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Estimation of Large Precision Matrix

Consider multivariate Gaussian data X ∼ Np(0,Σ).

Let Ω = Σ−1 be the precision matrix.

If the p variables are represented as the vertices of a graph G ,
then the absence of an edge between any two vertices j and
j ′, which means conditional independence given others, is
equivalent to ωjj ′ = 0.

A graph can be used to control sparsity in Ω.
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Graphical Lasso for Sparse Precision Matrix

Developed in various papers — Meinshausen and Bühlman
(2006), Yuan and Lin (2007), Banerjee et al. (2008),
Friedman, Hastie and Tibshirani (2008).

Maximize log det Ω− tr(SΩ)− λ‖Ω‖1 subject to p.d. Ω,
where S is the sample covariance matrix n−1

∑n
i=1 XiX

′
i .

Computation is doable in O(p3) steps by R package Glasso.
Faster algorithms are possible assuming some special
structure.
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Convergence rate of Graphical Lasso

Convergence rate studied by Rothman et al. (2008). If
λ �

√
(log p)/n, convergence rate in Frobenius (aka

Euclidean) norm is
√

((p + s) log p)/n, where s is the number
of non-zero off-diagonal entries.
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Bayesian Graphical Lasso

Wang (2012): Put independent exponential prior on diagonal
entries, Laplace on off-diagonals, subject to positive
definiteness restriction.

Ω ∼ P: ωii
iid∼ λe−λωii , ωii > 0, ωij

ind∼ λ
2 e
−λ|ωij |, i 6= j ,

Ω ∼ P|Ω ∈M+, the set of positive definite matrices.

Posterior mode is graphical Lasso.

Full posterior easily computable by MCMC.

Not a real sparse prior. Posterior sits on non-sparse matrices,
and hence cannot converge near the truth in high dimension.
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(Really sparse) Bayesian Graphical Lasso

Real sparsity can be introduced by an extra point mass at zero
for off-diagonal entries.

Γ: γi ,j = 1l((i , j) ∈ E ), p(Ω|Γ) ∝∏
γij=1 {exp(−λ|ωij |)}

∏p
i=1

{
exp

(
−λ

2ωii

)}
1lM+(Ω).

p(Γ) ∝ q#E (1− q)(p2)−#E |#Γ ≤ R,

Maximum model size R has Poisson-like tail.
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Posterior distribution

p(Ω, Γ|X ) ∝ p(X |Ω, Γ)p(Ω|Γ)p(Γ)

= {det(Ω)}n/2 exp
{
−n

2
tr(Σ̂Ω)

}
×
∏
γij=1

{exp(−λ|ωij |)}
p∏

i=1

{
exp

(
−λ

2
ωii

)}
×q#E (1− q)(p2)−#E .

Model posterior probabilities

p(Γ|X ) ∝
∫

Ω∈M+

exp(
n

2
h(Ω))

∏
(i ,j)∈VΓ

dωij ,

where

h(Ω) = log det(Ω)− tr(Σ̂Ω)− 2λ

n

∑
γij=1

|ωij | −
λ

n

p∑
i=1

ωii .
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Issues

Computation becomes a challenge. Traditional
MCMC/RJMCMC are too slow.

What can we say about posterior convergence rates?
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Posterior Convergence Rate

Theorem

Let X1, . . . ,Xn
iid∼ Np(0,Ω−1) and the true precision matrix

Ω0 ∈ U(s, ε0) = {Ω : #{(i , j) : ωij 6= 0, i 6= j} ≤ s, 0 < ε0 ≤
min eigj(Ω) ≤ max eigj(Ω) ≤ ε−1

0 <∞}. Then for some M > 0,
the posterior probability P(‖Ω− Ω0‖2 > Mεn | X )→ 0, for
εn = n−1/2(p + s)1/2(log p)1/2 and ‖ · ‖2 stands for the Frobenius
(Euclidean) norm.
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Steps in Proving Posterior Convergence Rate

Frobenius distance is comparable with the Hellinger distance
between Np(0,Ω) and Np(0,Ω′), the square root of their
Kullback-Leibler (KL) divergence and the Euclidean norm for

eigenvalues d1, . . . , dp of Ω
−1/2
0 ΩΩ

−1/2
0 centered by 1:∑k

j=1 |dj − 1|2. If either Hellinger or Frobenius is small, all djs
are uniformly close to 1, allowing Taylor’s expansion.

Use general theory of posterior convergence rate [G, Ghosh
and van der Vaart (2000)] by bounding Hellinger entropy of a
“sieve” by nε2

n with at least 1− e−bnε
2
n prior probability, and

assuring that the prior probability of the εn-size KL
neighborhood of the true density is at least e−nε

2
n .

In view of the equivalence of distances, need bounding entropy
and obtain prior concentration in terms of Frobenius norm.
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Steps (contd.)

Define sieve Pn so maximum number of edges r̄ <
(p

2

)
/2 and

each entry at most L, where r̄ and L are to be determined.

Metric entropy ≤ log[r̄
(

L
εn

)r̄ ((p2)
r̄

)
] need to make ≤ nε2

n.

Choose L ∈ [bnε2
n, bnε

2
n + 1] to ensure that(p

2

)
exp(−L) ≤ exp(−b′nε2

n). Note tail probability ≤ e−bnε
2
n .

Requirement on r̄ becomes
log r̄ + r̄ log p + r̄ log( 1

εn
) + r̄ log(nε2

n) � nε2
n.

P(Pc
n ) ≤ P(R̄ > r̄) + exp(−b3nε

2
n)

holds if r̄ is like nε2
n/ log n under the Poisson tail condition.

Bounding the KL divergences by
∑p

j=1 |dj − 1|2, suffices to
lower bound P{max |dj − 1| < εn/p} = P{‖Ω− Ω0‖∞ <
εn/p} ≥ (c ′εn/p)p+s using “independence”.

(p + s)(log p + log(1/εn)) � nε2
n,

giving convergence rate εn = n−1/2(p + s)1/2(log n)1/2.
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Approximate Posterior Model Probabilities

We use Laplace approximation — in each submodel, expand
log posterior density around posterior mode and evaluate
normal integrals analytically.

Posterior mode is graphical lasso restricted to the submodel.

To find the Laplace approximation, need to calculate the
Hessian.
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Hessian

U = Ω− Ω∗, where Ω∗ is the graphical lasso solution in the
submodel.

p{Γ|X} ∝ exp{n h(Ω∗)/2} {det(Ω∗)}−n/2
∫
U+Ω∗∈M+

exp{n g(U)/2},

where g(U) is

log det(U + Ω∗)− tr(Σ̂U)− 2λ

n

∑
γij=1

(|uij + ω∗ij | − |ω∗ij |)−
λ

n

p∑
i=1

uii .

Hessian of g(U) is the #VΓ ×#VΓ matrix HU+Ω∗ , with
{(i , j), (l ,m)}th entry

−tr
{

(U + Ω∗)−1E(i ,j)(U + Ω∗)−1E(l ,m)

}
,

E(i ,j) is a binary matrix with 1 only at (i , j)th and (j , i)th location.
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Laplace approximation

p∗{Γ|X} ∝ CΓ exp{n h(Ω∗)/2}{det(Ω∗)}−n/2 exp{n g(0)/2}

×(2π)#VΓ/2(n/2)−#VΓ/2[det{− ∂g(U)

∂U∂UT
|0}]−1/2

= CΓ exp{n h(Ω∗)/2}(2π)#VΓ/2(n/2)−#VΓ/2{det(HΩ∗)}−1/2.

Approximation is meaningful (i.e. differentiability hold) only if all
the graphical lasso estimates of the off-diagonal elements
corresponding to the graph generated by Γ are non-zero — coined
as “regular models”. Other models are non-regular models.
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Ignorability of non-regular models

For a given nonregular submodel Γ, define its regular counterpart
to be the model Γ by removing the edges having graphical lasso
solution zero. Then as defined above, the graphical lasso solution
corresponding to the two models are identical.

Theorem

If q < 1/2, then the posterior probability of a non-regular model Γ
is always less than that of its regular submodel Γ′.
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Accuracy of Laplace approximation

Theorem

The error in Laplace approximation of the posterior probability of a
graphical model structure is asymptotically small if (p + s)2εn → 0,
where εn is the posterior convergence rate, that is, the error in the
Laplace approximation tends to zero if
n−1/2(p + s)5/2(log p)1/2 → 0.

Proof uses the bound — if sparsity is s, then with probability
tending to 1, the remainder term in the expansion of h(Ω) around
Ω∗, is bounded by
(p + s)‖Ω− Ω∗‖2

2(C1‖Ω− Ω∗‖2 + C2‖Ω− Ω∗‖2
2)/2.
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How to test the method?

So far tested on

AR(1) model, σij = 0.7|i−j |.

AR(2) model, ωii = 1, ωi ,i−1 = ωi−1,i = 0.5,
ωi ,i−2 = ωi−2,i = 0.25.

Compute the so called median probability model
{j : P(Xj included in model—data) ≥ 1/2}, based only on regular
models that are with Hamming distance 1 (there are O(p) such
models instead of 2p). We monitor specificity, sensitivity and
Matthews Correlation Coefficient.

SP =
TN

TN + FP
, SE =

TP

TP + FN

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.
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How is the method working?

n = 100 n = 200
Model p SP SE MCC SP SE MCC

30 0.977 0.941 0.831 0.986 0.996 0.907
(0.003) (0.019) (0.015) (0.002) (0.003) (0.014)

50 0.987 0.953 0.841 0.991 0.992 0.903
(0.002) (0.013) (0.010) (0.001) (0.004) (0.008)

AR(1) 100 0.977 0.875 0.724 0.961 0.867 0.739
(0.001) (0.026) (0.019) (0.006) (0.034) (0.028)

500 0.909 0.585 0.310 0.953 0.761 0.541
(0.004) (0.026) (0.012) (0.006) (0.019) (0.019)

30 0.975 0.470 0.546 0.987 0.495 0.617
(0.003) (0.014) (0.013) (0.002) (0.008) (0.008)

50 0.983 0.462 0.541 0.993 0.489 0.629
(0.001) (0.013) (0.011) (0.001) (0.005) (0.007)

AR(2) 100 0.943 0.460 0.383 0.938 0.453 0.438
(0.003) (0.015) (0.010) (0.008) (0.005) (0.007)

500 0.781 0.383 0.104 0.831 0.434 0.183
(0.005) (0.077) (0.010) (0.004) (0.014) (0.007)
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How is the method working? (contd.)

n = 100 n = 200
Model p SP SE MCC SP SE MCC

30 1.000 0.423 0.831 1.000 0.429 0.524
(0.000) (0.047) (0.037) (0.000) (0.060) (0.049)

50 1.000 0.381 0.481 1.000 0.402 0.502
(0.000) (0.044) (0.040) (0.000) (0.036) (0.030)

Block 100 1.000 0.330 0.445 1.000 0.349 0.460
(0.000) (0.021) (0.017) (0.000) (0.027) (0.021)

30 0.947 0.289 0.228 0.995 0.210 0.378
(0.004) (0.038) (0.036) (0.001) (0.032) (0.041)

50 0.945 0.492 0.332 0.993 0.475 0.585
(0.003) (0.034) (0.025) (0.000) (0.034) (0.024)

Star 100 0.990 1.000 0.827 0.988 1.000 0.792
(0.000) (0.000) (0.004) (0.000) (0.000) (0.008)

30 0.733 1.000 0.399 0.719 1.000 0.388
(0.004) (0.000) (0.003) (0.005) (0.000) (0.004)

50 0.831 1.000 0.409 0.833 1.000 0.411
(0.003) (0.000) (0.003) (0.002) (0.000) (0.003)

Circle 100 0.891 1.000 0.378 0.903 1.000 0.399
(0.001) (0.000) (0.002) (0.008) (0.000) (0.002)
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In the real world

We analyze closing prices of 452 stocks from the S&P 500 index
during January 1, 2003 to January 1, 2008. The stocks are
categorized into 10 Global Industry Classification Standard (GICS)
— “Health Care”, “Materials”, “Industrials”, “Consumer Staples”,
“Consumer Discretionary”, “Utilities”, “Information Technology”,
“Financials”, “Energy”, “Telecommunication Services”.
Denoting Ytj as the closing stock price for the jth stock on day t,
we construct the 1257× 452 data matrix S with entries
stj = log(Y(t+1)j/Ytj), t = 1, . . . , 1257, j = 1, . . . , 452,
standardized to have mean zero and standard deviation one. We
find the median probability model. The following color coded
graph show interrelationships.
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Figure: Graphical structure of the median probability model selected by
the Bayesian graphical structure learning method.
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Figure: Graphical structure corresponding to the subgraph corresponding
to the sectors “Utilities” [red] and “Information Technology”[violet].
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Figure: Graphical structure corresponding to the subgraph corresponding
to the sectors “Financials” [blue] and “Energy”[violet].
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Thank you
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