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Definition

Let (0); be an m x m real-valued skew-symmetric matrix, and let
pij = exp(2mifjj).

The #-deformed 2m — 1-sphere C(Sezm_l) is the universal
C*-algebra generated by m normal elements zi, ..., z, satisfying
the relations

* *
2129 + ...+ ZmZm = 1, ZiZj = PjiZjZj.

The 6-deformed 2m-sphere C(S3™) is the universal C*-algebra
generated by m normal elements zi, ..., z,, and a hermetian
element x satisfying the relations

* * 2
nz{ + ..+ zmzp + x> =1, zzj = pjizizi, [x,z]=0.



One thinks of C(S/) as being the algebra of continuous functions
on a virtual space Sj.
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We note that C(Sg’"—l) is obviously a quotient of C(S3™) (so that
592'"_1 is the “equator” of S2™), but that C(592’"_2) is apparently
not a quotient of C(S;™1).

The C(S)) are (strict) deformation quantizations of S” by actions
of the appropriate T (periodic actions of R™), and so have the
same K-groups as C(S") [22, 27, 25, 23]. The C(S54) are
intimately related to the noncommutative tori C(T4") [20], being
continuous fields of noncommutative tori (with some degenerate
fibers) in exactly the same way that S” decomposes as an orbit
space for the action of T™ [16, 18].

Each C(S4) admits the structure of a spectral triple, and satisfies
the (tentative) axioms [4, 8] of a “noncommutative Spin®
manifold”.



The C(Sj) are (completions) of solutions of homological equations
satisfied by (the coordinate algebras of)) ordinary spheres, but not
by, for example, the g-deformed spheres C(Sj) of Podles [19, 10].
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Critical values of the moduli space are the full polynomial
*-subalgebras of the C(S3)'s, while generic values are (quotients
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Instanton solutions of the Euclidean Yang-Mills equations for Sg
and their moduli have been extensively studied (e.g.[2, 3, 13]),
inspired both by the classical work of Atiyah, Ward, Donaldson,
etc. [1, 11], and also by investigations of the gauge theories of the
noncommutative tori [9, 5, 15] and of the Moyal-deformed 4-plane
[17, 24, 12]. Despite this, numerous fundamental questions remain
open or unexplored.
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Complex Vector Bundles over S”.

By the clutching construction, the isomorphism classes of rank k
complex vector bundles over S” are in bijective correspondence
with Wn_l(GLk((C)).

If k > [2], then the map m,_1(GLk(C)) — K=" ™4 2(5"~1) is an
isomorphism, but as n increases, these homotopy groups become
difficult to compute for k < [5]. Cancellation fails for the
semigroup of isomorphism classes of complex vector bundles over
S" for n > 5. For example, S° has only one nontrivial bundle over
it, coming from the fact that 74(S3) = Z,.

if n# 2, then S§” has no nontrivial line bundles.
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diagonal of @ are irrational.
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Definition
We let V/(S;') denote the semigroup of isomorphism classes of
finitely-generated projective C(S4')-modules.

Theorem

If 0 is totally irrational, then all finitely-generated projective
C(S7™1)-modules are free,, i.e. all “complex vector bundles” over
S;™ 1 are trivial, and V/(S3™ 1) satisfies cancellation.
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Thus every complex vector bundle over 592’" decomposes as the
direct sum of a “line bundle” and a trivial bundle, and cancellation
holds.

If @ contains a mix of rational and irrational terms, then somewhat
surprising phenomena can occur. For instance if n =5 and 6
consists of one irrational entry (besides its negative) and all other
entries are zero, then 55’ has Z x Z-many nontrivial “line bundles”
over it, but all bundles of higher rank are trivial. For higher n
torsion phenomena can occur. Also, for n > 7 it is possible for 8 to
contain certain mixes of rational and irrational terms and for
cancellation to still hold, though for generic mixed 6 cancellation
fails.
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Idea of the Proofs of the Theorems.

As a generalization of the genus-1 Heegaard splitting of S3, one
sees that

S2m+1 = (Dzm X 51) Ug2m-14g1 (52m_1 X DZ).

This decomposition is preserved by the canonical action of T™ on
5$2m=1 Thus deforming S>™~1 by using 6 and the action of T™
preserves this decomposition at the level of noncommutative
spaces.
Thus we can view Sz as consisting of (D?" x S'), and
(521 x D?)y “hemispheres” glued together over a
(21 x S1)g = C(S;" ') xa Z “equator’. We can view S2™ as
two ng hemispheres over a 592’"*1 equator. We prove the
theorems simultaneously with obtaining the homotopy-theoretic
results that
Wo(GLk(C(Sg,n_l))) =7

and

T0(GLK(C(S)" 1) xa Z)) 2 Z % Z.
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Ti(GLL(C(S3" V) X0y Zo X0, Z)) = Ki—j mod 2(C(SF" )Xy Z... X 0, Z)

is an isomorphism assuming that the «;'s act sufficiently
irrationally.

The argument uses Rieffel’s [21] result that, so long as € contains
at least one irrationaly entry, then

om—1

mi(GL(C(TgM)) =27,

along with using the Pimsner-Voiculescu sequence and K-theory
and unstabilized homotopy versions of Mayer-Vietoris.
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trace |#| mod 1 plays a central role in the construction.
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corresponds to the image of p under the Bott map
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[0, 1], we consider the invertible

X = exp(2rit)p+1—p e C(S}),

where p is a Rieffel projection with trace |#| mod 1. (note that X
corresponds to the image of p under the Bott map

Ko(C(T§)) = Ki(SC(TF))).

Lemma

Let 6 be irrational. Then the natural map

mo(GL;j(C(S3))) — Ki(C(S3)) = Z is an isomorphism for all j > 1.
The invertible X is a generator of mo(GL1(C(S3))).

It follows that one can take the representative M(k,s) to be the
result of using the image of X* in GL,(S3) as a clutching element.



We obtain M(1,s) & PC(S3)?, where
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(here x is the hermetian generator x from the definition of C(S7).).



We obtain M(1,s) & PC(S3)?, where

P—l 1+ x (1 — x?)1/2x
T2 \(1-x®)V2x* 1—x

(here x is the hermetian generator x from the definition of C(S7).).

The first example of an C(Sj)-module to appear in the literature is
the “instanton bundle of charge-1" eC(S;)* discovered by Connes
and Landi, is given by

1+x 0 z z1
o m 1 0 1+4+x —pzf 2z
2|z —pzm 1-x 0 |’

zi 2 0 1-x

where p = exp(27if), and the z; and x are the generators of
C(S4). The Levi-Civita connection ede gives an instanton solution
to the Euclidean Yang-Mills equations for Sg. In the case 6 = 0,
the projection e corresponds to the complex rank-2 vector bundle
E; over §* with second Chern number (charge) 1. The Levi-Civita
connection ede is then a charge-1 instanton on Ej.



Proposition

Let e be Connes and Landi’s instanton projection, and let 6 be
irrational. Then the corresponding module eC(Sg)* is isomorphic
to M(1,-1) & C(Sp).



Proposition

Let e be Connes and Landi’s instanton projection, and let 6 be
irrational. Then the corresponding module eC(Sg)* is isomorphic
to M(1,-1) & C(Sp).

The Proposition follows from first showing that (? (1J> and
-7z

that eC(Sg)* results from clutching using (? _szl> :
1 2

< > Zl) are path-connected in GL2(C(5§’)), and then seeing

Thus the basic rank-2 instanton bundle for S splits as the sum of
a nontrivial line bundle and a trivial line bundle!



The invertible X € C(S3) generates a C*-subalgebra

C*(X) = C(S'). One may “suspend” C*(X) by coning it twice,
unitizing the cones, and then gluing them together to obtain a
C*-subalgebra of C(S;) isomorphic to C(52).
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C*(X) = C(S'). One may “suspend” C*(X) by coning it twice,
unitizing the cones, and then gluing them together to obtain a
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Theorem
Suppose that 0 is irrational. Then

M(k,S) = E(k75) ®C(52) C(Sg)7

where E(k,s) is the module of continuous sections of a rank-k
complex vector bundle over S? with Chern number —s, and the
inclusion C(S2) < C(Sg) is as described above.



Thus every complex vector bundle over Sg is the pullback of a
complex vector bundle over 52 via a certain fixed quotient map
Sg — S§2. The basic instanton bundle e of charge 1 over Sg is just
the pullback of the direct sum of the Bott bundle over S? with
Chern number 1 and a trivial line bundle! This is intriguing as it
provides a link between the classical Bott bundle on S? and a
deformation of the charge-1 instanton bundle on S*.



Further Directions

| have managed to calculate certain higher homotopy groups
7k (GL;j(C(S4))) for various k, j,n and # and have obtained
interesting values in many cases (e.g mo(GL1(C(S4))) 2 Z x Z,
while replacing 1 with j > 2 yields zero).



Further Directions

| have managed to calculate certain higher homotopy groups
7k (GL;j(C(S4))) for various k, j,n and # and have obtained
interesting values in many cases (e.g mo(GL1(C(S4))) 2 Z x Z,
while replacing 1 with j > 2 yields zero).

| am also investigating the gauge theory of the C(Sj) as part of a
larger project. It seems to me that U(1) instantons for C(Sg)
should probably exist. There should also be a nontrivial monopole
theory. The gauge theory for higher C(S4') could potentially be
simpler than that for classical spheres.
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