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The contraction group for α

Definition
Let α ∈ Aut(G). The contraction group for α is

con(α) := {x ∈ G | αn(x)→ 1 as n→∞} .

Then con(α) is an α-stable subgroup of G.
Examples show that it need not be a closed subgroup.



Examples of contraction groups

Examples

1. FZ, where F is a finite group, with the product topology.
Let α be the shift: α(g)n = gn+1.

2. (Fp((t)),+), the additive group of the field of formal
Laurent series over the field of order p.
Let α be multiplication by t .

3. Aut(Tq), the automorphism group of the regular tree with
every vertex having valency q.
Let α be the inner automorphism αg , g a translation of T .

4. SL(n,Qp), the special linear group over the field of p-adic
numbers.

Let α be conjugation by
(

p 0
0 1

)
.



Contraction groups in representation theory

Proposition (Mautner phenomenon)
Let ρ : G→ L(X ) be a bounded, strongly continuous
representation of G on the Banach space X . Suppose, for
some g ∈ G and x ∈ X , that ρ(g)x = x .
Then ρ(h)x = x for every h ∈ con(g).



Non-triviality of con(α)

The following were shown by U. Baumgartner & W. in the case
when G is metrizable. The metrizability condition was removed
by W. Jaworski.

Theorem
Suppose that s(α−1) > 1. Then con(α) is not trivial.
The converse does not hold.

Theorem
Let α ∈ Aut(G) and V ∈ B(G) be tidy for α. Then

V−− = V0con(α). (1)

Moreover, ⋂
{U−− | U tidy for α} = con(α). (2)



Normal closures

Proposition
Let α ∈ Aut(G). Then the map

η : con(α)→ con(α) defined by η(x) = xα(x−1)

is surjective.

Proposition
Let g ∈ G. Then con(g) is contained in every (abstractly)
normal subgroup of G that contains g.



The Tits core

Definition
The Tits core of the t.d.l.c. group G is

G† = 〈con(g) | g ∈ G〉.

Theorem (Caprace, Reid & W.)
Let D be a dense subgroup of the t.d.l.c. group G. If G†

normalises D, then G† ≤ D.

Corollary (Caprace, Reid & W.)
Suppose that G belongs to S, that is, G is compactly generated
and topologically simple. Then G† is either trivial or it is the
smallest non-trivial normal subgroup of G.



Closed contraction groups

Theorem (Glöckner & W.)
Let G be a t.d.l.c. group and suppose that α ∈ Aut(G) is such
that αn(g)→ 1 as n→∞ for every g ∈ G. Then the set tor(G)
of torsion elements and the set div(G) of divisible groups are
α-stable closed subgroups of G and

G = tor(G)× div(G).

Furthermore div(G) is a direct product

div(G) = Gp1 × · · · ×Gpn ,

where each Gpj is a nilpotent pi -adic Lie group.



Closed contraction groups 2

Every group G with a contractive automorphism α has a
composition series of closed α-stable subgroups where each of
the composition factors is a simple contraction group in the
sense that it has no closed, proper, non-trivial α-stable
subgroups.

Theorem (Glöckner & W.)
Let G be a t.d.l.c. group, α ∈ Aut(G) and suppose that (G, α) is
simple. Then G is either:

1. a torsion group and isomorphic to F (−N) × FN0 with F a
finite simple group and α the shift; or

2. torsion free and isomorphic to a p-adic vector space
with α a contractive linear transformation.



Ergodic actions by automorphisms

Conjecture (Halmos)
Let G be a l.c. group and suppose that there is α ∈ Aut(G) that
acts ergodically on G. Then G is compact.
Proved for G connected in the 1960’s and for G totally
disconnected in the 1980’s. Short proof by Previts & Wu uses
the scale.

S. G. Dani, N. Shah & W. show that, if G has a finitely
generated abelian group of automorphisms that acts
ergodically, then G is, modulo a compact normal subgroup, a
direct product of vector groups over R and Qp.



The largest subgroup on which α acts ergodically

Definition
The nub of α ∈ Aut(G) is the subgroup

nub(α) =
⋂
{V | V is tidy for α} (= nub(α−1)).

The nub of α is trivial if and only if con(α) is closed.

Theorem
nub(α) is the largest closed α-stable subgroup of G on which α
acts ergodically.

Theorem
The compact open subgroup V is tidy below for α ∈ Aut(G) if
and only if nub(α) ≤ V.



The structure of nub(α)

(B. Kitchens & K. Schmidt. W. Jaworski)

Theorem
The nub of α is isomorphic to an inverse limit

(nub(α), α) ∼= lim←−(Gi , αi),

where Gi is a compact t.d. group, αi ∈ Aut(Gi) and Gi has a
composition series

{1} = H0 < H1 < · · · < Hr = Gi ,

of αi stable subgroups, with the composition factors Hj+1/Hj
isomorphic to FZ

j , for a finite simple group Fj and the induced
automorphism the shift.



The nub and contraction groups

Theorem
Let α ∈ Aut(G). Then

nub(α) = con(α) ∩ con(α−1)

and

nub(α) ∩ con(α) = {g ∈ con(α) | {αn(g)}n∈Z is bounded}

is dense in nub(α). Denote this set by bcon(α).
The intersection bcon(α) ∩ bcon(α−1) need not be dense in
nub(α) but

nub(α)/bcon(α) ∩ bcon(α−1)

is abelian.
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