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Given a signal f : RY — R, the scale-space representation
u:RY x Rt — R defined such that the representation at zero scale is
equal to the original signal

u(x,0) = f(x),

and the representation at coarser scales are given by convolution of the
signal with Gaussian kernels of increasing bandwidth

—ly—x|[?/2t
c dy,

u(x,t) = g(x,t) * f(x) = /

A CNPTTTIE

Gaussian mean x € RY, variance matrix tlgxg.



The scale-space representation can equivalently be defined as the solution
to heat equation with initial condition u(x,0) = f(x).

0
au(x, t) = EAU X, t) =5 Z u(x t)



@ Non-enhancement of local extrema
At a certain scale to € RT, a point xg € RY is a local maximum for
the mapping x — u(x, to), then Au(xo, tp) < 0, which means
gt (x0, to) < 0.
A hot spot will not become warmer and a cold spot will not
become cooler (true for all dimensions).

@ Non-creation of new features (Causality)

Fine-scale features disappear monotonically with increasing scale.
(true for only d = 1)
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The kernel density estimator based on data xi, ..., X, is

F(x,h) = ), xR, heRF

Note: With Gaussian kernel, K(x) = (1/v/2m)exp(—x2/2), ? proved
causality.
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{f(x,t): x e R, t e R"}
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@ As we increase t, the connectivity of R; remains the same, except
when we pass a critical value.

@ At a local minimum the sublevel set adds a new component.

@ At a local maximum two components merge into one.
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Figure : (Top left) Two components are born at boundary points and a new
component is born at a local minimum. (Top right) The components which
appeared at local minima have merged at a local maximum. (Bottom) While
there are three short-lived components, two components persist (8o = 2). It is
therefore likely that the data set is sampled from bimodal distribution.
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PD dim 0: bw=0.03...0.2571
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PD f{(x,h): 6 Mode dim 0 PD fix,h): B Mode dim 1
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Let Xi,...,X, be i.i.d random variables. The kernel density estimator
based on data x1,...,xn, is f(x, h) = # Yo K(*%5%), where x € R and

A

he H=(0,00). Set f(x,h) = E(F(x, h))

o (Stability theorem—Cohen-Steiner et al. (2007)) Let Dgm and Dgm be
corresponding persistence diagram of f and f.

de(Dgm, Dgm) < |[F — flloe = esssup sup|[F(x, h,w) — £(x, h)||,
w  x,h

where dg is a bottleneck distance between persistence diagrams.
o (Fasy et al. (2013))
P(dg(Dgm, Dgm) > ¢c,) < P(||f — f]lec > cn) =
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PD Circle dirm 1: B¥W=[0.9..4.9]
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Fleur De Lis 3: Dim O, BW=[0.7 ..., 1.5);Range=[-2 2]

1 1 1 1 1 )
1] 0.1 0.0z 0.03 0.04 0.0s 0.06

PES



Torus dim O (red) 1

(green) 2

(blue)

®

Sphere dim O (red) 1 (green) 2(biug)
® *
® g
oo
®
12 10 8 B 4 2




@ Intensities represent different tissue material, say grey matter, white
matter and CSF.
o "Expect” some intensity different for some ROIs between two groups.
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@ How do we calculate the mean and variance?

@ Can we apply it to hypothesis testing?

l“
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Figure : For (a, b), define f, 5) : R — R by f, 4)(t) = min(t — a,b— t);
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Figure : For (a, b), define f, 5) : R — R by f, »)(t) = min(t —a,b—t);

Figures prepared by Violeta Kovacev-Nikolic



Figure : For {(a, b)}7,. {A(k,t) = k™ largest value of {fi, 5,(t)},}

Figure : For {(a;, b:)}™,, {A(k,t) = k™ largest value of {fi, p)(t)}7}
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@ The persistence landscapes are functions from N x R — R, and are
bounded and nonzero on a bounded domain.

@ Hence, persistence landscapes belong to LP(N x R) with the metric
induced by p-integrable functions, which is a separable Banach space.

@ In separable Banach space, for any continuous linear function f, the
random variable f(\(k, t)) satisfies SLLN and CLT.
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o t-test: 0 [ [MA(t) — AB(2))[P o] VP
e Multivariate test (Hotellings T2 test):
Consider a vector, ([ A = AB|, [ 1M = AB|,..., [IA\2 =B

where k is chosen so that, kK << ny + ny — 2.

).
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PO f(x h): 6 Mode dimd (Sub)

PD (x,h): 3 Mode dimD (Sub)
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