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Motivation

o Availability of high-throughput data from various applications

e Need for methodology/tools for analyzing high-dimensional
data

e Examples:
» Biology: gene expression data

» Environmental science: climate data on spatial grid
» Finance: returns on thousands of stocks
> Retail: consumer behavior

e Common goals:
» Understand complex relationships & multivariate dependencies

» Formulate correct models & develop inferential procedures
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Modeling relationships

e Correlation: basic measure of linear pairwise relationships
e Covariance matrix X: collection of relationships

e Estimates of X required in procedures such as PCA, CCA,
MANOVA, etc.

o Estimating (functions of) £ and Q = £~ are of statistical
interest

e Estimating X is difficult in high dimensions

N
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Sparse

estimates

Matrix £ or Q of size p-by-p has O(p?) elements

Estimating O(p?) parameters with classical estimators is not
viable, especially when n < p

Reliably estimate small number of parameters in X
Model selection: zero/non-zero structure recovery
Gives rise to sparse estimates of X or Q)

Sparsity pattern can be represented by graphs/networks
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Gaussian Graphical Models (GGM)

Assume Y = (Y1,...,Y},)’ has distribution N, (0, X)

Denote V ={1,2,...,p}
e Covariance matrix cov(Y) = X encodes marginal dependencies
Yi LY < cov(Y;, Yj)=I[x]; =0

e Inverse covariance matrix Q) = Z~! encodes conditional
dependencies given the rest

——

conditional independence matrix element

Also known as Markov Random Fields (MRF)
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Gaussian Graphical Models (GGM)

e Graph summarizes relationships with nodes V = {1, ..., p}
and set E of edges

[Ql; =0 <= ¥
~——— ~—
matrix element network/graph

e Build a graph from sparse Q
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GGM estimation algorithms

e Regularized Gaussian likelihood methods
» Block coordinate descent (COVSEL) [Banerjee et al., 2008]

vV vy vy VvVYy

>

Graphical lasso (GLASSO) [Friedman, Hastie, & Tibshirani, 2008]
Large-scale GLASSO [Mazumder & Hastie, 2012]

QUIC [Hsieh et al., 2011]

G-ISTA [Guillot, Rajaratnam et al., 2012]

Graphical Dual Proximal Gradient Methods [Dalal & Rajaratnam,
2013]

Others

e Bayesian methods

v
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Dawid & Lauritzen, 1993, Annals of Statistics

Letac & Massam, 2007, Annals of Statistics

Rajaratnam, Massam & Carvalho, 2008, Annals of Statistics
Khare & Rajaratnam, 2011, Annals of Statistics

Others

e Testing-based methods

>

>

Hero & Rajaratnam, 2011, JASA
Hero & Rajaratnam, 2012, IEEE, Information Theory
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Regularized Gaussian likelihood graphical model selection

o All {1-regularized Gaussian-likelihood methods solve

N

Q=arg (n;%{log det(Q) —tr(QS) — AQ||1}

S: sample covariance matrix

Graphical Lasso [Friedman, Hastie, & Tibshirani, 2008]

Q) can be computed by solving optimization problem

Adding (;-regularization term A||Q||; introduces sparsity

Penalty parameter A controls level of sparsity

Dependency on Gaussianity
» Parametric model
» Sensitivity to outliers
» Log-concave function
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Regularized pseudo-likelihood graphical model selection

Two main main approaches:
1. £;-regularized likelihood methods

2. {;-regularized regression-based/pseudo-likelihood methods

Series of linear regressions form a pseudo-likelihood function

Objective function is the {;-penalized pseudo-likelihood

Pseudo-likelihood assumes less about distribution of the data

Applicable to wider range of data

44



Partial covariance and correlation

Matrix Y € R"*P denotes iid observations of random variable
with mean zero, covariance £ = Q1.

Goal: estimate partial correlation graph

Partial correlation in terms of Q = [wij]i

. Wi
g __ y

ol =———40
w,-,-wjj

Called “partial” because correlation of residuals rx, where

re=Ye—YR"¥ where (¥ = argBrEino{HYk —YB|3}.
Pr=

Now, partial correlation is p¥ = cor(r;, r)
It can be shown that p¥, /—£
ii
B
Zero/non-zero pattern of [p¥] is identical to that of Q

Partial correlation graph is given by sparsity pattern of Q

9
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Regularized regression-based graphical model selection

» Neighborhood selection (NS)[Meinshausen and Biihimann, 2006]
@) =arg_min {[|¥;— YB3 +AlBll}
B:Bi=0
e Neighborhood of i is defined as
el ={k: @) #0)
e MB does not take into account symmetry of Q
jerm £ eV

e Current state-of-the-art methods address this issue
» SPACE [Peng et al., 2009]

» SYMLASSO [Friedman, Hastie, & Tibshirani, 2010]

» SPLICE [Rocha et al., 2008]
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Sparse PArtial Correlation Estimation [Peng et al., 2009]
SPACE objective function: (w; =1 or w; = wj;)

Qspc = _7Zn|0gwu+ ZWIHY Z “ JJ j||2+A Z |p’]|

I e — 1<i<j<p

1. Update [p”] coordinate-wise (using current estimates [;]):

p

o] e mind =3 wilY;— Y o[ DY Y3 +A 3 o]

ij
("] i=1 J#I 1<i<j<p

2. Update [w;] (using current estimates [p7] and [;]):

—1

D
wii < [ IYi=> 6 ”\/ iy J||2
JF#
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Non-converging example: p = 3 case

1e+03
L \
h i

1

i tes00
i

1e-034 |

S RO SR O SO
Comvergence Threshold Convergence Threshoid
0 1000 2000 3000 4000 0 1000 2000 3000 4000
iterations iterations
estimator | — pvar -~ pvar.2 -~ pvar3 - - peor.1 - peor2 - peor3 estimator | — pvar -~ pvar.2 -~ pvar - - poor1-- peor2 - poor3

(a) SPACE (w; = wj) (b) SPACE (w; =1)

Figure: YW ~N3(0, Q7 1), (left) n = 4, (right) n = 100
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Non-convergence of SPACE

Investigate the nature and extent of convergence issues:
1. Are such examples pathological? How widespread are they?

2. When do they occur ?

e Consider a sparse 100 x 100 matrix Q with edge density 4%
and condition number of 100.

e Generate 100 multivariate Gaussian datasets (with n = 100),
p=0and L=0QL

¢ Record the number of times (out of 100) for which SPACE1
(uniform weights) and SPACE2 (partial variance weights) do
not converge within 1500 iterations.

e Original implementation of SPACE by [Peng et al., 2009]
claims only 3 iterations are sufficient.
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Non-convergence of SPACE

SPACE1 (W,' = 1) SPACE2 (W,' = w,-,-)

A* NZ NC A* NZ NC
0.026 60.9% 92 | 0.085 79.8% 100
0.099 19.7% 100 || 0.160 28.3% 0
0.163 7.6% 100 || 0.220 10.7% 0
0.228 2.9% 100 | 0.280 4.8% 0
0.614 0.4% 00730 05% 097

Table: Number of simulations (out of 100) that do not converge within
1500 iterations (NC) for select values of penalty parameter (A* = A/n).
Average percentage of non-zeros (NZ) in Q are also shown.

e SPACE exhibits extensive non-convergence behavior
e Problem exacerbated when condition number is high

e Typical of high dimensional sample starved settings
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Symmetric Lasso and SPLICE

SYMLASSO [Friedman, Hastie, & Tibshirani, 2010]:

P
Z nlog o + ||Y + ) wioaYiIP| A D lwgl,

J#i 1<i<j<p

r\)\»—l

stm

where ;i = 1/wj;.

SPLICE [Rocha et al., 2008]:

P
Qspi(B, D) = Zlog +%Z%Ilvf—ZBUYAFHZ\BUL
i=1 1

i i<j

where d,% = Wj.

Also, alternating (off-diagonal vs diagonal) iterative algorithms
No convergence guarantees

15 /44



Regularized regression-based graphical model selection

e Advantage: Regression-based methods perform better model
selection than likelihood-based methods in finite sample

e Advantage: Regression-based methods are less restrictive
than Gaussian likelihood-based methods

o Disadvantage: () may not be positive definite (can be fixed)
e Disadvantage: Solution may not be computable

e Cause: lterative algorithms SPACE, SYMLASSO and SPLICE
are not guaranteed to converge
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Regression-based methods: summary

METHOD
o
N
< w
o2 |9
| =3
2] o | > | o
Property Z | n|ln|lun
Symmetry + |+ |+
Convergence guarantee N/A
Asymptotic consistency (n, p — o0) + +

How can we obtain all of the good properties simultaneously?

17 /44



Design goals of a new pseudo-likelihood approach

e Can we design a regression-based approach that guarantees
existence of a solution?

e |Is there a better chance of guaranteeing a well defined
solution if a convex formulation is developed?

e Advantages of a convex formulation:

» Easier analysis of theoretical properties
» Better chance of algorithmic convergence
> Global minimum is guaranteed to exist

e Can we leverage convex optimization theory?

e Current pseudo-likelihood methods are not jointly convex
(in the parametrization proposed in the respective papers)

e Can we develop a convex formulation of pseudo-likelihood
graphical model selection problem?
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Convex formulation of graphical model selection problem

Revisit the SPACE objective function

Qspc(Q —**anogw” Zw,\Y Zp,/ S SN '

J#i 1<i<j<p
Bi

* Qspc(Q)) is not jointly convex in elements of QO
e Since B = pYy/ 5 = —>, regression term is not convex
n n

e Since |p¥| = ‘— penalty term is not convex

Wij
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Convex formulation of graphical model selection problem
Consider,

WLii Wij ij —Wjj
wil¥i— 3 o7 [ IR = v+ Y L2 ( ol — )
; wij; ; \/W

= WI|| qu +Zwlj )”%
J#i

Now, let w; = w?2, then

n

P
I Z w;iY|3 = w.;Y'Yws; >0, (quadratic form)
j=1
Therefore, Qeon below is jointly convex:

Qeon(Q anogw,,Jr lew”Y +) wiYiI3 4N Y wyl

JF#EI 1<i<j<p
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Establishing properties of CONCORD

Optimization properties

e Task 1: (Optimization algorithm) Can we find an effective
algorithm to minimize the Qcon(Q) so that a solution always exists
and is computable?

e Task 2: (Guarantee of convergence to global optimum) Can
we establish convergence? Do we have a globally optimal solution?

e Task 3: (Computational complexity) What is the computational
complexity of the optimization method? Is it competitive with
other methods?

e Task 4: (Running time comparison) How do the actual running
times compare with other methods?

21 /44



Establishing properties of CONCORD

Statistical Properties

e Task 5: (Consistency and Large Sample properties) Are
Concord estimates guaranteed to recover the true underlying
partial correlation graphs for data generated from such models?

e Task 6: (Finite sample properties) How does CONCORD
perform in terms of recovering the partial correlation graph in finite
sample settings?

e Task 7: (Applications) How does CONCORD perform in
applications in comparison with other methods where high
dimensional covariance estimates are required?

Goal: To investigate the above questions systematically



CONvex CORrelation selection methoD (CONCORD)
CONCORD objective function:
Qeon(Q Z”|ngu+ Z”qu +Zwu jH2+)\ Z |wy|
J#i 1<i<j<p

Coordinate-wise iterative algorithm
1. Update [ov,-j]3l (other coefficients held constant):

Sa (* (Zj';éj Wijr Sjjr + X i g w;g&w))
Sii + 5jj

Wjj <

2. Update [w;;] (other coefficients held constant):

2
_Zj#i (U,JSU + \/(Zj;éi (UUS,J> + 4S;;
25;;

Wi <

1Soft-thresholding operator: Sy (x) = sign(x)(|x| — A) 4+
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Optimization aspects of CONCORD algorithm
Theorem: Let A, denote space of p x p symmetric matrices.
Also, let M C A, denote a subspace such that

M:={Q € Ap:wj; >0, for every 1 < i < p}.

If Y; 0 for every 1 < i < p, the sequence of iterates {fl(’)}@()
obtained by the CONCORD algorithm converges to a global
minimum of Q.on(Q). More specifically,

O s HeMasr— oo
for some f) and furthermore

Qeon(Q) < Q(Q) for all Q € M.
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Non-converging example: p = 3 case

1e+01

1e+03+ ’
i
!

1e-017 16400

1e-03

abs. difference between
successive updates

1e-034

Convergence Threshold Convergence Threshold
0 1000 2000 3000 4000 0 1000 2000 3000 4000
iterations iterations.

estimator | — pvar -+ pvar2 -- pvar3 - - pcor -+ pcor2 -+ pcor3 estimator | — pvar.L -+ pvar2 -~ pvar3 - - pcord -+ pcor2 - peor3

(a) SPACE (w; = wj) (b) SPACE (w; =1)

1e-01

1e-014

1e-03

1e-03 N

Convergence Threshold ¥

1e-05. Convergence Tma'.‘nnm

1e-054

abs. difference between
successive updates

10 200
iterations iterations.

estimator | — pvar. -~ pvar2 -~ pvar3 - - pcor. - peor2 - pcor3 estimator | — pvar.1 ---- pvar2 -~ pvar3 - - pcor. - pcor2 - peor3

(c) CONCORD (d) CONCORD

Figure: Y ~N3(0,Q71), (left) n =4, (right) n =100
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Computational complexity of CONCORD algorithm

GLASSO: O(p?)

SPACE: min(O(np?), O(p3))

SYMLASSO: min(O(np?), O(p3))

CONCORD: min(O(np?), O(p®))
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Running time of CONCORD: |

p = 1000, n =200 [

A
0.14
0.19
0.28
0.39
0.51

GLASSO

NZ Time
4.77% 87.60
0.87% 71.47

0.17% 5.41
0.08% 5.30
0.04% 6.38

)\*
0.12
0.17
0.28
0.39
0.51

CONCORD
NZ Time
4.23% 6.12
0.98% 5.10
0.15% 5.37
0.07% 4.00
0.04% 4.76

p = 1000, n = 200

A

0.51

SPACET (w; = 1)

0.10 4.49% 101.78
0.17 0.64% 99.20
0.28 0.14% 138.01
0.39 0.07% 75.55
0.04% 49.59

NZ Time

SPACE2 (W,' = (,U,',')

A*
0.16
0.21
0.30
0.40
0.51

NZ Time
100.00% 19206.55
1.76% 222.00
0.17% 94.59
0.08% 108.61
0.04% 132.34

Table: Timing comparison (seconds) for p = 1000, A = penalty parameter,
A =A/n for CONCORD/SPACE. NZ = the percentage of non-zero entries
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Running time of CONCORD: I

p = 3000, n =600
GLASSO CONCORD
A NZ Time A* NZ Time
0.09 2.71% 184274 | 0.09 2.10% 266.69
0.10 1.97% 183532 | 0.10 1.59% 235.49
0.10 1.43% 1419.41 | 0.10 1.19% 232.67
p = 3000, n =900
GLASSO CONCORD
A NZ Time A* NZ Time
0.09 0.70% 1389.96 | 0.09 0.64% 298.21
0.10 0.44% 1395.42 | 0.10 0.41% 298.00
0.10 0.27% 1334.78 | 0.10 0.26% 302.15

Table: Timing comparison (seconds) for p = 3000, A = penalty parameter,
A* =A/n for CONCORD. NZ = the percentage of non-zero entries

e CONCORD is highly competitive.

e Orders of magnitude faster in high dimensional settings.

e SPACE is slow to converge when n < p.
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Large sample properties: Assumptions
For sample size n and number of feature p = p,, assume
True inverse covariance matrix: Q, = [Wnj, 1 <i,j < pn, and
@¢ denotes the off-diagonal elements.
Assumptions:
e AO: Accurate estimates of diagonals & ji:

~ - log n
max [, ;i — @l < C :
1<i<pn n

holds with probability larger than 1 — O(n™ 7).

e Al: Bounded eigenvalues: eigenvalues of Q,, are such that

Amin >0 and Apax < oo, for all n
e A2: Sub-Gaussianity,

e A3: Incoherence condition
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Large sample properties: Theorem

Suppose that assumptions (A0)-(A3) are satisfied. Suppose
pn = O(n*) for some k >0, g, = o (y/nlogn), \/ng” = o(An),
Apy/nlogn — oo, and \/q,A, — 0, as n — oo.

Then there exists a constant C such that for any 1 > 0, the
following events hold with probability at least 1 — O(n™M).

e There exists a minimizer W9 = ((Wn j))1<i<j<p, of
Qcon(wol an)
e Any minimizer ®¢ of Qcon(w?, &,) satisfies

||wS — @S|l2 < C\/qnA, (Parameter consistency)

and

sign(@p, jj) = sign(Wp,jj), V1< i< j<pp (Sign consistency).
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Model selection in finite samples

e A p x p sparse positive definite matrix Q (with p = 1000)
with condition number 13.6.

e Sample size n = 200, 400, 800, 50 datasets, each having i.i.d.
multivariate-t distribution with p =0, Z = Q1.

e Compare model selection performance: area-under-the-curve
(AUC) of ROC curves

n =200 n =400 n =800
Solver Median IQR Median IQR Median IQR
GLASSO 0.745 0.032 0.819 0.030 || 0.885 0.029
CONCORD 0.811 0.011 0.887 0.012 || 0.933 0.013

Table: Median and IQR of AUC for 50 simulations.
e CONCORD has a higher AUC for each of the 150 datasets.

e CONCORD not only recovers the sparsity structure more

accurately, it also has much less variation.
31/44



CONCORD method: summary

METHOD
Q a)
a %
o|lZ2|VlY
| =23 =2
%2) a|l>|al|o
Property Z n|ln|lun|v
Symmetry + |+ |+ |+
Convergence guarantee (fixed n) N/A +
Asymptotic consistency (n, p — o0) + + +

Yes! CONCORD retains all good properties
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CONCORD method: summary

e Optimization aspects
» Jointly convex formulation

» Theoretical guarantee of convergence
» Converges to globally optimal solution

e Statistical properties
» Asymptotically consistent estimator as n, p — oo

» Competitive with other pseudo-likelihood methods in
finite sample

e Computational cost
» Computationally complexity is competitive
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Unifying framework
for regression-based/pseudo-likelihood
graphical model selection



What are we solving exactly?

1 P
Lcon (Q) = 5 Z —n |Og LU,2, + HwiiYi + Z wUYng

i=1 | J#i
o T
Lepe1(Q )—EZ —nlog w; Y — i Ly 2
spc1(Qp, P) = 3 nlog wji+ | D o o Vil
i=1 | JF#£I 1
o T
Lpe2(Q )ZEZ —nlog wijj + wii [[Y; — ) _pf Liy )2
spc,2 D: P 2 nlog i Wi i P w: Jll2
i=1 | i i
1|
Lsym(cx,Q,:)ZEZ nlog i + o \Y —i—Zonc,, Y2
i=1 L JFEIi
ol
Lspl(BrD):EZ nIOg 2||Y ZBU 1”2 '
i=1 L JFEIi
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Unifying framework lemma: part 1

The above pseudo-likelihoods (up to reparameterization) can be
expressed in matrix form as follows:

Loon(Q) = 7 [~logdet O +tr(SQ?)]
Lapea(Q) = 7 [~logdet Qp + tr(SQQ,2Q)]
Lope2(Q) = 3 [~logdet Qp +tr(SQ0,'0)]
Loym(Q) = g[ log det Qp + tr(SQQ Q)]
Lo(Q) = g[ log det Qp +tr(SQQ Q)]

where Qp = diag(Q)
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Unifying framework lemma: part 2

Generalized form of pseudo-log-likelihood

Lui(G(Q), H(Q)) = 5 [~ log det G(Q) + tr(SH(Q))],
where G(Q) and H(Q) are functions of Q.
Standard Gaussian log-likelihood when G(Q) = H(Q) = Q:
o

LGaussian (Q) = Luni(Qy Q) = 5 — |0g det QO + tl’(SQ)]
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Insights for SPACE2, SYMLASSO and SPLICE

SPACE2, SYMLASSO and SPLICE formulations:

Luni(Qp, QQF'Q) = g [—logdet Qp + tr(SQQ Q)]

e Three of the four pseudo-likelihoods are equivalent up to
reparameterizations

e Three methods apply different {;-penalties
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Applications of
graphical model selection and
(inverse) covariance estimation



Biological application: gene co-expression of breast cancer

Breast cancer gene expression study [Cheng et al., 2009]

n = 248 and other clinical data (metastasis, tumor size, etc..)

Reduce to ~1100 genes by survival analysis (from ~20000)

Select A such that 200 non-zero elements remain in Q

Identify most highly connected (hub) genes
[Carter et al., 2004, Jeong et al., 2001, Han et al., 2004]
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Biological application: gene co-expression of breast cancer

o
2|92
Ol<|o|a
VId|IO|0o
SHHE
Gene Symbol | U [ | || Reference
HNF3A (FOXA1)|+|+|+|+]| [Koboldt and Others, 2012, Albergaria et al., 2009, Davidson et al., 2011,
Lacroix and Leclercq, 2004, Robinson et al., 2011]
TONDU |+ [+ |+ [+
FZD9 |+ |+ |+ |+ Katoh, 2008, Rg nneberg et al., 2011]
KIAA0481 | + | + | + | + Gene record discontinued]
KRT16|+ |+ |+ Glinsky et al., 2005, Joosse et al., 2012, Pellegrino et al., 1988]
KNSL6 (KIF2C) | + + Eschenbrenner et al., 2011, Shimo et al., 2007, Shimo et al., 2008]
FOXC1 | + + [+ Du et al., 2012, Sizemore and Keri, 2012, Wang et al., 2012,
Ray et al., 2011, Tkocz et al., 2012]
PSA| + + | [Kraus et al., 2010, Mohajeri et al., 2011, Sauter et al., 2004,
Yang et al., 2002]
GATA3|+ |+ [+ |+]| [Koboldt and Others, 2012, Davidson et al., 2011, Albergaria et al., 2009,
Eeckhoute et al., 2007, Jiang et al., 2010, Licata et al., 2010,
Yan et al., 2010]
C200RF1 (TPX2)| + [Maxwell and Others, 2011, Bibby et al., 2009]
E48 +1+ ]+
ESRI T | [Zheng et al., 2012]

[Maxwell and Others, 2011] identifies a regulatory mechanism
involving TPX2, Aurora A, RHAMM and BRCA1 genes in breast
cancer
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TPX2 gene in breast cancer

o [Maxwell and Others, 2011] is an extensive study involving
thousands of breast cancer patients

e Breast cancer type 1 susceptibility protein (BRCA1), a known
gene related to breast cancer

e TPX2 gene is identified as having strong link to BRCA1

¢ “Reorganization (of microtubules) is facilitated by
BRCA1 and impaired by AURKA, which is regulated by
negative feedback involving RHAMM and TPX2.”
[Maxwell et al., 2011]
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Financial application: portfolio optimization

Dow-Jones Index:
Index of 30 stocks

e Mean-variance portfolio (MVP) theory uses covariance matrix
to hedge risk

Simplest variant: minimum variance portfolio (given X)

minimize w'ZIw
subjectto 17w =1

Analytical solution: w* = (172-11)"1x-11

e Due to non-stationarity, use rebalancing strategy:
Every 4 weeks, use past Nt days for £ = 01
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Financial application: portfolio optimization

10.0
759
method
— Concord
— CondReg
[
2 50+ — GLASSO
- — Sample
— LedoitWolf
— DJIA
254
0.0+
U U U U
1995 2000 2005 2010

date

Figure: Nest = 75 days, rebalance every 4 weeks
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Finance: Minimum variance portfolio returns

Return measure: mean excess return per unit of risk

Sharpe ratio = M where Rf = 3% (annual) is chosen
Var (R:)
Nest DJIA Sample | GLASSO Concord | CondReg LedoitWolf

35 | 2.09 2.77 4.01 4.12 4.06 410
40 | 2.09 3.44 3.93 4.10 3.98 3.91
45 | 2.09 2.43 3.78 3.98 3.85 3.59
50 | 2.09 231 3.81 4.06 3.89 3.71
75 | 2.09 3.40 3.70 4.04 3.89 3.49

References Sparse models Dense estimates

Table: Penalty A chosen with cross-validation to minimize RSS, (values
multiplied by 100)
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Applications: summary

e Biological example: hub gene discovery
> Discovered empirically validated genes

» Other methods are useful too!

e Finance example: minimum variance portfolio selection

» CONCORD estimator yields best Sharpe ratio even better than
Ledoit-Wolf

» Graphical model selection methods adapt to changing
covariance structure
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Thank youl!
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Simulation: Pseudo-likelihood methods
Datasets:

e True Q has 2.4% non-zero elements (placed at random)
Y ~Nio(0, Q1)
e Generate 100 independent datasets, p = 100, n = 200
e Grid of 50 penalty parameter (A) values
Model selection performance metrics:

e Measures performance of zero vs. non-zero structure

recovery
e False Positive Rate (FPR) vs. True Positive Rate (TPR):
FP TP
FPR=——— and TPR=—
FP+TN " TP+ FN

o # of non-zeros vs. Matthew's correlation coefficient (MCC):

TP x TN — FP x FN

MCC =
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

6



Simulation: Pseudo-likelihood methods
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(a) FPR vs. TPR (b) # of non-zeros in Q) vs. MCC

CONCORD has competitive model selection performance



Insights for CONCORD: part 1

Leon(Qp, Q%) = g [— logdet Qp + tr(SQZ)]

log |Q] — log |Qp|
tr(SQ) — tr(QSQ) = tr(SQ?)

Modify the log determinant term to balance

Loni(Q3, Q2) = g (—log det Q3 + tr(SQ?))

Penalized pseudo-likelihood of CONCORD

Qcon(Q) = Luni(()2 102) + }\Z |wy|

i<j

Modification gives better parameter estimates



Insights for CONCORD: part 2
Generated Gaussian dataset with following Q* (n = 1000).

1.0 0.3 0.0
Q*=103 1.0 03
0.0 03 1.0

For A =0,
0.675 0.089 —0.015
Quncorrected == 0089 0658 0117
—0.015 0.117  0.668
0.974 0.257 0.007
Qcon = [ 0.257 0.983 0.344
0.007 0.344 0.978

Modified likelihood gives better parameter estimates!
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