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Goal
we want to force a model of t < h = κ < s = λ
and see where we can put b

Definition
We can define h as the minimum cardinal for which there is a
sequence 〈Iξ : ξ ∈ h〉 of ⊂∗-dense ideals on P(ω) with empty
intersection (or maybe intersection equal to [ω]<ℵ0)
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basic poset definitions

Hechler H is the standard order on (s,g) ∈ ω<ω↑ × ωω↑
adds dominating real

ccc Mathias/Prikry (w ,U) ∈ Q(U) = [ω]<ω × U
since U ∈ ω∗ it adds unsplit W ≺∗ U

Booth/Solovay for sfip Y ⊂ [ω]ω, also Q(Y)
(w ,Y ) ∈ [ω]<ω × [Y]<ω

adds a generic pseudointersection W to the family Y

Shelah: the forcing QBould with countable support to first get
b = ω1 < s = ω2

family of special ccc subposets of QBould : we’ll call Q207
first used by Fischer-Steprans
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Brief history

Proposition

Baumgartner-Dordal [1985] obtain h ≤ s < b with Hechler
but h will be ω1 because of Cohens

to raise h (or even keep h large) we have to be constantly
adding pseudointersections (probably also raising t), but how to
also keep it small?

Proposition

Blass-Shelah [1987] introduce matrix-iterations TBI (named by
Brendle 2011?) but actually short-tall; to obtain a model of
ω1 < u < d using special ccc Mathias (generalized Kunen)

Proposition

Shelah [1983] in Boulder proceedings introduced QBould to
obtain ω1 = b < s = a.
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still brief history

Proposition

Fischer-Steprans [2008] could raise b by using Cohen forcing to
define ccc subposets of QBould , and obtain b = κ < κ+ = s

Proposition

Brendle-Fischer [2011] using long-low matrix and Blass-Shelah
ccc Mathias could get unrestricted ω1 < b = a = κ < s = λ

Notes
It was shown in Brendle-Raghavan [2014] that QBould can be
factored as countably closed * ccc Mathias

(similar to Fischer-Steprans but still limits to κ+).
Brendle delivered a beautiful workshop on matrix forcing at
Czech WS 2010.
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a matrix iteration 〈P(α, γ),Q(α, γ) : γ ≤ µ , α < λ〉

in case
you
don’t
know
what a
matrix
looks
like



properties required of P equal 〈PP(α, i) : i ≤ κ, α ≤ γ〉

Let β < α ≤ γ and j < i < κ κ uncountable

1. as we go up, we have complete subposets
P(α, j) <c P(α, i) this is key but subtle

2. but not “needed” for limit:
⋃

j<i Pα,j is just a subset of P(α, i)
3. as we go horizontally we iterate: ?

P(β, j) ∗Q(β, j) = P(β + 1, j) and also
4. limit α implies P(α, i) =

⋃
{P(β, i) : β < α} i.e. FS

5. for i = κ, P(α, κ) =
⋃
{P(α, i) : i < κ}

All posets will be ccc, and so if Ẏ is a P(λ, κ)-name of a subset
of ω, there are (α, i) ∈ λ× κ so that Ẏ is a P(α, i)-name.

This means Ẏ won’t know about even P(0, i + 1) and so gives
us a chance to keep a cardinal invariant small
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illustrative examples

Let us look at two examples where P(0, i) is FSj≤iHj
adding 〈H0

i : i < κ〉

iterate Hechler up every column

If, for all α > 0 and i , Q̇(α, i) is
(⋃

j<i Q̇(α, j)
)
∗ H

up each column, iteratively add Hechler reals
then we get a model of b = κ < d = λ (and h = ω1)

just add one Hechler! in each column

If, for all α > 0 and i < κ Q̇(α, i) is H (but in VP(α,i))
i.e. Q̇(α, i) = [ω]<ω↑ ×

(
ωω↑ ∩ V [Gα,i ]

)
then we get a model of b = λ ( P(α + 1, κ) = P(α, κ) ∗ H)

remark
In first case, it is obvious that P(α, i) <c P(α, i + 1), but not so
much in the second case (more on this later)
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remark
In fact, let us notice that HVα,i 6<c HVα,i+1 ,

but it IS
the construction of the chain {Qα,i : i < κ} that controls things.

Here’s why

a γ-matrix Pγ extending a δ-matrix Pδ

means the obvious things (the heights must be the same)

Lemma (and limits come for free)

If γ is a limit and we have an increasing sequence {Pδ : δ < γ}
of matrices, then the union Pγ extends canonically to a γ-matrix

The union,
⋃
δ<γ Pδ will be a list {P(α, i) : i ≤ κ, α < γ}. For

each i < κ, P(γ, i) must equal
⋃
δ<γ P(δ, i).

And, as needed, we have P(γ, j) <c Pγ,i ( j < i ≤ κ)
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Lemma (Brendle-Fischer)

Suppose P <c P′, and Q is a P-name and Q′ is a P′-name.
For P ∗Q <c P′ ∗Q′, we need

every P-name of a maximal antichain of Q is also forced by P′
to be a maximal antichain of Q′.

Corollary

If P <c P′, then P ∗Q <c P′ ∗ Q̌.

Corollary (for successor α < λ)

If Pα is given, and if Yα is a Pα,iα-name of a sfip family, we can
let Qα,j be trivial for j < iα and let Qα,i = Q(Yα) for j ≥ iα with
generic set Ȧα.

In this way we extend to Pα+1. With
simple bookkeeping we will obtain t ≥ κ and we will let
Ii = ideal〈{Ȧα : iα = i}〉 towards h ≤ κ.
With more tedious bookkeeping, Ij ⊃ Ii (for j < i )
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Corollary
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Proposition (Ihoda-Shelah, 1988)

If Q is (forced to be) Souslin and P <c P′, then P ∗Q <c P′ ∗Q

for example if Q = H (can also use rank)

Corollary (for cf (α) = κ)

If Pα is given, then we can let Pα+1 be constructed with
Q̇α,i = H for all i ≤ κ.

Definition (fundamental Ind. Hyp.)

By induction on γ < λ, when building Pγ and setting
Iγi = ideal〈Ȧα : α < γ, and iα = i〉 i + 1-names

we need that no Pγ,i -name is in Iγi (actually just successor i)
it is routine at limit γ and for successor γ using Q(Yγ)

Corollary (Baumgartner-Dordal)

When cf (α) = κ and we let Q̇α,i = H, we preserve Ind Hyp.
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Now we discuss QBould and Q207

unsplit reals

For other limits µ, we will, by induction on i < κ, define

Q̇µ,i = Ci+1×2ω ∗ Q̇µ,i

where CI is Fn(I,2) and it is forced that the generic for Q̇µ,i is
unsplit over V [Pµ,i ] (making Ind Hyp much harder)

Also, we have to work to ensure that Pµ+1 "holds"
and this is what 
 Q̇µ,i ∈ Q207 is for.

i.e. to take care of Pµ,j ∗ Cj+1×2ω ∗ Q̇µ,j <c Pµ,i ∗ Ci+1×2ω ∗ Q̇µ,i

finite working part

Elements q = (wq,T q) of QBould , like all our posets,
have a finite working part w and an infinite side condition T

elements r of Ci+1×2ω are also working part
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stronger Induction Hypothesis seems necessary

Before, or even if, discussing what such a (w ,T ) ∈ QBould looks
like, I seemed to need a stronger hypothesis on Pµ in order to
be able to construct Q̇µ,i ∈ Q207 to do the job.

Definition
Γµi is the set of α < µ with iα = i ; and 〈p0, . . . ,pn〉 is a Γµi -fan if

1. each pk ≤ p0 is in Pµ,i+1,
2. for each β /∈ Γµi , the working parts of pk (β) (1 ≤ k ≤ n) are

all the same
3. for ξ, α both in Γµi and 1 ≤ j < k ≤ n, the working part of

pj(ξ) intersect the working part of pk (α) is contained in the
working part of p0(ξ) intersect the working part of p0(α).
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new Ind Hyp (µ, i)
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Γµi is the set of α < µ with iα = i ; and 〈p0, . . . ,pn〉 is a Γµi -fan if
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3. for ξ, α both in Γµi and 1 ≤ j ≤ k ≤ n, the working part of

pj(ξ) intersect the working part of pk (α) is contained in the
working part of p0(ξ) intersect the working part of p0(α).

new Ind. Hyp. : Γµi -pure

For any dense set D ⊂ Pµ,i+1 and any Γµi -fan 〈p0,p1, . . . ,pn〉,
there is an extension Γµi -fan 〈p0, p̄1, . . . , p̄n〉 such that
{p̄1, . . . , p̄n} ⊂ D.
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this is a good Ind. Hyp.

Lemma (assume Γµi -pure)

By induction on µ, if Ẏ is a Pµ,i -name and 〈p0,p1, · · · ,pn〉 is a
Γµi -fan, then, for 1 ≤ j , k ≤ n, integer y,

pj 
 y ∈ Ẏ iff pk 
 y ∈ Ẏ
and pj ⊥ p iff pk ⊥ p for each p ∈ Pµ,i

Corollary

If p0 ∈ Pµ,i and Ẏ is a Pµ,i -name, and p0 
 Ẏ ⊂ Ȧα ∪m for
some α ∈ Γµi , then p0 
 Ẏ is finite. thus preserves Ind. Hyp.

Proof.
otherwise

the Γµi -fan 〈p0,p0,p0〉 has an extension fan
〈p0, p̄1, p̄2〉 with some arbitrarily large y > m such that
p̄1 
 y ∈ Ẏ . But then y must be in working part of p̄1(α) and
not in the working part of p̄2(α). But then p̄2 
 y ∈ Ẏ \ Ȧα.
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this is a good Ind. Hyp.

Lemma (assume Γµi -pure)
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 y ∈ Ẏ iff pk 
 y ∈ Ẏ
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Hechler preserves the Ind. Hyp Γµi -pure

Lemma (Baumgartner-Dordal)

If D ⊂ H is dense, there is a function rkD : ω<ω↑ 7→ ω1 such that
rk(s) = 0 if there is a g with (s,g) ∈ D, and rk(s) = α > 0 if
there is an ` such that for each n, there is an
(sn,g + n) < (s,g + n) with sn ∈ ω`↑ and rk(sn) < α.

Suppose that Pµ (cf (µ) = κ ) satisfies Γµi for any i < κ.
Now let Ḋ be a Pµ,i+1-name of a dense subset of H. Also, let
〈p0,p1, . . . ,pn〉 be any Γµi -fan.

For Γµ+1
i , we have to find an extension fan 〈p0, p̄1, . . . , p̄n〉 so

that p̄k � µ 
 pk (µ) ∈ Ḋ for all 1 ≤ k ≤ n.
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proof continued

We may assume that p0(µ) = (s0, ġ0), which means that, we
can simply assume that pj(µ) = (s0, ġ0) for all j ≤ n

AND, by
Γµi , we can assume that p1 forces a value α0 on rk Ḋ(s0), and on
the witnessing `0.

There is an extension fan 〈p0, p̄1, · · · , p̄n〉 so that each p̄k forces
a value on ġ0 � `0 and p̄1 picks an s1 so that each
p̄k 
 (s1, ġ0) < (s0, ġ0) and p̄1 forces that rk(s1) = α1 < α0 .

Repeat this finitely many times (as rank descends) we end up
with there being a ġ1 such that p̄1 
 (s1, ġ1) ∈ Ḋ and, for all
1 ≤ k ≤ n and p̄k 
 (s1, ġ1) < (s0, ġ0).

Make the same steps (keep extending the fan) so that we then
have an s2 and ġ2 so that p̄2 
 (s2, ġ2) ∈ Ḋ, and each
p̄k 
 (s2, ġ2) < (s1, ġ1) .
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 (s1, ġ1) < (s0, ġ0).
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can simply assume that pj(µ) = (s0, ġ0) for all j ≤ n AND, by
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the witnessing `0.

There is an extension fan 〈p0, p̄1, · · · , p̄n〉 so that each p̄k forces
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okay, finally back to QBould

Definition (from Avraham)

h is a log-measure on a set e if h(k) = 0 for all k ∈ e and if
h(e1 ∪ e2) > ` > 0, then one of h(e1),h(e2) is at least `.

Definition
the log-measure (e,h) is built from the sequence
〈(e1,h1), . . . , (en,hn)〉 (max(ek ) < min(ek+1)) if e ⊂ (e1 ∪ · · ·en)
and if x ⊂ e is h-positive, then there is a k such that x ∩ ek is
hk -positive
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Definition
q = (wq,T q) ∈ QBould if

T q = 〈tk = (ek ,hk ) : k ∈ ω〉 and

max(ek ) < min(ek+1) and lim inf{hk (ek ) : k ∈ ω} =∞

We let int(T ) =
⋃

k int(tk ) =
⋃

k ek and

(w2,T2) < (w1,T1) if each t2
k is built from members of T1

and there is an ` such that

w1 = w2 ∩min(int(t1
` )) and w2 \ w1 ⊂ int(T1) \min(int(t1

` ))



Q207 and ℵ1-directed

Definition (how to handle <c for QBould )

A subset Q ⊂ QBould is in Q207 if it is closed under finite
changes, the subfamily {q ∈ Q : wq = ∅} is directed, and

whenever {(wn,Tn) : n ∈ ω} is pre-dense, there is a single T
such that, (∅,T ) ∈ Q and for each n, there is an `n such that
(wn,T \ `n) < (wn,Tn). (we made it upward absolute)

Lemma (Fischer-Steprans partially)

If Q ∈ Q207 and P is ccc, and 
P Q ⊂ Q1 ∈ Q207 then
Q <c P ∗Q1. Furthermore, if Q ⊂ QBould is closed under finite
changes and weakly centered, and P is ccc, then there is a
P ∗ C2ω -name Q̇1 such that 
 Q ⊂ Q̇1 ∈ Q207 and adds an
unsplit real over V .
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Finishing the construction of Pλ

Lemma
Let µ < λ be a limit of cofinality 6=κ and assume that Pµ,i+1 is a
Γµi -pure extension of Pµ,i . Assume further that Q̇µ,i is a
Pµ,i ∗ C2ω -name of a member of Q207. Then there is a
Pµ,i+1 ∗ C2ω+2ω -name Q̇µ,i+1 that is forced to be a member of
Q207 and such that Pµ+1,i+1 is a Γµ+1

i -pure extension of Pµ+1,i .
In addition, Q̇µ,i+1 can be chosen so that it adds an unsplit real
over the extension by Pµ,i .

Remark
When handling a pre-dense {(un,Tn) : n ∈ ω} (in V [Gµ,i ]) from
Q̇µ,i , towards extending into Q207 we may not be able to do so
(Cohen forcing) while keeping things Γµ,i -pure

but then we Cohen force with fans as side-conditions to add to
Q̇µ,i+1 in a Γµi -pure way and destroy the pre-density.
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conclusion and questions

Lemma
If we never use Hechler for α > 0, we obtain κ = t = b < λ = s

Lemma
If we do as discussed, we get κ = t = h < λ = b = s

Corollary

There is an easy trick to lower t to ω1 (or any other value) while
leaving others the same.

Question
Is it consistent to have ω1 < h < b < s?

Is it consistent to hae ω1 < h < s < b?
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