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Some conventions

» Ef ={a <k|cf(a) =0}

» CH asserts that 2% = N,

» CH, asserts that 2* = AT

» acc(C) ={a e C|sup(CNa)=a>0}

» nacc(C) = C\ acc(C)

» succ,(C) ={a € C|otp(CNa)=j+1 for some j < o}
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Some conventions

e.g.,

Ef ={a <k|cf(a) =0}

CH asserts that 2% = ¥,

CH,, asserts that 2* = \*

acc(C) ={a e C|sup(CNa)=a>0}

nacc(C) = C \ acc(C)

succ,(C) ={a € C|otp(CNa)=,j+1 for some j < o}
succz(wy \w) ={w+1,w+2,w + 3}.
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Kk-trees
Definition

> Atreeis a poset 7 = (T, <) in which x, :={y € T |y < x}
is well-ordered for all x € T;
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K-trees
Definition
> Atreeis a poset 7 = (T, <) in which x, :={y € T |y < x}
is well-ordered for all x € T;
Ts = {x € T | otp(x|, <1) = &} is the 5t-level of T;
The height of 7 is min{§ € Ord | T5 = 0};

» T is y—complete if any <-increasing sequence of length < x
admits a bound;

v

v

v

T is x—slim if | 74| = || whenever o > x.
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K-trees
Definition
> Atreeis a poset 7 = (T, <) in which x, :={y € T |y < x}
is well-ordered for all x € T;
Ts = {x € T | otp(x|, <1) = &} is the 5t-level of T;
The height of 7 is min{§ € Ord | T5 = 0};

» T is y—complete if any <-increasing sequence of length < x
admits a bound;

v

v

v

T is x—slim if | 74| = || whenever o > x.

Definition
> A k-tree is a tree of height k whose levels are of size < k;

» A k-Aronszajn tree is a k-tree having no branches of size k;

» A k-Souslin tree is a k-Aronszajn tree having no antichains of
size K.
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The role of &

Aronszajn and Souslin trees are useful objects that give rise to rich
counterexamples in mathematics.

The literature concerning these trees splits roughly into two:

» Papers that deal with the construction of Aronszajn/Souslin
trees with some additional features.

» Papers that deal with the construction of the trees from weaker
and weaker hypotheses, or consistency results concerning
non-existence.



The role of &

Aronszajn and Souslin trees are useful objects that give rise to rich
counterexamples in mathematics.

The literature concerning these trees splits roughly into two:

» Papers that deal with the construction of Aronszajn/Souslin
trees with some additional features.

» Papers that deal with the construction of the trees from weaker
and weaker hypotheses, or consistency results concerning
non-existence.

We shall now dedicate a few minutes to review some known
results, highlighting that the behavior of k-Aronszajn and
k-Souslin trees depends heavily on the identity of .



k-Aronszajn trees

Theorem (Konig, 1927)

There exists no Ng-Aronszajn tree.

/32
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Theorem (Konig, 1927)

There exists no Ng-Aronszajn tree.

Theorem (Aronszajn, 1935)

There exists an N1-Aronszajn tree.

/32



k-Aronszajn trees

Theorem (Konig, 1927)

There exists no Ng-Aronszajn tree.

Theorem (Specker, 1949. \ = w is due to Aronszajn, 1935)

If X is regular and \=* = )\, then there exists a \*-Aronszajn tree.

/32



k-Aronszajn trees

Theorem (Konig, 1927)

There exists no Ng-Aronszajn tree.

Theorem (Specker, 1949. \ = w is due to Aronszajn, 1935)

If X is regular and \=* = )\, then there exists a \*-Aronszajn tree.

Theorem (Magidor-Shelah, 1996)

Modulo large cardinals, it is consistent with GCH, that for some
singular cardinal \, there exists no A\"-Aronszajn tree.

32



k-Aronszajn trees

Theorem (Konig, 1927)

There exists no Ng-Aronszajn tree.

Theorem (Specker, 1949. \ = w is due to Aronszajn, 1935)

If X is regular and \=* = )\, then there exists a \*-Aronszajn tree.

Theorem (Magidor-Shelah, 1996)

Modulo large cardinals, it is consistent with GCH, that for some
singular cardinal \, there exists no A\"-Aronszajn tree.

Theorem (Erdés-Taski, 1943)

If k is weakly compact, then there exists no k-Aronszajn tree.
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AT-Souslin trees

Definition (Jensen, 1972)

For S C k, {(S) asserts the existence of a sequence (A, | a € S)
such that {a € S| ANa = A,} is stationary for all A C &.
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Definition (Jensen, 1972)

For S C Kk, {(S) asserts the existence of a sequence (A, | a € S)
such that {ae € S| AN = A,} is stationary for all A C k.
Theorem (Jensen, 1972)

If \<* = X\ and <>(E)’\\+) holds, then there exists a A\-complete
AT-Souslin tree.
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AT-Souslin trees

Definition (Jensen, 1972)

For S C Kk, {(S) asserts the existence of a sequence (A, | a € S)
such that {ae € S| AN = A,} is stationary for all A C k.
Theorem (Jensen, 1972)

If \<* = X\ and <>(E)’\\+) holds, then there exists a A\-complete
AT-Souslin tree.

This gives a method to construct Souslin tree at the level of
successor of regulars. How to handle successor of singulars?
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AT-Souslin trees

Definition (Jensen, 1972)

For S C Kk, {(S) asserts the existence of a sequence (A, | a € S)
such that {ae € S| AN = A,} is stationary for all A C k.
Theorem (Jensen, 1972)

If \<* = X\ and <>(E)’\\+) holds, then there exists a A\-complete
AT-Souslin tree.

Definition (Jensen, 1972)

[05(S) asserts the existence of a sequence (Cs | § < AT) such that
for all limit 6 < \™:

» Csis a club in § of order-type < A;
» if € acc(Cs), then 5 & S and GN B = Ca.

Write [, for D)\(@)

32



AT-Souslin trees

Definition (Jensen, 1972)

For S C Kk, {(S) asserts the existence of a sequence (A, | a € S)
such that {ae € S| AN = A,} is stationary for all A C k.
Theorem (Jensen, 1972)

If \<* = X\ and <>(E)’\\+) holds, then there exists a A\-complete
AT-Souslin tree.

Definition (Jensen, 1972)

[05(S) asserts the existence of a sequence (Cs | § < AT) such that
for all limit 6 < \™:

» Csis a club in § of order-type < A;
» if € acc(Cs), then 5 & S and GN B = Ca.

Theorem (Jensen, 1972)

If there exists S C A\t for which [1,(S) + {(S) holds, then there
exists a A\t -Souslin tree.
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Special and specializable A"-trees

Definition
A \T-tree is special if it is the union of A many antichains.
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Special and specializable A"-trees

Definition
A AT-tree is special if it is the union of A\ many antichains.

Note

» A special AT-tree is AT-Aronszajn;

» A \T-Souslin tree is non-special.

Remark
Aronszajn’s and Specker's constructions from A<* = \ may be
steered to yield a special \"-tree.
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Special and specializable A"-trees

Definition
A AT-tree is special if it is the union of A\ many antichains.

Definition
A XT-tree is specializable if it is special in some extended universe
of ZFC with the same cardinal structure.

Theorem (Baumgartner-Mailtz-Reinhardt, 1970)

An RNj-tree is Aronszajn iff it is specializable.

Theorem (implicit in David, 1990)
If V = L, then for every regular )\, the canonical \-complete
\t-Souslin tree constructed using fine structure, is specializable.



Non-specializable A™-Souslin trees

Theorem (Baumgartner, 1970’s, building on Laver)

Uy, entails a non-specializable Ny-Aronszajn tree.
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Non-specializable A™-Souslin trees

Theorem (Baumgartner, 1980's, improving Devlin)
GCH+[y, entails a non-specializable RXy-Souslin tree.
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/32



Non-specializable A™-Souslin trees

Theorem (Baumgartner, 1980's, improving Devlin)
GCH+Uly, entails a non-specializable R>-Souslin tree.

Theorem (Cummings, 1997)

Ny < AN = X\ + 0], entails a non-specializable A\-complete
\T-Souslin tree.

Theorem (Cummings, 1997)

If \ is a singular cardinal of countable cofinality, (1, + CH) and
pRt < X for all ;1 < )\, then there exists a non-specializable
At -Souslin tree.

32



Non-specializable A™-Souslin trees

Theorem (Baumgartner, 1980's, improving Devlin)
GCH+Uly, entails a non-specializable R>-Souslin tree.

Theorem (Cummings, 1997)

Ny < AN = X\ + 0], entails a non-specializable A\-complete
\T-Souslin tree.

Theorem (Cummings, 1997)

If \ is a singular cardinal of countable cofinality, (1, + CH) and
pRt < X for all ;1 < )\, then there exists a non-specializable
\t-Souslin tree.

Theorem (Cummings, 1997)

If X is a singular cardinal of uncountable cofinality, [ 1\ + CH, and
pRo < X for all ;1 < ), then there exists a non-specializable
At -Souslin tree.
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To sum up

The construction of A™-Souslin trees often makes an explicit
distinction between the case that A is a regular cardinal and the
case that \ is singular.
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not M\ is of countable cofinality.

Question

Do one really have to come up with such a long list of variations
each time that a fundamental construction is discovered?
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To sum up

The construction of A™-Souslin trees often makes an explicit
distinction between the case that A is a regular cardinal and the
case that A\ is singular. Some of them also depend on whether or
not M\ is of countable cofinality.

Question

Do one really have to come up with such a long list of variations
each time that a fundamental construction is discovered? Isn't
there any automatic translation between the different cardinals?
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An idea

Find a proxy!

1. Introduce a family of combinatorial principles from which the
constructions can be carried out uniformly;

2. Prove that this operational principle is a consequence of the
“usual” hypotheses.
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An idea

Find a proxy!
1. Introduce a family of combinatorial principles from which the
constructions can be carried out uniformly;

2. Prove that this operational principle is a consequence of the
“usual” hypotheses. This part is done only once, and then will
be utilized each time that a new construction is discovered.

11/32



The proxy principle

Goal

The proxy principle will allow to translate constructions from one
cardinal to another, to calibrate the hypotheses needed to carry a
construction, and will capture all known {>-based constructions.
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Goal

The proxy principle will allow to translate constructions from one
cardinal to another, to calibrate the hypotheses needed to carry a
construction, and will capture all known {>-based constructions.
Definition

P(k,p, R,60,S,v,0,w) asserts that {(x) holds, and so is the
corresponding P~ (k, i1, R,0,S, v, 0,w).



The proxy principle

Definition
P(k, 1, R,0,S,v,0,w) asserts that (k) holds, and so is the
corresponding P~ (k, i, R, 0,8, v, 0,w).
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The proxy principle

Definition

P~(k,u, R,0,S,v,0,w) asserts the existence of (Cs | § < k) s.t.:
> for every limit § < k, Cs is a collection of club subsets of ¢;
» 0 < |Cs|] < pforall 6 < k;
» R is a binary relation over P(k);
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;
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The proxy principle

Example of a binary relation R
C, where D C C iff 38 such that D = C N §.

Definition

P~(k,u, R,0,S,v,0,w) asserts the existence of (Cs | § < k) s.t.:

> for every limit § < k, Cs is a collection of club subsets of ¢;
» 0 < |Cs|] < pforall 6 < k;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;
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The proxy principle

Example of a binary relation R
C,, where DC, Ciff DC C orotp(C) < x.

Definition

P~(k,u, R,0,S,v,0,w) asserts the existence of (Cs | § < k) s.t.:

> for every limit § < k, Cs is a collection of club subsets of ¢;
» 0 < |Cs|] < pforall 6 < k;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;
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The proxy principle

Example of a binary relation R
C*, where D C* C iff 3o < sup(D) with D\ o C C\ a.

Definition

P~(k,u, R,0,S,v,0,w) asserts the existence of (Cs | § < k) s.t.:

> for every limit § < k, Cs is a collection of club subsets of ¢;
» 0 < |Cs|] < pforall 6 < k;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;
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The proxy principle

Example of a binary relation R
+C*, where D, C*C iff cf(sup(D)) < x or D C* C.

Definition

P~(k,u, R,0,S,v,0,w) asserts the existence of (Cs | § < k) s.t.:
> for every limit § < k, Cs is a collection of club subsets of ¢;
» 0 < |Cs|] < pforall 6 < k;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;
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The proxy principle

Definition

P~(k,1, R,0,S,v,0,w) asserts the existence of (Cs | § < k) s.t.:
> for every limit § < k, Cs is a collection of club subsets of ¢;
» 0 < |Cs|] < pforall 6 < k;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;
» for every sequence (A; | i < 6) of cofinal subsets of x
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The proxy principle

Definition

P~(k, 1, R,0,8,v,0,w) asserts the existence of (Cs | § < k) s.t.:
> for every limit § < k, Cs is a collection of club subsets of ¢;
» 0 < |Cs| < pforall 6 < k;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;

» for every sequence (A; | i < 6) of cofinal subsets of x, and
every S € S,
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The proxy principle

Definition

P~(k, 1, R,0,8,v,0,w) asserts the existence of (Cs | § < k) s.t.:
> for every limit § < k, Cs is a collection of club subsets of ¢;
» 0 < |Cs| < pforall 6 < k;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;

» for every sequence (A; | i < 6) of cofinal subsets of x, and
every S € S, there exists § € S
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The proxy principle

Definition

P~(k, 1, R,0,S,v,0,w) asserts the existence of (Cs | 0 < k) s.t.:
> for every limit § < k, Cs is a collection of club subsets of ¢;
» 0 < |Cs| < pforall 6 < k;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;

» for every sequence (A; | i < 6) of cofinal subsets of x, and
every S € S, there exists § € S with |Cs| < v such that:
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The proxy principle

Recall
succ,(C) ={a e C|otp(CNa)=j+1 for somej < o}.

Definition

P~(k, 1, R,0,S,v,0,w) asserts the existence of (Cs5 | 0 < k) s.t.:

> for every limit § < k, Cs is a collection of club subsets of ¢;
» 0 < |Cs|] < pforall 6 < k;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;

» for every sequence (A; | i < 6) of cofinal subsets of x, and
every S € S, there exists § € S with |C5| < v such that:

» Vi< min{d,0}VC € Cssup{B € C|succ,(C\B) C A} =54



The proxy principle

Recall
succ(C) = {a e C|otp(CNa)=j+1 for some j < w}.

Definition

P~(k, 1, R,0,S,v,0,w) asserts the existence of (Cs | § < k) s.t.:

> for every limit § < k, Cs is a collection of club subsets of ¢;
» 0 < |Cs|] < pforall 6 < k;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;

» for every sequence (A; | i < 6) of cofinal subsets of x, and
every S € S, there exists § € S with |C5| < v such that:

» Vi< min{d,0}VC € Cssup{B € C|succ,(C\B) C A} =54

> Vi <min{0,0} sup(cee, 18 € C | succ(C\ B) C Aj} =9,
unless @w = 0.



Default values

Don't worry, we have some default values!
Whenever omitted, let § =1,S = {k},v =2,0 = 1,w = 0.
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Don't worry, we have some default values!
Whenever omitted, let § =1,S = {k},v =2,0 = 1,w = 0.

Definition

P~ (k,u,R,0,S,v,0,w) asserts the existence of (C5 | § < k) s.t.:
» for every limit § < k, Cs is a collection of club subset of §;
» 0 < |Cs| < pforall § < k;

» if C € Cs5 and B € acc(C), then 3D € Cz with (D, C) € R;
» for every sequence (A; | i < 6) of cofinal subsets of x, and
every S € S, there exists § € S with |Cs| < v such that:

» Vi <min{d,0}VC € Cssup{ € C|succ,(C\ ) C A} =9;
> Vi <min{0,0} sup(cee, 18 € C | succ(C\ B) C Ai} =9,
unless w = 0.
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Default values

Don't worry, we have some default values!
Whenever omitted, let § =1,S = {k},v =2,0 = 1,w = 0.

Special case

P~ (k, 1, R) asserts the existence of (Cs | < k) such that:
> for every limit § < &, Cs is a collection of club subset of §;
» 0 < |Cs| < pforall § < rk;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;
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Default values

Don't worry, we have some default values!
Whenever omitted, let § =1,S = {k},v =2,0 = 1,w = 0.

Special case

P~ (k, 1, R) asserts the existence of (Cs | < k) such that:
> for every limit § < &, Cs is a collection of club subset of §;
» 0 < |Cs| < pforall § < rk;
» if C € Cs and B € acc(C), then 3D € Cz with (D, C) € R;

» for every cofinal A C &, there exists 6 < k with C5 = {Cs},
such that sup(nacc(Cs) N A) = 4.



A Souslin tree from the weakest principle

Let x denote a regular uncountable cardinal.

Proposition
P(k,k,C*, 1,{k}, k) entails a k-Souslin tree.
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Sanity check #1

Let A\ denote an uncountable cardinal.

Theorem (Jensen, 1972)

IF A" = X and &(EL") holds, then there exists a \-complete
AT -Souslin tree.
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Sanity check #1

Let A\ denote an uncountable cardinal.

Theorem (Jensen, 1972)

IF A" = X and &(EL") holds, then there exists a \-complete
A\T-Souslin tree.

Theorem

O(EL") entails P(AY,2,\C,{E2"}).

Corollary

IF XY = X and &(E{") holds, then there exists a \-complete
\t-Souslin tree.
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Sanity check #2

Let A\ denote an uncountable cardinal.

Theorem (Jensen, 1972)

If there exists S C A+ for which [1,(S) + {(S) holds, then there
exists a A\t -Souslin tree.
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Let A\ denote an uncountable cardinal.

Theorem (Jensen, 1972)

If there exists S C A+ for which [1,(S) + {(S) holds, then there
exists a A\t -Souslin tree.

Theorem
O + CHy entails P(AT,2,C,{E2, | 6 < A}).
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Sanity check #2

Let A\ denote an uncountable cardinal.

Theorem (Jensen, 1972)

If there exists S C A+ for which [1,(S) + {(S) holds, then there
exists a \T-Souslin tree.

Theorem

[y + CH,, entails P(\T,2,C,{E2, | 6 < \}).

Corollary

If I\ + CH), holds, then for every x < A with A<X = )\, there
exists a y-complete \T-Souslin tree.
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IfA<* = )\, 2% = \T and exists a nonreflecting stationary subset of
E 2 \ then there exists a At-Souslin tree.

Theorem

If 2* = \T and there exists a nonreflecting stationary subset of
EX\, then P(A*,2,\C*, {E{"}) holds.

Corollary (Kojman-Shelah, 1993)

If AN =\, 2’\ = AT and there exists a nonreflecting stationary
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Sanity check #4

Let A denote an uncountable cardinal.

Theorem (Shelah, 1984)

If2R0 = Ny, NSy, is saturated, then there exists an Np-Souslin tree.
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Theorem (Shelah, 1984)

If2R0 = Ny, NSy, is saturated, then there exists an Np-Souslin tree.

Theorem
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And so on..
Okay, so you seem to found a way to redirect all {>-based

constructions of Souslin trees through a single construction.
You haven't yet shown me anything new!
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k-trees which cohere modulo finite

Definition

A subtree T of <Fk is said to be coherent if for all § < «:

» if x,y € Ts, then {a < § | x(a) # y(a)} is finite;
» if x,y €%, and {a < § | x(a) # y(a)} is finite,
then x € T; iff y € Ty.
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Corollary

If Oy + CH), holds for A singular, then there exists a coherent
\T-Souslin tree.

Corollary

If V = L, then any regular uncountable r is not weakly compact iff
there exists a coherent k-Souslin tree.

20 /32



A concept of “being productive” for Souslin trees

Definition
A k-Souslin tree T is free, if for every nonzero n < w and any
sequence of distinct nodes (t; | i < n) from a fixed level § < &,

the product tree of the upper cones ®,<n t;! is again k-Souslin.
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A concept of “being productive” for Souslin trees

Question

How about free A™-Souslin tree for A singular?

Freeness requires that the generic meet A many dense sets, but the
tree cannot be A\-complete, and there cannot be a generic for the
relevant poset over a model of size \. But, there is another way:

Theorem
P(k,p, C, k) entails a u-slim, free k-Souslin tree.
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A concept of “being productive” for Souslin trees
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A concept of “being productive” for Souslin trees

Definition

A k-Souslin tree T is y-free, if for every nonzero v < x and any
sequence of distinct nodes (t; | i < v) from a fixed level ¢ < &,
the product tree of the upper cones );_,, t; is again k-Souslin.

From GCH-type assumption, we can also construct y-free trees for
uncountable . For instance:

Corollary

If I\ + CH,, holds for \ singular, then there exists a logy(\T)-free
AT-Souslin tree.
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Calibrating

P. Larson proved that any coherent N;-Souslin tree contains a
regularly emebedded free N;1-Souslin tree.
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Calibrating

P. Larson proved that any coherent N;-Souslin tree contains a
regularly emebedded free N;1-Souslin tree.
In particular, a coherent N;-Souslin tree entails a free one.

Larson and Zapletal (independently) proved that the following is
consistent: there exists a free N1-Souslin tree, but no coherent
Ni-Souslin tree. The same is true for Ny-Souslin trees.
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Calibrating

P. Larson proved that any coherent N;-Souslin tree contains a
regularly emebedded free N;1-Souslin tree.
In particular, a coherent N;-Souslin tree entails a free one.

Larson and Zapletal (independently) proved that the following is
consistent: there exists a free N1-Souslin tree, but no coherent
Ni-Souslin tree. The same is true for Ny-Souslin trees.

So, one would expect that the fact that free is weaker than

coherent be reflected in the hypothesis needed to construct such.

Theorem
P(k,2,C, k) entails a coherent k-Souslin tree.

Theorem
P(k,k,C, k) entails a free k-Souslin tree.
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Specializable Souslin trees

Recall (implicit in David, 1990)
If V = L, then for every regular )\, there exists a A*-Souslin tree
which is specializable.
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\-complete, specializable \™-Souslin tree.

Recall
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Specializable Souslin trees

Recall (implicit in David, 1990)
If V = L, then for every regular )\, there exists a A*-Souslin tree
which is specializable.

Recall (Gregory, 1976)

If A<* = X\, 2% = AT and there exists a nonreflecting stationary
subset of E’\A then there exists a A\T-Souslin tree.

Theorem

A<D =\, 2)‘ AT and there exists a nonreflecting stationary
subset of EX e /\, then there exists a A-complete, specializable
At -Souslin tree.
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non-Specializable Souslin trees

Let x < A denote infinite cardinals.
Theorem

P(AT,2,C,,1,{\"},2,w) entails a non-Specializable A\*-Souslin
tree.
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Let x < A denote infinite cardinals.

Theorem

P(\T,2,C, 1, {Eﬁ‘;}, 2,w) entails a non-Specializable \*-Souslin

tree, which is k-complete, provided that \<~% = \.

This covers the Baumgartner and Cummings constructions from
GCH+0, and []x. In addition, the relation C, is weak enough
to make P(A\",2,C,,1,{\"},2,w) consistent with large cardinals
that refute [J}. Thereby, covering a seemingly unrelated scenario of
Shelah and Ben-David.

A model of “all Aronszajn trees are nonspecial”

It is consistent that « is supercompact, A = k1, and there exists

a non-Specializable A*-Souslin tree.
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non-Specializable Souslin trees

Let x < A denote infinite cardinals.

Theorem
P(AT,2,C, AT, {Eé\;},zw) entails a free, non-Specializable
\*-Souslin tree, which is k-complete, provided that \<F = ).

A model of “all Aronszajn trees are nonspecial”

It is consistent that x is supercompact, A = k1, and there exists
a free, non-Specializable AT-Souslin tree.
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Generalizing Gregory's theorem to singular cardinals

Recall (Gregory, 1976)

If A<* = X, CH,, and there exists a nonreflecting stationary subset

of Ei‘j\ then there exists a A\T-Souslin tree.

Theorem
If 2<* = X, CH, +0LJ3 and exists a nonreflecting stationary subset

of E2 ¢y, then P(AT, AT, C) holds.
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Generalizing Gregory's theorem to singular cardinals

The derived trees

» P(AT, AT, C) entails a rigid A™-Souslin tree;
» P(AT, AT, C, A1) entails a free AT-Souslin tree;

» P(AT,AT,C,\T) entails an homogeneous AT-Souslin tree.

Theorem

If 2<* = X\, CH, +0% and exists a nonreflecting stationary subset
A
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More results

Let A<* = X\ denote a regular uncountable cardinal.

» If CH,, then adding a single A-Cohen set entails
P(AT, AT, C, A1, {E}"}), and hence
free/homogeneous/specializable trees.
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More results

Let A<* = X\ denote a regular uncountable cardinal.

» If CH,, then adding a single A-Cohen set entails
P(AT, AT, C, A1, {E}"}), and hence

) =

free/homogeneous/specializable trees.

» If Oy + CH,, then a single A\-Cohen set entails
P(At,2,C, A, {E)7},2,w), and hence
free/coherent/specializable/non-specializable trees.

» If Oy + O*(AT), then there exists a (free) A™-Souslin tree T,
whose w-reduced power tree ¥ T /U is AT-Kurepa for any
nonprincipal ultrafilter U over w.



The microscopic approach

29 /32



Diamond for H,,

Recall that P(k, - --) asserts that (k) + P~ (k,---) holds.
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Diamond for H,

Recall that P(k,---) asserts that {(k) + P~ (k, -+ ) holds.

Proposition

For k regular uncountable, (k) iff $(Hy).

Definition

O(Hy) asserts the existence of ¢g : k — Hy and @1 : Kk — H,; as

follows. For every a € H,, A C H,, and p € H,_++, there exists an
elementary submodel M < H,++ such that:

> peM;

» M Nk € k;

> po(MNEK)=a;

» ;i MNEk)=MnNA.

30/32
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A construction & la microscopic approach

#include <NormalTree.h>
#include <SealAntichain.h>
//#include <Specialize.h>
#include <SealAutomorphism.h>
//#include <SealProductTree.h>
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