslin tree.
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non-Specializable Souslin trees

Let χ < λ denote infinite cardinals.

Theorem
P(λ+, 2,vχ, λ+, {Eλ

+

≥κ}, 2, ω) entails a free, non-Specializable
λ+-Souslin tree, which is κ-complete, provided that λ<κ = λ.

A model of “all Aronszajn trees are nonspecial”

It is consistent that κ is supercompact, λ = κ+ω, and there exists
a free, non-Specializable λ+-Souslin tree.
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Generalizing Gregory’s theorem to singular cardinals

Recall (Gregory, 1976)

If λ<λ = λ,CHλ and there exists a nonreflecting stationary subset
of Eλ

+

<λ, then there exists a λ+-Souslin tree.

Theorem
If 2<λ = λ,CHλ +�∗λ and exists a nonreflecting stationary subset

of Eλ
+

6=cf(λ), then P(λ+, λ+,v) holds.

Theorem
After Prikry forcing over a measurable cardinal λ satisfying CHλ,
P(λ+, λ+,v, λ+) holds.
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Generalizing Gregory’s theorem to singular cardinals

The derived trees

I P(λ+, λ+,v) entails a rigid λ+-Souslin tree;

I P(λ+, λ+,v, λ+) entails a free λ+-Souslin tree;

I P(λ+, λ+,v, λ+) entails an homogeneous λ+-Souslin tree.
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More results

Let λ<λ = λ denote a regular uncountable cardinal.

I If CHλ, then adding a single λ-Cohen set entails
P(λ+, λ+,v, λ+, {Eλ+λ }), and hence
free/homogeneous/specializable trees.

I If �λ + CHλ, then a single λ-Cohen set entails
P(λ+, 2,v, λ+, {Eλ+λ }, 2, ω), and hence
free/coherent/specializable/non-specializable trees.

I If �λ +♦∗(λ+), then there exists a (free) λ+-Souslin tree T ,
whose ω-reduced power tree ωT/U is λ+-Kurepa for any
nonprincipal ultrafilter U over ω.
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The microscopic approach
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Diamond for Hκ

Recall that P(κ, · · · ) asserts that ♦(κ) + P−(κ, · · · ) holds.

Proposition

For κ regular uncountable, ♦(κ) iff ♦(Hκ).

Definition
♦(Hκ) asserts the existence of ϕ0 : κ→ Hκ and ϕ1 : κ→ Hκ as
follows. For every a ∈ Hκ, A ⊆ Hκ, and p ∈ Hκ++ , there exists an
elementary submodel M≺ Hκ++ such that:

I p ∈M;

I M∩ κ ∈ κ;

I ϕ0(M∩ κ) = a;

I ϕ1(M∩ κ) =M∩ A.
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A construction á la microscopic approach

#include <NormalTree.h>
#include <SealAntichain.h>
//#include <Specialize.h>
#include <SealAutomorphism.h>
//#include <SealProductTree.h>
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