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Correlated Diffusions: Credit Risk

X
(i)
t , i = 1, . . . , N denote log-values

dX
(i)
t = b

(i)
t dt + σ

(i)
t dW

(i)
t i = 1, . . . , N.

Three ingredients:

• Drifts b
(i)
t

• Volatilities σ
(i)
t

• Brownian motions W
(i)
t

Credit Risk (structural approach):

drifts imposed by risk neutrality

Correlation is created between the BMs

Joint distribution of hitting times is a problem!

Correlation can also be created through stochastic volatilities σ
(i)
t

(Fouque-Wignall-Zhou 2008)
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Coupled Diffusions: Systemic Risk

X
(i)
t , i = 1, . . . , N denote log-monetary reserves of N banks

dX
(i)
t = b

(i)
t dt + σ

(i)
t dW

(i)
t i = 1, . . . , N.

Assume independent Brownian motions W
(i)
t , i = 1, . . . , N

and identical constant volatilities σ
(i)
t = σ

Model borrowing and lending through the drifts:

dX
(i)
t =

α

N

N∑

j=1

(X
(j)
t − X

(i)
t ) dt + σdW

(i)
t , i = 1, . . . , N.

The overall rate of borrowing and lending α/N has been

normalized by the number of banks and we assume α > 0

Denote the default level by B < 0 and simulate the system for

various values of α: 0,1,10,100 with fixed σ = 1
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One realization of the trajectories of the coupled diffusions X
(i)
t

with

a = 1 (left plot) and trajectories of the independent Brownian motions

(a = 0) (right plot) using the same Gaussian increments. Solid horizontal

line: default level D = −0.7



One realization of the trajectories of the coupled diffusions X
(i)
t

with

a = 10 (left plot) and trajectories of the independent Brownian motions

(a = 0) (right plot) using the same Gaussian increments. Solid horizontal

line: default level D = −0.7



One realization of the trajectories of the coupled diffusions X
(i)
t

with

a = 100 (left plot) and trajectories of the independent Brownian

motions (a = 0) (right plot) using the same Gaussian increments. Solid

horizontal line: default level D = −0.7



These simulations “show” that STABILITY is created by

increasing the rate a of borrowing and lending. Next, we

compare the loss distributions for the coupled and independent

cases. We compute these loss distributions by Monte Carlo method

using 104 simulations, and with the same parameters as previously.

In the independent case, the loss distribution is Binomial(N, p)

with parameter p given by

p = IP

(
min

0≤t≤T
(σWt) ≤ η

)

= 2Φ

(
η

σ
√

T

)
,

where Φ denotes the N (0, 1)-cdf, and we used the distribution of

the minimum of a Brownian motion (see Karatzas-Shreve 2000 for

instance). With our choice of parameters, we have p ≈ 0.5
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On the left, we show plots of the loss distribution for the coupled

diffusions with a = 1 (solid line) and for the independent Brownian

motions (dashed line). The plots on the right show the corresponding

tail probabilities.
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On the left, we show plots of the loss distribution for the coupled

diffusions with a = 10 (solid line) and for the independent Brownian

motions (dashed line). The plots on the right show the corresponding

tail probabilities.
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On the left, we show plots of the loss distribution for the coupled

diffusions with a = 100 (solid line) and for the independent Brownian

motions (dashed line). The plots on the right show the corresponding

tail probabilities.



Mean-field Limit

Rewrite the dynamics as:

dX
(i)
t =

a

N

N∑

j=1

(X
(j)
t − X

(i)
t ) dt + σdW

(i)
t

= a




 1

N

N∑

j=1

X
(j)
t


− X

(i)
t


 dt + σdW

(i)
t .

The processes X(i)’s are “OUs” mean-reverting to the ensemble

average which satisfies

d

(
1

N

N∑

i=1

X
(i)
t

)
= d

(
σ

N

N∑

i=1

W
(i)
t
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Assuming for instance that x
(i)
0 = 0, i = 1, . . . , N , we obtain

1

N

N∑

i=1

X
(i)
t =

σ

N

N∑

i=1

W
(i)
t , and consequently

dX
(i)
t = a




 σ

N

N∑

j=1

W
(j)
t


− X

(i)
t


 dt + σdW

(i)
t .

Note that the ensemble average is distributed as a Brownian

motion with diffusion coefficient σ/
√

N .

In the limit N → ∞, the strong law of large numbers gives

1

N

N∑

j=1

W
(j)
t → 0 a.s. ,

and therefore, the processes X(i)’s converge to independent OU

processes with long-run mean zero.
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In fact, X
(i)
t is given explicitly by

X
(i)
t =

σ

N

N∑

j=1

W
(j)
t +σe−at

∫ t

0

easdW (i)
s − σ

N

N∑

j=1

(
e−at
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0

easdW (j)
s

)
,

and therefore, X
(i)
t converges to σe−at

∫ t

0
easdW

(i)
s which are

independent OU processes.

This is a simple example of a mean-field limit and propagation of

chaos studied in general by Sznitman (1991).



Large Deviation

We focus on the event where the ensemble average reaches the

default level. The probability of this event is small (as N becomes

large), and is given by the theory of Large Deviation. In our

simple example, this probability can be computed explicitly as

follows:

IP

(
min

0≤t≤T

(
σ

N

N∑

i=1

W
(i)
t

)
≤ D

)
= IP

(
min

0≤t≤T
W̃t ≤

D
√

N

σ

)

= 2Φ

(
D
√

N

σ
√

T

)
,

where W̃ is a standard Brownian motion.
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Systemic Risk

Using classical equivalent for the Gaussian cumulative distribution

function, we obtain

lim
N→∞

− 1

N
log IP

(
min

0≤t≤T

(
σ

N

N∑

i=1

W
(i)
t

)
≤ D

)
=

D2

2σ2T
.

For a large number of banks, the probability that the ensemble

average reaches the default barrier is of order exp
(
− η2N

2σ2T

)

Since
1

N

N∑

i=1

X
(i)
t =

σ

N

N∑

i=1

W
(i)
t , we identify

{
min

0≤t≤T

(
σ

N

N∑

i=1

X
(i)
t

)
≤ η

}
as a systemic event

Observe that this event does not depend on α > 0



Systemic Risk

Using classical equivalent for the Gaussian cumulative distribution

function, we obtain

lim
N→∞

− 1

N
log IP

(
min

0≤t≤T

(
σ

N

N∑

i=1

W
(i)
t

)
≤ D

)
=

D2

2σ2T
.

For a large number of banks, the probability that the ensemble

average reaches the default barrier is of order exp
(
−D2N

2σ2T

)

Since
1

N

N∑

i=1

X
(i)
t =

σ

N

N∑

i=1

W
(i)
t , we identify

{
min

0≤t≤T

(
σ

N

N∑

i=1

X
(i)
t

)
≤ η

}
as a systemic event

Observe that this event does not depend on α > 0



Systemic Risk

Using classical equivalent for the Gaussian cumulative distribution

function, we obtain

lim
N→∞

− 1

N
log IP

(
min

0≤t≤T

(
σ

N

N∑

i=1

W
(i)
t

)
≤ D

)
=

D2

2σ2T
.

For a large number of banks, the probability that the ensemble

average reaches the default barrier is of order exp
(
−D2N

2σ2T

)

Since
1

N

N∑

i=1

X
(i)
t =

σ

N

N∑

i=1

W
(i)
t , we identify

{
min

0≤t≤T

(
σ

N

N∑

i=1

X
(i)
t

)
≤ D

}
as a systemic event

Observe that this event does not depend on a > 0



The probability

exp

(
−D2N

2σ2T

)

of a systemic event does not depend on a > 0, in other words:

“ Increasing stability by increasing the rate of borrowing and lending

does not prevent a systemic event where a large number of banks default”

In fact, once in this event, increasing α creates even more defaults

by “flocking to default”. This is illustrated in the simulation

with a = 100 where the probability of systemic risk is roughly 3%.



One realization of the trajectories of the coupled diffusions X
(i)
t

with

a = 100 (left plot) and trajectories of the independent Brownian

motions (a = 0) (right plot) using the same Gaussian increments. Solid

horizontal line: default level D = −0.7.

The probability of a systemic event is roughly 3%



Systemic Risk and Common Noise

dXi
t = a


 1

N

N∑

j=1

Xj
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N
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The probability of the systemic event becomes
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ρ = 0 ρ = 0.5



So far:

We proposed a simple toy model of coupled diffusions to represent

lending and borrowing between banks. We show that, as

expected, this activity stabilizes the system in the sense that it

decreases the number of defaults. Indeed, and naively, banks in

difficulty can be “saved” by borrowing from others. In fact, the

model illustrates the fact that stability increases as the rate of

borrowing and lending increases.

However, there is a small probability, computed explicitly in our

model, that the average of the ensemble reaches the default level.

Combined with the “flocking” behavior “everybody follows

everybody”, this leads to a systemic event where almost all

default, in particular when the rate of borrowing and lending is

large.
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So far we have seen that:

“Lending and borrowing improves stability but
also contributes to systemic risk”

bf But how about if the banks compete?
bf (minimizing costs, maximizing profits,...)

• Can we find an equilibrium in which the previous analysis can

still be performed?

• Can we find and characterize a Nash equilibrium?

What follows is a work in progress with
René Carmona
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Mean Field Game

Denoting Xt = 1
N

∑N
i Xi

t , the dynamics is

dXi
t =

[
a(Xt − Xi

t) + αi
t

]
dt + σdW i

t , i = 1, · · · , N

where αi is the control of bank i, and they minimize

J i(α1, · · · , αN ) = IE

{∫ T

0

fi(Xt, α
i
t)dt + gi(X

i
T )

}
,

with running cost

fi(x, αi) =

[
1

2
(αi)2 − qαi(x − xi) +

ǫ

2
(x − xi)2

]
, q2 ≤ ǫ,

and terminal cost gi(x) = c
2

(
x − xi

)2
.

This is an example of Mean Field Game (MFG) studied

extensively by P.L. Lions and collaborators (see also the recent

work of R. Carmona and F. Delarue).
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Nash Equilibria (FBSDE Approach)

The Hamiltonian:

Hi(x, yi,1, · · · , yi,N , α1(t, x), · · · , αi
t, · · · , αN (t, x))

=
∑

k 6=i

[
a(x − xk) + αk(t, x)

]
yi,k +

[
a(x − xi) + αi

]
yi,i

+
1

2
(αi)2 − qαi(x − xi) +

ǫ

2
(x − xi)2,

Minimizing Hi over αi gives the choices:

α̂i = −yi,i + q(x − xi), i = 1, · · · , N,

Ansatz:

Y i,j
t = ηt

(
1

N
− δi,j

)
(Xt − Xi

t),

where ηt is a deterministic function satisfying the terminal

condition ηT = c.
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Forward-Backward Equations

Forward Equation:

dXi
t = ∂yi,iHidt + σdW i

t

=

[
a + q + (1 − 1

N
)ηt

]
(Xt − Xi

t)dt + σdW i
t ,

with initial conditions Xi

0 = xi

0. Backward Equation:

dY i,j
t = −∂xj Hidt +

N∑

k=1

Zi,j,k
t dW k

t

= (
1

N
− δi,j)(Xt − Xi

t)

[
(a + q)ηt −

1

N
(

1

N
− 1)η2

t + q2 − ǫ

]
dt

+

N∑

k=1

Zi,j,k
t dW k

t , Y i,j
T = c(

1

N
− δi,j)(XT − Xi

T ).
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Solution to the Forward-Backward Equations

By summation of the forward equations: dXt = σ
N

∑N
k=1 dW k

t .

Differentiating the ansatz Y i,j
t = ηt

(
1
N

− δi,j

)
(Xt − Xi

t), we get:

dY i,j
t =

(
1

N
− δi,j

)
(Xt − Xi

t)

[
η̇t − ηt

(
a + q + (1 − 1

N
)ηt

)]
dt

+ηt(
1

N
− δi,j)σ

N∑

k=1

(
1

N
− δi,k)dW k

t .

Identifying with the backward equations:

Zi,j,k
t = ηtσ

√
1 − ρ2(

1

N
− δi,j)(

1

N
− δi,k) for k = 1, · · · , N,

and ηt must satisfy the Riccati equation

η̇t = 2(a + q)ηt + (1 − 1

N2
)η2

t − (ǫ − q2),

with the terminal condition ηT = c.
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Solution to the Riccati Equation

ηt =
−(ǫ − q2)

(
e(δ+−δ−)(T−t) − 1

)
− c

(
δ+e(δ+−δ−)(T−t) − δ−

)

(
δ−e(δ+−δ−)(T−t) − δ+

)
− c(1 − 1

N2 )
(
e(δ+−δ−)(T−t) − 1

) ,

with the notations

δ± = −(a + q) ±
√

R,

R = (a + q)2 +

(
1 − 1

N2

)
(ǫ − q2) > 0.

Observe that ηt is well defined for any t ≤ T since the denominator

can be written as

−
(
e(δ+−δ−)(T−t) + 1

)√
R −

(
a + q + c

(
1 − 1

N2

))(
e(δ+−δ−)(T−t) − 1

)
,

which stays negative because δ+ − δ− = 2
√

R > 0.

In fact, using q2 ≤ ǫ, we see that ηt is positive with ηT = c.
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Financial Implications

1. Once the function ηt has been obtained, bank i implements its

strategy by using its control

α̂i
t = −Y i,i

t + q(Xt − Xi
t) =

[
q + (1 − 1

N
)ηt

]
(Xt − Xi

t),

It requires its own log-reserve Xi
t but also the average reserve Xt

which may or may not be known to the individual bank i.

Observe that the average Xt is given by dXt = σ
N

∑N
k=1 dW k

t , and

is identical to the average found in the uncontrolled case.

Therefore, systemic risk occurs in the same manner as in the case

of uncontrolled dynamics.

However, the control affects the rate of borrowing and lending by

adding the time-varying component q + (1 − 1
N

)ηt to the

uncontrolled rate a.
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Financial Implications

2. In fact, the controlled dynamics can be rewritten

dXi
t =

(
a + q + (1 − 1

N
)ηt

)
1

N

N∑

j=1

(Xj
t − Xi

t)dt + σdW i
t .

The effect of the banks using their optimal strategies corresponds to

inter-bank borrowing and lending at the increased effective rate

At := a + q + (1 − 1

N
)ηt

with no central bank (or a central bank acting as an instantaneous

clearing house).

Under this equilibrium, the system is operating as if banks were

borrowing from and lending to each other at the rate At, and the

net effect is additional liquidity quantified by the rate of

lending/borrowing.
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Financial Implications

3. For T large (most of the time T − t large), ηt is mainly constant.

For instance, with c = 0, limT→∞ ηt = ǫ−q2

−δ−
:= η.
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Plots of ηt with c = 0, a = 1, q = 1, ǫ = 2 and T = 1 on the left, T = 100

on the right with η ∼ 0.24 (here we used 1/N ≡ 0).

A := a + q + (1 − 1

N
)η.
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Therefore, in this infinite-horizon equilibrium, banks are borrowing

and lending to each other at the constant rate

A := a + q + (1 − 1

N
)η.



Mean Field Game (N → ∞) with Common Noise

1. Fix (mt)t≥0 (the limit of Xt as N → ∞ which depends on W 0)

1. Solve the control problem

inf
(αt)

IE

{∫
T

0

[
1

2
(αt)

2 − qαt(mt − Xt) +
ǫ

2
(mt − Xt)

2
]

dt +
c

2
(mT − XT )2

}

subject to:

dXt = [a(mt − Xt) + αt] dt + σ
(
ρdW 0

t +
√

1 − ρ2dWt

)

2. Find mt so that mt = IE[Xt | (W 0
s )s≤t] for all t.

Hamiltonian:

H(t, x, y, α) = [a(mt − x) + α] y +
1

2
α2 − qα(mt − x)

∂H

∂α
−→ α̂ = q(mt − x) − y



Mean Field Game (N → ∞)

• Fix (mt)t≥0 (the limit of Xt as N → ∞ which depends on W 0)

• Solve the control problem

inf
(αt)

IE

{∫
T

0

[
1

2
(αt)

2 − qαt(mt − Xt) +
ǫ

2
(mt − Xt)

2
]

dt +
c

2
(mT − XT )2

}

subject to:

dXt = [a(mt − Xt) + αt] dt + σ
(
ρdW 0

t +
√

1 − ρ2dWt

)

• Find mt so that mt = IE[Xt | (W 0
s )s≤t] for all t.

Hamiltonian:

H(t, x, y, α) = [a(mt − x) + α] y +
1

2
α2 − qα(mt − x)

∂H

∂α
−→ α̂ = q(mt − x) − y



Mean Field Game (N → ∞)

• Fix (mt)t≥0 (the limit of Xt as N → ∞ which depends on W 0)

• Solve the control problem

inf
(αt)

IE

{∫
T

0

[
1

2
(αt)

2 − qαt(mt − Xt) +
ǫ

2
(mt − Xt)

2
]

dt +
c

2
(mT − XT )2

}

subject to:

dXt = [a(mt − Xt) + αt] dt + σ
(
ρdW 0

t +
√

1 − ρ2dWt

)

• Find mt so that mt = IE[Xt | (W 0
s )s≤t] for all t.

Hamiltonian:

H(t, x, y, α) = [a(mt − x) + α] y +
1

2
α2 − qα(mt − x)

∂H

∂α
−→ α̂ = q(mt − x) − y



Mean Field Game (N → ∞)

• Fix (mt)t≥0 (the limit of Xt as N → ∞ which depends on W 0)

• Solve the control problem

inf
(αt)

IE

{∫
T

0

[
1

2
(αt)

2 − qαt(mt − Xt) +
ǫ

2
(mt − Xt)

2
]

dt +
c

2
(mT − XT )2

}

subject to:

dXt = [a(mt − Xt) + αt] dt + σ
(
ρdW 0

t +
√

1 − ρ2dWt

)

• Find mt so that mt = IE[Xt | (W 0
s )s≤t] for all t.

Hamiltonian:

H(t, x, y, α) = [a(mt − x) + α] y +
1

2
α2 − qα(mt − x) +

ǫ

2
(mt − x)2

∂H

∂α
−→ α̂ = q(mt − x) − y



Adjoint Equations

dXt = [(a + q)(mt − Xt) − Yt] dt + σ
(
ρdW 0

t +
√

1 − ρ2dWt

)
, X0 = ξ

dYt = −∂H

∂x
dt + Z0

t dW 0
t + ZtdWt , YT = c(XT − mT )

=
[
(a + q)Yt + (ǫ − q2)(mt − Xt)

]
dt + Z0

t dW 0
t + ZtdWt.

Use the notation mX

t = IE[Xt | (W 0
s )s≤t], mY

t = IE[Yt | (W 0
s )s≤t].

Taking conditional expectation given (W 0
s )s≤t in the second

equation and using mt = mX
t for all t ≤ T and consequently

mY
T = c(mX

T − mT ) = 0, gives:

mY
t = −

∫ T

t

e(a+q)(s−t)Z0
sdW 0

s .

Then, taking conditional expectations in the first equation gives:

dmX
t = −mY

t dt + ρσdW 0
t .
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Adjoint Equations (continued)

Ansatz: Yt = −ηt(mt − Xt) with ηt deterministic.

Differentiating this ansatz and using the forward equation leads to

dYt = −η̇t(mt − Xt)dt − ηtd(mt − Xt)

=
[
(−η̇t + ηt(a + q + ηt)) (mt − Xt) + ηtm

Y
t

]
dt + ηtσ

√
1 − ρ2dWt.

Plugging the ansatz in the backward equation gives

dYt =
[
−(a + q)ηt + (ǫ − q2)

]
(mt − Xt)dt + Z0

t dW 0
t + ZtdWt.

Identifying the two Itô decompositions, we deduce from the

martingale terms that Z0
t ≡ 0 and Zt = ηtσ

√
1 − ρ2.

From mY
t = −

∫ T

t
e(a+q)(s−t)Z0

s dW 0
s , we obtain mY

t = 0.
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Identifying the two Itô decompositions, we deduce from the

martingale terms that Z0
t ≡ 0 and Zt = ηtσ

√
1 − ρ2. From

mY
t = −

∫ T

t
e(a+q)(s−t)Z0

sdW 0
s , we obtain mY

t = 0.
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Mean Field Game Solution

Equating the drifts in the two Itô decompositions, we get

η̇t = η2
t + 2(a + q)ηt − (ǫ − q2) , ηT = c,

which is the same Riccati equation as before but with “N = ∞”.

From mY
t = 0, we deduce that mX

t = IE(ξ) + ρσW 0
t which will

enter in the optimal control (q + ηt)(m
X
t − Xt).

Once a solution to the MFG is found, on can use it to construct

approximate Nash equilibria for the finitely many players games.

Here, if one assumes that each player is given the information Xt,

and if player i uses the strategy αi
t = (q + ηt)(Xt − Xi

t), which is

the limit as N → ∞ of the strategy used in the finite players game,

one sees how solving the limiting MFG problem can provide

approximate Nash equilibria for which the financial implications

are identical as the ones given for the exact Nash equilibria.
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