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2.1 Standing assumptions

Cavets aka Excuses

All Banach algebras will have a unit, or bounded approximate identity

All modules will be Banach modules

In general a unit should be added before using the definitions

All maps will be continuous and linear

Algebras will act unitally on modules, or the b.a.i. will act as such

Sub- and quotient modules usually need to be (weakly)
complemented as Banach spaces

For more details see:

Helemskii for detailed treatment topological algebras
Weibel for the algebraic background
Loday for detailed treatment of cyclic cohomology
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2.2 Definitions and Notation

Definitions and Notation

Derivations Z1(A,Y ) = {D : A→ Y , s.t. D(ab) = aD(b) + D(a)b}
Inner derivations B1(A,Y ) = {δy (a) = ay − ya}
Commutative bimodules, where ay = ya satisfy D(an) = an−1D(a)

H1(A,Y ) := Z1(A,Y )/B1(A,Y )

Note H1(A,Y ) a Banach space iff B1(A,Y ) closed [Ex],
Z1(A,Y ) is always closed

For semigroup algebras this is related to reversal depth
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2.3 Connections with Amenability

Amenability and Cohomology

A is amenable iff H1(A,X ′) = 0, for example L1(G ), for amenable G

A is weakly amenable if H1(A,A′) = 0, for example all L1(G )

Why do we consider derivations into the dual module?

The Singer-Wermer Theorem says that semi-simple algebras have no
non-zero derivations D : A→ A,

It is Functoral, θ : A→ B, gives θ∗ : HH1(B)→ HH1(A) [Ex]

Simplicially trivial algebras have HHn(A) = Hn(A,A′) = 0,
e.g. semilattice algebras

Cyclically amenable algebras have HC1(A) = 0, e.g. `1(Z+) [Ex]

Cyclic derivations also satisfy D(a)(b) = −D(b)(a),
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2.4 Core Facts and Conventions

Multi-linear Miscellany

A will be a Banach algebra

Y will be a Banach space which is a left, right or bi-module over A

All linear maps will be bounded

X ′ is the dual module of X in the usual way

E ⊗̂F is the projective tensor product of Banach spaces,

(E ⊗̂F )′ ∼= BL(E ,F ;C) ∼= L(E ⊗̂F ;C) ∼= L(E ,F ′) ∼= L(F ,E ′)

E ⊗̂F , and the above, sometimes inherit a bimodule structure

e.g., A is a left and also a right module, and A⊗̂A is a bimodule

Also L(E ⊗̂F ; G ) ∼= BL(E ,F ; G ) ∼= L(E , L(F ,G )),

Where L and BL denote spaces of (bounded) linear and bilinear maps

Ah(X ,Y ) is the space of left A-module maps, i.e. T (ax) = aT (x)

hA(E ,F ) and AhA(M,N) denote the right and bimodule morphisms
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2.5 Cohomology 101: Derivations

A a Banach algebra

Y a Banach A-bimodule

D is a Derivation if D : A→ Y and it satisfies the 1-cocycle equation
(δD) = 0, where

(δD)(a, b) := +a · D(b)− D(ab) + D(a) · b.

We write D ∈ Z1(A; Y ).

An inner derivation is map given by a 1-coboundary of an element
of Y

δy := (a 7→ a · y − y · a)

these are always derivations. We write δy ∈ B1(A; Y ).

We measure how far from being all derivations are the inner
derivations by

H1(A; Y ) =
Z1(A; Y )

B1(A; Y )
.
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2.6 Examples of Derivations

e.g. 1: A = `1(Z+), Y = C0, given by the character at 0.

Df = f ′(0)

is a derivation,

which cannot be inner as the module is commutative (ay = ya).

e.g. 2: A = `1(Z+), Y = A⊗̂A, where D is given by

Da = a⊗ 1− 1⊗ a.

This derivation is always inner, as

D(a) = a· (1⊗ 1)− (1⊗ 1)· a.

e.g. 3: A = `1(Z+), Y = Kerπ ⊂ A⊗̂A, where D is given by

Da = a⊗ 1− 1⊗ a.

This derivation is not inner
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3.1 Injective Motivation

If a derivation D : A→ Y is not inner, then
Who is to blame: the derivation or the module?

The module is the blame

Every bimodule Y is canonically embedded in L(A⊗̂A; Y ),

. . . by y 7→ ((a⊗ b) 7→ b.y .a) [Ex]

Theorem: Every derivation D : A→ Y induces a derivation
D̃ : A→ L(A⊗̂A; Y ), which is inner

Proof: [Ex] or by later theory “L(A⊗̂A; Y ) is cofree, so biinjective”

Fact: all dual modules for amenable algebras are biinjective
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3.2 Injective modules - Definition

Defining properties

The Hahn-Banach Theorem for E ⊆ F says that every linear map

L(E ,C) extends, or lifts to a map from F :
F
↑ ↘
E → C

We say the module I is injective, if for every admissible Z ↪→ Y ,

θ ∈ hA(Z , I ) lifts to θ̃ ∈ hA(Y , I ):

Y
↑ ↘
Z → I

A module is called projective is we can lift maps,

if for every admissible Y � X :
Y

↗ ↓
P → X

We say F is a flat module iff F ′ is injective. Projective implies flat [Ex]
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3.3 Injective modules - Properties

Basic Properties of Injective modules

Theorem: The right module I ∼= L(A,E ) is injective

PROOF . . . [Ex]

Theorem: The right module I is injective iff it is a module summand
in I ⊕ I2 ∼= L(A, I )

PROOF . . . [Ex]

Aside: the projection takes the place of averaging arguments in
applications

Basic Properties of Projective modules

Theorem: The left module P ∼= A⊗̂E is projective

PROOF . . . [Ex]

Theorem: The left module P is projective iff it is a module summand
in P ⊕ P2

∼= A⊗̂P [Ex]
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Basic Properties of Projective modules

Theorem: The left module P ∼= A⊗̂E is projective

PROOF . . . [Ex]

Theorem: The left module P is projective iff it is a module summand
in P ⊕ P2

∼= A⊗̂P [Ex]
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3.4 Bimodules

Biinjective definitions come for free

Recall that A⊗̂A = Aev can be made into an algebra by using the
product: (a1 ⊗ b1)× (a2 ⊗ b2) = (a1a2 ⊗ b2b1) [Ex]

Any A bimodule Y if now a right Aev module by: y(a⊗ b) = bya

We can now define a module to be biinjective if it is right injective as
an Aev module

Similarly, we can consider left module to be right modules over Aop,
and vice versa

It is natural to ask:
if I is left injective and right injective, then is it biinjective?

L(A⊗̂A, I ) ∼= L(A, L(A, I )) ∼= L(A, I ⊕ I1) ∼= L(A, I )⊕ L(A, I1) ∼=
I ⊕ I2 ⊕ L(A, I1) [Ex]
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3.5 Averaging with Biinjectives

Derivations into biinjective modules are inner

Proof:

hy (b, c) := cyb plays the role of the inner derivation

Recall that h̄y = y for the bimodule map ·̄ : L(A⊗̂A; Y )→ Y

g(b, c) := c.D(b) plays the role of the linear map to be averaged

(a.g)(b, c) = g(b, ca) = ca.D(b)

(g .a)(b, c) = g(ab, c) = c .D(ab) = ca.D(b) + c .D(a).b

[(a.g)− (g .a)](b, c) = hD(a)(b, c)

a.ḡ − ḡ .a = D(a)
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3.6 Amenable gives Biinjectives

Dual modules over amenable algebras are injective

Recall a Banach algebra A is amenable if it has an approximate

diagonal: a bounded net mλ ∈ A⊗̂A, so that

a.mλ −mλ.a→ 0 and π(mλ).a→ a

Proof: Denote the approximate diagonal by mλ =
∑∞

i=1 aλi ⊗ bλi
and assume the net to be an ultrafilter (or take subnets later)

Given a left module X with dual right module X ′

We define a module projection ·̄ : L(A,X ′)→ X ′ by

T̄ (x) = limλ
∑∞

i=1 T (aλi )(bλi x)

·̄ is a module map: (T .c)(x) = limλ
∑∞

i=1(T .c)(aλi )(bλi x) =
limλ

∑∞
i=1 T (caλi )(bλi x) = limλ

∑∞
i=1 T (aλi )(bλi cx) = T̄ (c .x)

·̄ is a projection: recall hy (a) = ya
(hy )(x) = limλ

∑∞
i=1(hy )(aλi )(bλi x) = limλ

∑∞
i=1(y .aλi )(bλi x) =

limλ
∑∞

i=1 y(aλi .b
λ
i x) = limλ y(π(mλ)x) = y(x) = hy (x)
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3.7 Averaging without amenability

Averaging with Bounded Approximate Identities (bai)

Theorem: Let J be a left ideal with a brai {eα}, then (A/J)′ is
injective.

Proof: We can write (A/J)′ as a module direct summand of the
injective module A′ [Ex]

using the module projection f 7→ (a 7→ limα f (a− aeα)) for f ∈ A′;

There is a partial converse to this for (weakly) complemented ideals

if (A/J)′ is injective then J has a brai. [Ex]

If A′ = (A/J)′ ⊕ J ′, then A′′ = (A/J)′′ ⊕ J ′′ and 1 ∈ A′′ decomposes

Interesting examples are the peak points in uniform algebras
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4.1 Quotient and Submodules

How are derivations into modules related to derivations onto submodules
and quotient modules?

Derivations into Submodules

We have already seen that by enlarging the module we can make any
derivation inner, Y → L(A⊗̂A,Y ), but in general it will not become
inner

0→ X ↪→ Y → Z → 0, an admissible s.e.s.

H1(A,X )→ H1(A,Y )→ H1(A,Z )

This is exact at H1(A,Y )

Proof: . . . [Ex]
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4.2 Quotient and Submodules

Derivations to Quotients

Given D : A→ Y /X , can we lift it to D̃ : A→ Y ?
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5.1 Second cohomology from 2-forms

We define

(δy)(f ) := f . y − y . f

(δψ)(f , g) := f . ψ(g)− ψ(fg) + ψ(f ). g

(δφ)(f , g , h) := f . φ(g , h)− φ(fg , h) + φ(f , gh)− φ(f , g). h

We say φ is a 2-cocycle if δφ = 0
We say φ is a 2-coboundary if φ = δψ. (Think ψ = D.)
How can such a 2-cocycle arise?
e.g. A = `1(Z 2

+), Y = C0, so f (z ,w)·λ = f (0, 0)λ

φ(f , g) =

(
∂f

∂z

∂g

∂w
− ∂f

∂w

∂g

∂z

)
|(0,0).

Calculation shows this to be a 2-cocycle, which is not zero, as
φ(z ,w) = +1, and φ(w , z) = −1,
Moreover, it cannot cobound, as if φ = δψ, then

φ(f , g) = f . ψ(g)− ψ(fg) + ψ(f )g = φ(g , f ).
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5.2 Higher Cohomology – a quick definition

We define higher cohomology, Hn(A,Y )
by generalising the 2-cocycle formula to the complex

→ Ln−1(A,Y )→ Ln(A,Y )→ Ln+1(A,Y )→

with coboundary maps

δ(T )(a1, a2, . . . , an) = + a1T (a2, a3, . . . , an)

+
n−1∑
j=1

(−1)jT (a1, . . . , ajaj+1, . . .)

+ (−1)nT (a1, a2, . . . , an−1)an

It is easy to check δ2 = 0 [Ex], which defines a chain complex

Zn(A) = Ker δ, are the n-cocycles

Bn(A) = Im δ, are the n-cochains

Hn(A,Y ) = Zn(A,Y )/Bn(A,Y ), is the n-cohomology.
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→ Ln−1(A,Y )→ Ln(A,Y )→ Ln+1(A,Y )→

with coboundary maps

δ(T )(a1, a2, . . . , an) = + a1T (a2, a3, . . . , an)

+
n−1∑
j=1

(−1)jT (a1, . . . , ajaj+1, . . .)

+ (−1)nT (a1, a2, . . . , an−1)an

It is easy to check δ2 = 0 [Ex], which defines a chain complex

Zn(A) = Ker δ, are the n-cocycles

Bn(A) = Im δ, are the n-cochains

Hn(A,Y ) = Zn(A,Y )/Bn(A,Y ), is the n-cohomology.
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5.3 Using simpler cocycles

It is often convenient to be able to assume that both your cocycles
and coboundaries satisfy additional conditions

e.g. that they vanish if any argument is a scalar multiple of 1 ∈ A

This can be proved by induction, but there is a very flexible tool
available to prove such results.

Define Pn = A⊗̂
⊗̂n

A⊗̂A and d : Pn+1 → Pn by

d(a1 ⊗ · · · ⊗ an+1) =
∑n

j=1(−1)j+1a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an
0← A← P0 ← P1 ← P2 ← · · ·

is called the Bar resolution of A.

It is an exact complex of biprojective modules

Notice that AhA(Pn,Y ) = Ln(A,Y ), and the induced maps are the
same as the δ above [Ex]

In fact we could take another resolution by biprojective A modules
and get the same answer, i.e.

If we set Hn(A,Y ) = Ker δ[AhA(Pn,Y )→AhA(Pn−1,Y )]/ Im δ

then Hn(A,Y ) = Hn(A,Y ) . . . This is surprising!
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5.4 Comparing Projective Resolutions

The proof that Hn(A,Y ) = H(A,Y ) does to depend on the
resolution involves several steps

In general one compares two resolutions:
0 ← A ← P0 ← P1 ← P2 ← · · ·
↑ ↑ ↑ ↑ ↑
0 ← A ← Q0 ← Q1 ← Q2 ← · · ·

Using the fact that the Qn are projective to build the comparison
This gives maps

AhA(P0,Y ) → AhA(P1,Y ) → AhA(P2,Y ) · · ·
↓ ↓ ↓

AhA(Q0,Y ) → AhA(Q1,Y ) → AhA(Q2,Y ) · · ·
which gives maps:

Zn
P(A,Y )→ Zn

Q(A,Y )
BnP(A,Y )→ BnQ(A,Y )
Hn

P(A,Y )→ Hn
Q(A,Y )

To check the last is an isomorphism one begins with the case Qn = Pn

Beware: the maps ↑, may not have been chosen to be isomorphisms
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5.5 Using injective resolutions

We are also allowed to use biinjective resolutions of the bimodule
0→ Y → I0 → I1 → I2 → · · ·

and then the cohomology if given by
Hn(A,Y ) = Ker δ : AhA(A, In)→ AhA(A, In+1)/ Im δ

Theorem A is amenable iff
A′ is a bimodule direct summand of (A⊗̂A)′ iff A′ is biinjective.

Hn(A, I ) = 0, for biinjective modules

If the bimodule is already biinjective, then it has a short resolution

0→ I → I → 0→ · · ·
It is clear that all the Hn(A,Y ) defined above are trivial, for n > 0

So it is not just ‘trivial’ derivations which biinjective modules have

All of the higher cohomology vanishes
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5.6 Dimension Reduction

We have already seen H1(A,X ) is related to H2(A,Z ).

More Generally . . .

Long Exact Sequences

Theorem Given an admissible short exact sequence

0→ X ↪→ Y → Z → 0

There is a long exact sequence

· · · → Hn(A,Y )→ Hn(A,Z )→ Hn+1(A,X )→ Hn+1(A,Y )→ · · ·
If we select a bimodule Y so that Hn(A,Y ) = 0 then

Hn(A,Z ) ∼= Hn+1(A,X )

We select Y = L(A⊗̂A,X ), are it is biinjective

Which gives Z = L(A⊗̂A,X )/X

So we have that

Hn+1(A,X ) ∼= Hn(A,Z )

Hence it is isomorphic to some H1(A,W )
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5.7 Other Resolutions - I

We have heard that the we can use other biprojective resolutions to
compute cohomology:

Unit normalised resolution

We set Pn = A⊗̂
⊗̂n

(A/1C)⊗̂A and use the d : Pn+1 → Pn as above.

It is clear that these modules are of the correct form to be biprojective

To see that the complex is exact, we define s : Pn → Pn+1 by

s(ω) = s(a1 ⊗ · · · ⊗ an) = 1⊗ ω
Observe ds(ω) = d(1⊗ ω) = 1. ω − 1⊗ d(ω),

We usually write: ds + sd = 1, and call s a contracting homotopy

Exactness: if η is in Ker d , then η = η + sd(η) = ds(η) ∈ Imd

Now note that AhA(Pn,Y ) is exactly the unit normalised maps [Ex]

Hence Hn(A,Y ) is the (usual) unit normalised cohomology
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5.8 Other Resolutions - II

In fact for dual modules we can use even more resolutions

we only need to have a bi-injective resolution of A′.
Note the In = P ′n would be such a bi-injective resolution

Normalisation w.r.t. and amenable subalgebra

Let B be an amenable subalgebra of A

We set In = Ln+2
B (A,C) such that for c ∈ B and ai ∈ A

T (· · · , ajc , aj+1, · · · ) = T (· · · , aj , caj+1, · · · ), δ as above

Note these are indeed bimodules, which are submodules of Ln+2(A,C)

We need to check that the modules are all bi-injective.

We give a bimodule projection from Ln+2(A,C) onto Ln+2
B (A,C)

Set T̄ (· · · , aj , aj+1, · · · ) = LIMλ
∑∞

i=1 T (· · · , ajaλi , bλi aj+1, · · · )
This is a bimodule map, and T̄ is normal between aj and aj+1

Now repeat in each place to make fully B-normal
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T (· · · , ajc , aj+1, · · · ) = T (· · · , aj , caj+1, · · · ), δ as above

Note these are indeed bimodules, which are submodules of Ln+2(A,C)

We need to check that the modules are all bi-injective.

We give a bimodule projection from Ln+2(A,C) onto Ln+2
B (A,C)

Set T̄ (· · · , aj , aj+1, · · · ) = LIMλ
∑∞

i=1 T (· · · , ajaλi , bλi aj+1, · · · )
This is a bimodule map, and T̄ is normal between aj and aj+1

Now repeat in each place to make fully B-normal
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6.1 Extensions and Ext

Extensions give Derivations

Given an admissible short exact sequence, of left A-modules

0← X ← Y ←↩ Z ← 0

This is an extension on X by Z

We can write the left module action on Y as

θY (a) =

(
θZ (a) D(a)

0 θX (a)

)
where D is a derivation into L(X ,Z ), [Ex]

This is inner iff Y ∼= X ⊕ Z as an A-module [Ex]
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6.2 Two variable cohomology

Ext as 2 variable cohomology

We have seen H1(A, L(X ,Z )) classifies extensions of X by Z

This leads us to consider this special bimodule’s higher cohomology

We could make the definition ExtnA(X ,Z ) := Hn(A, L(X ,Z ))

In fact these cohomology groups compare longer extensions

0← X ← X1 ← · · · ← Xn ← Z ← 0

But we are interested in another definition of ExtnA(X ,Z )

This allows us more resolutions to compute Hn(A, L(X ,Z ))

Michael C. White (Newcastle University) Cohomology of Banach Algebras 15 - 16 May, 2014 27 / 35



6.2 Two variable cohomology

Ext as 2 variable cohomology

We have seen H1(A, L(X ,Z )) classifies extensions of X by Z

This leads us to consider this special bimodule’s higher cohomology

We could make the definition ExtnA(X ,Z ) := Hn(A, L(X ,Z ))

In fact these cohomology groups compare longer extensions

0← X ← X1 ← · · · ← Xn ← Z ← 0

But we are interested in another definition of ExtnA(X ,Z )

This allows us more resolutions to compute Hn(A, L(X ,Z ))

Michael C. White (Newcastle University) Cohomology of Banach Algebras 15 - 16 May, 2014 27 / 35



6.2 Two variable cohomology

Ext as 2 variable cohomology

We have seen H1(A, L(X ,Z )) classifies extensions of X by Z

This leads us to consider this special bimodule’s higher cohomology

We could make the definition ExtnA(X ,Z ) := Hn(A, L(X ,Z ))

In fact these cohomology groups compare longer extensions

0← X ← X1 ← · · · ← Xn ← Z ← 0

But we are interested in another definition of ExtnA(X ,Z )

This allows us more resolutions to compute Hn(A, L(X ,Z ))

Michael C. White (Newcastle University) Cohomology of Banach Algebras 15 - 16 May, 2014 27 / 35



6.2 Two variable cohomology

Ext as 2 variable cohomology

We have seen H1(A, L(X ,Z )) classifies extensions of X by Z

This leads us to consider this special bimodule’s higher cohomology

We could make the definition ExtnA(X ,Z ) := Hn(A, L(X ,Z ))

In fact these cohomology groups compare longer extensions

0← X ← X1 ← · · · ← Xn ← Z ← 0

But we are interested in another definition of ExtnA(X ,Z )

This allows us more resolutions to compute Hn(A, L(X ,Z ))

Michael C. White (Newcastle University) Cohomology of Banach Algebras 15 - 16 May, 2014 27 / 35



6.2 Two variable cohomology

Ext as 2 variable cohomology

We have seen H1(A, L(X ,Z )) classifies extensions of X by Z

This leads us to consider this special bimodule’s higher cohomology

We could make the definition ExtnA(X ,Z ) := Hn(A, L(X ,Z ))

In fact these cohomology groups compare longer extensions

0← X ← X1 ← · · · ← Xn ← Z ← 0

But we are interested in another definition of ExtnA(X ,Z )

This allows us more resolutions to compute Hn(A, L(X ,Z ))

Michael C. White (Newcastle University) Cohomology of Banach Algebras 15 - 16 May, 2014 27 / 35



6.2 Two variable cohomology

Ext as 2 variable cohomology

We have seen H1(A, L(X ,Z )) classifies extensions of X by Z

This leads us to consider this special bimodule’s higher cohomology

We could make the definition ExtnA(X ,Z ) := Hn(A, L(X ,Z ))

In fact these cohomology groups compare longer extensions

0← X ← X1 ← · · · ← Xn ← Z ← 0

But we are interested in another definition of ExtnA(X ,Z )

This allows us more resolutions to compute Hn(A, L(X ,Z ))

Michael C. White (Newcastle University) Cohomology of Banach Algebras 15 - 16 May, 2014 27 / 35



6.2 Two variable cohomology

Ext as 2 variable cohomology

We have seen H1(A, L(X ,Z )) classifies extensions of X by Z

This leads us to consider this special bimodule’s higher cohomology

We could make the definition ExtnA(X ,Z ) := Hn(A, L(X ,Z ))

In fact these cohomology groups compare longer extensions

0← X ← X1 ← · · · ← Xn ← Z ← 0

But we are interested in another definition of ExtnA(X ,Z )

This allows us more resolutions to compute Hn(A, L(X ,Z ))

Michael C. White (Newcastle University) Cohomology of Banach Algebras 15 - 16 May, 2014 27 / 35



6.2 Two variable cohomology

Ext as 2 variable cohomology

We have seen H1(A, L(X ,Z )) classifies extensions of X by Z

This leads us to consider this special bimodule’s higher cohomology

We could make the definition ExtnA(X ,Z ) := Hn(A, L(X ,Z ))

In fact these cohomology groups compare longer extensions

0← X ← X1 ← · · · ← Xn ← Z ← 0

But we are interested in another definition of ExtnA(X ,Z )

This allows us more resolutions to compute Hn(A, L(X ,Z ))

Michael C. White (Newcastle University) Cohomology of Banach Algebras 15 - 16 May, 2014 27 / 35



6.2 Two variable cohomology

Ext as 2 variable cohomology

We have seen H1(A, L(X ,Z )) classifies extensions of X by Z

This leads us to consider this special bimodule’s higher cohomology

We could make the definition ExtnA(X ,Z ) := Hn(A, L(X ,Z ))

In fact these cohomology groups compare longer extensions

0← X ← X1 ← · · · ← Xn ← Z ← 0

But we are interested in another definition of ExtnA(X ,Z )

This allows us more resolutions to compute Hn(A, L(X ,Z ))

Michael C. White (Newcastle University) Cohomology of Banach Algebras 15 - 16 May, 2014 27 / 35



6.2 Two variable cohomology

Ext as 2 variable cohomology

We have seen H1(A, L(X ,Z )) classifies extensions of X by Z

This leads us to consider this special bimodule’s higher cohomology

We could make the definition ExtnA(X ,Z ) := Hn(A, L(X ,Z ))

In fact these cohomology groups compare longer extensions

0← X ← X1 ← · · · ← Xn ← Z ← 0

But we are interested in another definition of ExtnA(X ,Z )

This allows us more resolutions to compute Hn(A, L(X ,Z ))

Michael C. White (Newcastle University) Cohomology of Banach Algebras 15 - 16 May, 2014 27 / 35



6.3 One sided injective resolutions

Ext via left modules

This allows us more resolutions to compute Hn(A, L(X ,Z ))

Theorem Given any injective resolution of the left module Y

0→ Y → I0 → I1 → · · · , one-sided here!

Ah(X , I0)→ Ah(X , I1)→ Ah(X , I2)→
Is a complex whose homology is Hn(A, L(X ,Z ))

We are also allowed to use a projective resolution of X

0← X ← P0 ← P1 ← · · ·
along with the homology of

Ah(P0,Z )→ Ah(P1,Z )→ Ah(P2,Z )→
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6.4 Special bimodules

Application 1

Theorem H1(A, L(A,Y )) = 0 [Ex]

Proof A has a short projective resolution: 0← A← A← 0← · · ·
We are allowed to compute Hn(A, L(A,Y )) using

Ah(A,Y )→ Ah(0,Y )→ Ah(0,Y )→
This complex is almost all 0’s, so Hn(A, L(A,Y )) = 0

Application 2

If ψ is a character where Kerψ has a b.a.i., then H1(A, L(X ,Cψ)) = 0

Proof Cψ has a short injective resolution: 0→ Cψ → Cψ → 0→ · · ·
We are allowed to compute Hn(A, L(X ,Cψ)) using

Ah(X ,Cψ)→ Ah(X , 0)→ Ah(X , 0)→
This complex is almost all 0’s, so Hn(A, L(X ,Cψ)) = 0
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6.5 Tensor bimodules

Homology groups and Tor

If E is a left module, and F a right module

then L(E ,F ′) = (E ⊗̂F )′ is a bimodule of the sort considered above

and Extn(E ,F ′) is easier to compute

In fact we can define homology groups Hn(A,M) for bimodules

This is the homology of the predual of the complex for Hn(A,M ′)

Recall L(
⊗̂n

A,M ′) ∼= (
⊗̂n

A⊗̂M)′

Then define TorAn (E ,F ) = Hn(A,E ⊗̂F )

Often Hn(A,M) is the predual of Hn(A,M ′),

which makes is natural for dual modules

However, sometimes neither is even a Banach Space
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Cyclic Cohomology – a quick review

Recall

We compute the simplicial cohomology, HHn(A) using the complex

→ Ln−1(A; A′)→ Ln(A; A′)→ Ln+1(A; A′)→

which is actually just

→ (
⊗̂n

A)′ → (
⊗̂n+1

A)′ → (
⊗̂n+2

A)′ →

this extra symmetry allows us to impose an extra condition on our
multilinear maps. We say a map T is cyclic if

T (a1, a2, . . . , an)(a0) = (−1)nT (a2, a3, . . . , a0)(a1)

Surprisingly if T is cyclic then so is δT , this allows us to make the
definitions

ZCn(A) the space of cocycles which are cyclic;
BCn(A) the space of boundaries of cyclic cochains; (not coboundaries
which are cyclic);
HCn(A) = ZCn(A)/BCn(A).
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7.1 Connes-Tzygan

The Simplicial and the Cyclic cohomology groups are connected by
the Connes-Tzygan long exact sequences.

0→ HH1(A)→ HC0(A)→ HC2(A)→ HH2(A)→ HC1(A)→ · · ·
→ HHn(A)→ HCn−1(A)→ HCn+1(A)→ HHn+1(A)→ · · ·

2 Observations

If, for large n, HHn(A) = 0 then HCn−1(A) ∼= HCn+1(A) and so we
only have HCodd(A) and HCeven(A);
If, for large n, HCn(A) = 0 then HHn(A) = 0;
In fact it rarely happens like this as HCodd(C ) = 0 and HCeven(C ) = 0,
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7.2 Example of Cyclic Cohomology

e.g. 1: The algebras `1(Z+,+) has simplicial derivations, namely

D(zn)(zm) = nD(z1)(zn+m−1) =
n

n + m
D(zn+m)(1) = τD(zn+m)

where τD is any element of A′ (trace), which vanishes on 1.

However the following simple computation shows that `1(Z+,+) has
no simplicial derivations:

D(zn)(zm) =
n

n + m
D(zn+m)(1) =

n

n + m
D(1)(zn+m) = 0.

It then follows from the Connes-Tzygan long exact sequence

0→ HH1(A)→ HC0(A)→ HC2(A)→ 0

which gives HC2(A) = C.
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7.3 Vanishing Higher Cyclic Cohomology

Recall a 2-cocycle φ is called cyclic if φ(f , g)(h) = +φ(g , h)(f ).

Given any trace τ we can define a cyclic 2-cocycle by
φτ (f , g)(h) = τ(fgh). [Check the cocycle identity.]

Moreover, it is difficult for such cyclic 2-cocycles to cobound, for if
φ = δψ, then given any idempotent e ∈ A, we have

φ(e, e)(e) = ψ(e)(e2)− ψ(e2)(2) + ψ(e)(e2) = ψ(e)(e),

but as τ(e) = τ(eee) = φ(e, e)(e) = −ψ(e)(e) = 0.

Thus we have a non-vanishing class in HC2(A) whenever we have a
trace which does not vanish on some idempotent.

However, this is often the only way they can arise.

(Recall, we have already seen that HC2(`1(Z+,+)) = C.)

However, for C2, the Hilbert-Schmidt operators, one can see that
φτ (f , g)(h) = τ(fgh),

but C2 has no non-trivial trace.
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7.4 Idempotents and Cyclic Cohomology

Let τ be a trace on A. So τ ∈ HC0(A)

Imagine e(t) is a differentiable family of idempotents

Note τ(e)′ = τ(ė)

e2 = e

eė + ėe = ė

eė + eėe = eė

τ(eė) + τ(eėe) = τ(eė)

τ(eė) + τ(eeė) = τ(eė)

0 = τ(eeė) = τ(eė) = τ(ėe) = 0

τ(e)′ = τ(ė) = τ(eė + ėe) = 0

So τ(e) is constant on components

Now, given φ ∈ HC2(A)

Show φ(e, e)(e)′ = 0 [Ex]
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eė + ėe = ė
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eė + eėe = eė
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