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The θ-deformed C (Sn
θ )

The θ-deformed spheres”) C (Sn
θ ) are a class of C*-algebras studied

by Connes and Landi [8], and Connes and Dubois-Violette [6, 7],
among others [14, 16].

Definition
Let (θ)ij be an m ×m real-valued skew-symmetric matrix, and let
ρij = exp(2πiθij).
The θ-deformed 2m − 1-sphere C (S2m−1

θ ) is the universal
C*-algebra generated by m normal elements z1, ..., zm satisfying
the relations

z1z∗1 + ...+ zmz∗m = 1, zizj = ρjizjzi .

The θ-deformed 2m-sphere C (S2m
θ ) is the universal C*-algebra

generated by m normal elements z1, ..., zm and a hermetian
element x satisfying the relations

z1z∗1 + ...+ zmz∗m + x2 = 1, zizj = ρjizjzi , [x , zi ] = 0.
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One thinks of C (Sn
θ ) as being the algebra of continuous functions

on a virtual space Sn
θ .

We note that C (S2m−1
θ ) is obviously a quotient of C (S2m

θ ) (so that
S2m−1
θ is the “equator” of S2m

θ ), but that C (S2m−2
θ ) is apparently

not a quotient of C (S2m−1
θ ).

The C (Sn
θ ) are (strict) deformation quantizations of Sn by actions

of the appropriate Tm(periodic actions of Rm), and so have the
same K -groups as C (Sn) [22, 27, 25, 23]. The C (Sn

θ ) are
intimately related to the noncommutative tori C (Tm

θ ) [20], being
continuous fields of noncommutative tori (with some degenerate
fibers) in exactly the same way that Sn decomposes as an orbit
space for the action of Tm [16, 18].

Each C (Sn
θ ) admits the structure of a spectral triple, and satisfies

the (tentative) axioms [4, 8] of a “noncommutative SpinC

manifold”.
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The C (Sn
θ ) are (completions) of solutions of homological equations

satisfied by (the coordinate algebras of) ordinary spheres, but not
by, for example, the q-deformed spheres C (Sn

q ) of Podleś [19, 10].

The moduli space of solutions of the homological equations for the
case n = 3 has been determined by Connes and Dubois-Violette.
Critical values of the moduli space are the full polynomial
∗-subalgebras of the C (S3

θ )’s, while generic values are (quotients
of) the Sklyanin algebras of noncommutative algebraic geometry
[26].

Instanton solutions of the Euclidean Yang-Mills equations for S4
θ

and their moduli have been extensively studied (e.g.[2, 3, 13]),
inspired both by the classical work of Atiyah, Ward, Donaldson,
etc. [1, 11], and also by investigations of the gauge theories of the
noncommutative tori [9, 5, 15] and of the Moyal-deformed 4-plane
[17, 24, 12]. Despite this, numerous fundamental questions remain
open or unexplored.
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Complex Vector Bundles over Sn.

By the clutching construction, the isomorphism classes of rank k
complex vector bundles over Sn are in bijective correspondence
with πn−1(GLk(C)).

If k ≥ [n2 ], then the map πn−1(GLk(C))→ K−n mod 2(Sn−1) is an
isomorphism, but as n increases, these homotopy groups become
difficult to compute for k < [n2 ]. Cancellation fails for the
semigroup of isomorphism classes of complex vector bundles over
Sn for n ≥ 5. For example, S5 has only one nontrivial bundle over
it, coming from the fact that π4(S3) ∼= Z2.

if n 6= 2, then Sn has no nontrivial line bundles.
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Definition
We will say that θ is totally irrational if all entries off of the main
diagonal of θ are irrational.

Definition
We let V (Sn

θ ) denote the semigroup of isomorphism classes of
finitely-generated projective C (Sn

θ )-modules.

Theorem
If θ is totally irrational, then all finitely-generated projective
C (S2m−1

θ )-modules are free,, i.e. all “complex vector bundles” over
S2m−1
θ are trivial, and V (S2m−1

θ ) satisfies cancellation.
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Theorem
Let θ be totally irrational. Then

V (S2m
θ ) ∼= {0} ∪ (N× K1(C (S2m−1

θ ))) ∼= {0} ∪ (N× Z).

Thus every complex vector bundle over S2m
θ decomposes as the

direct sum of a “line bundle” and a trivial bundle, and cancellation
holds.

If θ contains a mix of rational and irrational terms, then somewhat
surprising phenomena can occur. For instance if n = 5 and θ
consists of one irrational entry (besides its negative) and all other
entries are zero, then S5

θ has Z× Z-many nontrivial “line bundles”
over it, but all bundles of higher rank are trivial. For higher n
torsion phenomena can occur. Also, for n ≥ 7 it is possible for θ to
contain certain mixes of rational and irrational terms and for
cancellation to still hold, though for generic mixed θ cancellation
fails.
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Idea of the Proofs of the Theorems.
As a generalization of the genus-1 Heegaard splitting of S3, one
sees that

S2m+1 = (D2m × S1) ∪S2m−1×S1 (S2m−1 × D2).

This decomposition is preserved by the canonical action of Tm on
S2m−1. Thus deforming S2m−1 by using θ and the action of Tm

preserves this decomposition at the level of noncommutative
spaces.
Thus we can view S2m+1

θ as consisting of (D2n × S1)θ and
(S2n−1 × D2)θ “hemispheres” glued together over a
(S2n−1 × S1)θ = C (S2n−1

θ′ )×α Z “equator”. We can view S2m
θ as

two D2m
θ hemispheres over a S2m−1

θ equator. We prove the
theorems simultaneously with obtaining the homotopy-theoretic
results that

π0(GLk(C (S2n−1
θ′ ))) ∼= Z

and
π0(GLk(C (S2n−1

θ′ )×α Z)) ∼= Z× Z.
in a type of zig-zag inductive argument.
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(This last isomorphism true in fact for any θ′ so long as α acts
sufficiently irrationally.)

Actually to do this our first move is to show that the map

πj(GLk(C (S2n−1
θ )×α1Z...×αrZ))→ K1−j mod 2(C (S2n−1

θ )×α1Z...×αrZ)

is an isomorphism assuming that the αi ’s act sufficiently
irrationally.
The argument uses Rieffel’s [21] result that, so long as θ contains
at least one irrationaly entry, then

πj(GLk(C (Tm
θ ))) ∼= Z2m−1

,

along with using the Pimsner-Voiculescu sequence and K -theory
and unstabilized homotopy versions of Mayer-Vietoris.
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The case n=4.
We can give a very explicit description of the modules M(k , s) in
this case. The Rieffel projection [20] p = MgV + Mf + V ∗Mg of
trace |θ| mod 1 plays a central role in the construction.

Viewing C (S3
θ ) as a continuous field of noncommutative 2-tori over

[0, 1], we consider the invertible

X = exp(2πit)p + 1− p ∈ C (S3
θ ),

where p is a Rieffel projection with trace |θ| mod 1. (note that X
corresponds to the image of p under the Bott map
K0(C (T 2

θ ))→ K1(SC (T 2
θ ))).

Lemma
Let θ be irrational. Then the natural map
π0(GLj(C (S3

θ )))→ K1(C (S3
θ )) ∼= Z is an isomorphism for all j ≥ 1.

The invertible X is a generator of π0(GL1(C (S3
θ ))).

It follows that one can take the representative M(k, s) to be the
result of using the image of X s in GLk(S3

θ ) as a clutching element.
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We obtain M(1, s) ∼= PC (S4
θ )2, where

P =
1

2

(
1 + x (1− x2)1/2X

(1− x2)1/2X ∗ 1− x

)
(here x is the hermetian generator x from the definition of C (S4

θ ).).

The first example of an C (S4
θ )-module to appear in the literature is

the “instanton bundle of charge-1” eC (S4
θ )4 discovered by Connes

and Landi, is given by

e :=
1

2


1 + x 0 z2 z1

0 1 + x −ρz∗1 z∗2
z∗2 −ρ̄z1 1− x 0
z∗1 z2 0 1− x

 ,

where ρ = exp(2πiθ), and the zi and x are the generators of
C (S4

θ ). The Levi-Civita connection ede gives an instanton solution
to the Euclidean Yang-Mills equations for S4

θ . In the case θ = 0,
the projection e corresponds to the complex rank-2 vector bundle
E1 over S4 with second Chern number (charge) 1. The Levi-Civita
connection ede is then a charge-1 instanton on E1.
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Proposition

Let e be Connes and Landi’s instanton projection, and let θ be
irrational. Then the corresponding module eC (S4

θ )4 is isomorphic
to M(1,−1)⊕ C (S4

θ ).

The Proposition follows from first showing that

(
X 0
0 1

)
and(

z2 z1
−ρz∗1 z∗2

)
are path-connected in GL2(C (S3

θ )), and then seeing

that eC (S4
θ )4 results from clutching using

(
z∗2 −ρ̄z1
z∗1 z2

)
.

Thus the basic rank-2 instanton bundle for S4
θ splits as the sum of

a nontrivial line bundle and a trivial line bundle!
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The invertible X ∈ C (S3
θ ) generates a C*-subalgebra

C ∗(X ) ∼= C (S1). One may “suspend” C ∗(X ) by coning it twice,
unitizing the cones, and then gluing them together to obtain a
C*-subalgebra of C (S4

θ ) isomorphic to C (S2).

Theorem
Suppose that θ is irrational. Then

M(k , s) ∼= E (k , s)⊗C(S2) C (S4
θ ),

where E (k, s) is the module of continuous sections of a rank-k
complex vector bundle over S2 with Chern number −s, and the
inclusion C (S2) ↪→ C (S4

θ ) is as described above.
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Thus every complex vector bundle over S4
θ is the pullback of a

complex vector bundle over S2 via a certain fixed quotient map
S4
θ → S2. The basic instanton bundle e of charge 1 over S4

θ is just
the pullback of the direct sum of the Bott bundle over S2 with
Chern number 1 and a trivial line bundle! This is intriguing as it
provides a link between the classical Bott bundle on S2 and a
deformation of the charge-1 instanton bundle on S4.



Further Directions

I have managed to calculate certain higher homotopy groups
πk(GLj(C (Sn

θ ))) for various k , j , n and θ and have obtained
interesting values in many cases (e.g π0(GL1(C (S4

θ ))) ∼= Z× Z,
while replacing 1 with j ≥ 2 yields zero).

I am also investigating the gauge theory of the C (Sn
θ ) as part of a

larger project. It seems to me that U(1) instantons for C (S4
θ )

should probably exist. There should also be a nontrivial monopole
theory. The gauge theory for higher C (Sn

θ ) could potentially be
simpler than that for classical spheres.
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