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Topology

Definition

Let (X , τ) be a topological space.

A ⊆ X is a regular open set if A = Å.

(X , τ) is an interesting for this talk (IFTT) topological space if it has a base
of regular open sets.

RO(X , τ) denotes the family of regular open sets in τ .

Fact

Most topological spaces are IFTT, among which:

T3 spaces (thus all compact Haussdorff spaces),

Spaces given by the order topology induced by a partial order:
Let (P,≤) be a separative partial order, set for A ⊆ P

↓ A = {q : ∃p ∈ A q ≤ p}

and let
τ = {↓ A : A ⊆ P}.

Then (P, τ) is an IFTT space.
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Topology

Recall the following:

Proposition

Assume (X , τ) is any topological space, then RO(X , τ) with operations given by

¬A = X \ A,∧
i∈I Ai = ˚⋂

{Ai : i ∈ I},∨
i∈I Ai =

˚⋃
{Ai : i ∈ I}

is a complete boolean algebra.
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Topology

Given (X , τ) a topological space, CL(X , τ) denotes the clopen subsets of (X , τ).
CL(X , τ) is a subalgebra of RO(X , τ).

Definition

Let (X , τ) be a topological space.

X is 0-dimensional if CL(X , τ) is a base for τ ,

X is extremely disconnected if CL(X , τ) = RO(X , τ).
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Topology

Stone duality

Definition

Let B be a boolean algebra. St(B) is its space of ultrafilters with topology τB

given by the basis of clopen sets

Nb = {G ∈ St(B) : b ∈ G}.

Theorem (Stone Duality)

The following holds:

(St(B), τB)) is a 0-dimensional compact Haussdorff space and B can be
identified with the clopen sets of this space.

(St(B), τB)) is extremely disconnected iff B is complete.

A compact space (X , τ) is extremely disconnected iff CL(τ) = RO(τ) is a
complete boolean algebra.
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Topology

Weak universality of extremely disconnected compact
spaces

Let (X , τ) be an IFTT space (X has a base of regular open sets). Then we can
define a (partial) projection map

πX : St(RO(X , τ))→ X

G 7→ xG

where xG (if defined) is the unique point in X such that the neighboorhood filter
of regular open sets around xG is contained in G .
(If X = R and G ⊇ {(a,+∞) : a ∈ R}, xG = +∞ 6∈ R).

Theorem

Let (X , τ) be an IFTT space.
Then for every compact topological space (Z , σ) and any continuous

f : X → Z

there is a continuous f̄ : St(RO(X , τ))→ Z such that f ◦ πX = f̄ .
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Topology

In particular if our aim is to study all possible preimages of continuous function
with range in say 2ω, we can just focus on continuous functions whose domain is
a compact and extremely disconnected topological space.
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B-names for reals as continuous functions

We work with the boolean valued models approach to forcing.
Let B be a complete boolean algebra and σ ∈ V B be such that

Jσ ∈ 2ωK = 1B.

Then
σ ≈ {〈(n, i), an,i 〉 : n ∈ ω, i < 2}

with an,0 = ¬an,1 for all n, i .
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B-names for reals as continuous functions

We naturally identify σ with a continuous fσ : St(B)→ 2ω (where 2ω is given the
product topology) letting

σ 7→ fσ = {〈G , x〉 : G ∈ St(B), x ∈ 2ω, x(n) = i ⇔ an,i ∈ G}.

Conversely let f : St(B)→ 2ω be a continuous function. Then we identify it with
the B-name

σf = {〈(n, i), f −1[Nn,i ]〉 : n ∈ ω, i < 2}

where
Nn,i = {x ∈ 2ω : x(n) = i}

is clopen in 2ω.
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B-names for reals as continuous functions

Fact

Let B be a complete boolean algebra, f : St(B)→ 2ω be a continuous function
and σ ∈ V B be such that

Jσ ∈ 2ωK = 1B.

Then

Jσfσ = σK = 1B,

fσf
= f .
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B-names for reals as continuous functions

We get that the for any cba B the new name for elements in 2ω correspond to
continuous functions fσ : St(B)→ 2ω.

We chose 2ω but we could have chosen any Polish space to implement this
translation (some extra care is needed for this general case).

If we chose C we would be looking at commutative unital C∗-algebras of the form
C (X ) with X extremely disconnected.

More precisely we would be looking at the space

{f : X → C∪{∞} = S2 : f is continuous and f −1[{∞}] is closed nowhere dense}.

This correspondence is functorial and extends to many combinatorial (first order,
Borel,....) structures by which we can endow 2ω.
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Universally Baire sets of reals

Let (X , τ) be a topological space.

A ⊆ X is nowhere dense if A has a dense open complement.

A ⊆ X is meager if it is contained in the countable union of nowhere dense
sets.

A ⊆ X has the Baire property if there is a unique regular open set U ∈ τ
such that A∆U is meager.

Definition (Feng, Magidor, Woodin )

A ⊆ 2ω is universally Baire UB if for any cba B and any continuous function
f : St(B)→ 2ω. f −1[A] has the Baire property in St(B).

Equivalently A is UB if f −1[A] has the Baire property in X for any continuous
f : X → 2ω with X compact Hausdorff.

Jan Pachl made me aware that the second definition was present in analysis already in
the seventies and has been used in that context to tackle some measure theoretic
problems (for example by Christensen and Pachl himself).
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Universally Baire sets of reals

Universally Baire sets design properties of the real numbers whose meaning cannot
be affected by forcing.

It is immediate to see that open and closed sets are universally Baire and slightly
less immediate to check that Borel sets are also universally Baire.
Σ1

1-sets are also universally Baire.

There are in L ∆1
2-sets which are not universally Baire in L.
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Universally Baire sets of reals

Let A ⊆ 2ω be universally Baire and B be a cba.

For any X ⊆ St(B) with the Baire property, let UX be the unique regular open
(clopen) set such that X ∆UX is meager.
Set

Ȧ = {〈τ,Uf −1
τ [A]〉 : Jτ ∈ 2ωK = 1B}.

We can easily check that for all V -generic filters G ȦG ∩ V = A. But much more
is true about Ȧ.
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Universally Baire sets of reals

Given a cba B and G ∈ St(B), τ, σ ∈ V B, set for R among =,∈:

τRGσ iff JτRσK ∈ G ,

[τ ]G = {σ : σ =G τ}.
V B/G = {[τ ]G : τ ∈ V B}.

Theorem (Cohen’s forcing theorem)

Assume V is amodel of ZFC, B is a cba in V , G ∈ St(B). Then (V B/G ,∈G ) is a
Tarski model of ZFC and

V B/G |= φ⇔ JφK ∈ G .
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Universally Baire sets of reals

Theorem (Shoenfield’s absoluteness)

Let A ∈ UB, B be a cba, G ∈ St(B).
Then

(Hω1 ,∈,A) ≺Σ1 (HV B/G
ω1

,∈G , [Ȧ]G ).

Theorem (Woodin’s absoluteness)

Let V be any model of ZFC+ there exists class many Woodin limit of Woodins.
Then

UBV is a boolean algebra contained in P(2ω) containing all projective sets
and much more.

For any B ∈ V which is a cba for V and any A ∈ UBV and any G ∈ St(B)

(L(Ordω,A),∈) ≺ ((L(Ordω, [Ȧ]G )V
B/G ,∈G ).

17 / 31



Universally Baire sets of reals

Theorem (Shoenfield’s absoluteness)

Let A ∈ UB, B be a cba, G ∈ St(B).
Then

(Hω1 ,∈,A) ≺Σ1 (HV B/G
ω1

,∈G , [Ȧ]G ).
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UBΓ
κ-sets

We aim to find:

The correct topological counterpart of the notion of B-name for a subset of κ.

The correct notion of a property defining a subset of κ which has a definition
whose meaning is unaffected by forcing.

We have already set up a language which will make the first task simple.

We have already seen that the extension of the class UB depends very much on
the set theory we work in: in L there are few such sets, assuming large cardinals
there are plenty of such sets.

In particular we expect that our notion of universally Baire subset of P(κ) will be
very much dependent on our set theoretic assumptions and may eventually
stabilize when we are assuming “maximal extensions” of ZFC.
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UBΓ
κ-sets

Fact

Let B be a complete boolean algebra. There is a natural correspondence between
B-names for elements of 2κ and continuous functions f : St(B)→ 2κ, where 2κ is
endowed with the PRODUCT topology.

Definition

Let (X , τ) be a topological space.

A ⊆ X is κ-meager if it is contained in the union of κ-many closed nowhere
dense sets.

A ⊆ X has the κ-Baire property if it has a κ-meager difference with a regular
open set in τ .
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UBΓ
κ-sets

Definition (V., Ikegami)

Let Γ be a class of complete boolean algebras.
A ⊆ 2κ is in UBΓ

κ if f −1[A] has the κ-Baire property for all B ∈ Γ and all
continuous f : St(B)→ 2κ.
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UBΓ
κ-sets

We will show that (almost) all equivalent characterizations of the notion of
universal baireness can be stepped up to this new general setting.

Definition

Let B be a complete boolean algebra.
FAκ(B) holds if ⋂

{Dα : α < κ} 6= ∅

for all collections {Dα : α < κ} of dense open subsets of St(B).
Γκ is the class of all B satisfying FAκ(B).

We shall analyze just UBΓ
κ-sets with Γ ⊆ Γκ.
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UBΓ
κ-sets

The restriction on cbas in Γκ is natural, necessary and harmless:

Fact

Assume FAκ(B) fails, then St(B) is a κ-meager topological space, in particular
any subset of St(B) vacuously has the κ-Baire property.

In particular for any class of cbas Γ all cbas such that FAκ(B) fails will not be able
to detect a subset of 2κ which may not be in in UBΓ

κ.
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UBΓ
κ-sets Different characterizations of UBΓ

κ-sets

Definition

Let Fun(κ,X ) denote the family of finite partial functions from κ to X .

T ⊆ Fun(κ,X ) is a treeκ on X if for all s ∈ T and t ⊆ s, t ∈ T , and for all z
finite subset of κ there is some s ∈ T with domain z .

A total f : κ→ X is a branch of T if f � z ∈ T for all z finite subset of κ.

[T ] is the body of T consisting of all its branches.

Assume T is a treeκ on X × Y . p[T ] is the set of all g : κ→ Y such that
(f , g) ∈ [T ] for some f : κ→ X .
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UBΓ
κ-sets Different characterizations of UBΓ

κ-sets

Theorem (V., Ikegami)

TFAE for A ⊆ 2κ and Γ ⊆ Γκ:

1 A ∈ UBΓ
κ.

2 There are treeκ sets S ,U on 2× V such that:

p[S ] = A,
for any B ∈ Γ we have that

Jp[U] = 2κ \ p[S ]K = 1B,

Notice that there can be non-universally Baire subsets of 2ω which are in UBΓ
κ,

(here we require the projection operation p to behave nicely only for forcings in Γ).
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UBΓ
κ-sets Different characterizations of UBΓ

κ-sets

For any M let πM : M → NM be its Mostowski collapsing map.

Tκ,B is the set of all M ≺ Hθ (for some large enough θ) such that

|M| = κ ⊆ M and B ∈ M,

there exists G ∈ St(B) such that G ∩ D ∩M for all D ∈ M dense open
subset of B+ (i.e. πM [G ] is πM [M] = NM -generic for πM(B)).

Ultrafilters G as above are called M-generic ultrafilters.

Theorem (Woodin)

TFAE for a cba B:

1 FAκ(B),

2 Tκ,B is stationary.
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UBΓ
κ-sets Different characterizations of UBΓ

κ-sets

Theorem (V., Ikegami)

TFAE for A ⊆ 2κ and Γ ⊆ Γκ:

1 A ∈ UBΓ
κ.

2 for any B ∈ Γ there is a B-name Ȧ such that

πM(Ȧ)πM [G ] = {πM(τ)πM [G ] : τ ∈ M and Jτ ∈ ȦK ∈ G} = A ∩ NM [πM [G ]]

for a club of M ∈ Tκ,B and for all M-generic filters G .

(here πM(τ)πM [G ] = {(α, i) : Jτ(α) = iK ∈ G})
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UBΓ
κ-sets Forcing axioms and UBΓ

ω1
-sets

What sets are UBΓ
ω1
?

Theorem (Moore, Todorčevic̀, Veličkovic̀-Caicedo, Aspero...)

Assume BMM holds in V and T = ZFC + BMM. Then there is a well ordering of
P(ω1) which is UBΓ

ω1
, where Γ ⊆ Γω1 is the class of forcing notions preserving T .

In particular we have plenty of UBΓ
ω1

-sets for such a Γ.
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UBΓ
κ-sets Generic absoluteness for UBΓ

ω1
-sets

Theorem (V.)

Assume MM+++ and Γ ⊆ Γω1 be the class of all SSP-forcings which preserve
MM+++. Then for all B ∈ Γ and all A ∈ UBΓ

ω1
there is Ȧ ∈ V B such that for all

G ∈ St(B)

L(Ordω1 ,A) ≺ L(Ordω1 , [Ȧ]G )V
B/G .

In particular combining the two results we get that all sets in L(P(ω1)) are in
UBΓ

ω1
assuming MM+++.

The theory MM+++ makes the class of UBω1

Γ -sets extremely large and generically
invariant exactly as it occurs for the Universally Baire sets of 2ω assuming large
cardinals.
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Final comments

Here are some questions and comments:

Assume MM+++. Let Γ be as before. Can there exists a subset of 2ω1 which
is not in UBΓ

ω1
?

We can also give (in the presence of MM+++) the characterization of UBΓ
ω1

in terms of generic elementary embeddings in analogy with what is done by
means of generic stationary tower forcing for universally Baire sets (Theorem
3.3.7 of Larson’s book on the stationary tower).

With Giorgio Audrito, Joel Hamkins, and Thomas Johnstone we are isolating
a boldface iterated resurrection axioms which strenghten bounded forcing
axioms yielding various forms of generic absoluteness results with (H(ω2),A)
in the place of L(Ordω1 ,A) (and at the prize of less large cardinal strength).

We hope to have soon a preprint with Daisuke of what I’ve been presenting
you today.
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Final comments

Bibliography I
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Universally baire subsets of 2κ.
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Matteo Viale.

Category forcings, MM+++, and generic absoluteness for the theory of strong
forcing axioms.
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Final comments

Thanks for your attention!
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