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Compact quantum group

Definition (Woronowicz)
A compact quantum group G is a pair of C(G) and § s.t.
e C(G): unital C*-algebra.

@ J: C(G) = C(G) ® C(G): coproduct, i.e.

(6 ®id)od = (id®d) o 4.

@ (Cancellation property) §(C(G)) - (C® C(G)) and
I(C(G)) - (C(G) ® C) are dense in C(G).
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Notation

We need
@ h: the Haar state.
o L2(G): the GNS Hilbert space.
@ L*°(G): the weak closure of C(G).
A unitary v € B(H) ® L*°(G) is a representation if

(id ®5)(V) = VioV13.
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Let
@ G: a compact quantum group.

e v € B(H)® L*(G): a unitary representation on H.
e v: B(H) — B(H) ® L*°(G) defined by

v(x) = v(x® 1)v* for x € B(H).
~» 7y is an action, that is,
(v®id)oy = (id®d) 0.

Assumption (not essential): + is faithful.

Namely, any irreducible representation of G is contained in
(v @ V)" for a large n.
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Product type actions

If G: a compact group,
~ a product type action Ad v®> is minimal, i.e. (M%) N M =C.
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Product type actions

If G: a compact group,

~ a product type action Ad v®> is minimal, i.e. (M%) N M =C.
Let v®", tensor product representations.

Then the actions Ad v®" extend to the following UHF-algebra:

B(H) = B(H)®2 — ... = B(H)®" — ... = B(H)®.
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Product type actions

If G: a compact group,

~ a product type action Ad v®> is minimal, i.e. (M%) N M =C.
Let v®", tensor product representations.

Then the actions Ad v®" extend to the following UHF-algebra:

B(H) = B(H)®2 — ... = B(H)®" — ... = B(H)®.
Fix an invariant state ¢ on B(H) for Ad v:
(¢ @id)(v(x ® 1)v*) = ¢(x)1, Vx € B(H).

Denote by M the weak closure w.r.t. the product state ¢:

(M, ¢) = R)B(H), 9)".
n=1
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Then set the product type action a := Ad v®> on M.
Recall the fixed point algebra:

M ={xeM|ax) =x®1}.

Our study relies on he following result.
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Then set the product type action a := Ad v®> on M.
Recall the fixed point algebra:

M ={xeM|ax) =x®1}.
Our study relies on he following result.

Theorem (lzumi)

Suppose that G is not of Kac type (h is non-tracial).
Then the following statements hold:

o (M*YNM#C.
e (M®) N M is isomorphic to the Poisson boundary Hoj(a‘, W),
which is determined by a random walk . on the dual G.

~ non-minimality of a = Ad v®>,
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Then set the product type action a := Ad v®> on M.
Recall the fixed point algebra:

M ={xeM|ax) =x®1}.
Our study relies on he following result.

Theorem (lzumi)

Suppose that G is not of Kac type (h is non-tracial).
Then the following statements hold:

o (M*YNM#C.
e (M®) N M is isomorphic to the Poisson boundary Hoj(a, W),
which is determined by a random walk . on the dual G.

~ non-minimality of a = Ad v®>,
Aim: Study of « in detail when G = G;.
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Quantum flag manifolds

Quick review of the recipe of Gq. Let 0 < g < 1.

e A Cartan matrix A = (ajj)ijes (finite, irreducible).
@ The root data (f), {h,’},‘el, {ai}iel)-
@ Drinfel'd-Jimbo's quantum group U,(g).
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Quantum flag manifolds

Quick review of the recipe of Gq. Let 0 < g < 1.

A Cartan matrix A = (ajj);jes (finite, irreducible).

The root data (f), {h,’},‘el, {ai}iel)-

Drinfel'd-Jimbo’s quantum group Ug(g).

Collect *-representations 7: Ug(g) — B(H) (admissible ones).
For £, € H, set Cf, (x) := (m(x)n, &) for x € Uq(g).

A(Gq) :=span{C], | m,&,n} C Uqg(g)"
~+ A(Gq) inherits the Hopf x-algebra structure from Ug(g)*.
C(Gq) := the universal C*-algebra of A(Gg).

~+ C(Gq) is a compact quantum group with faithful Haar
state.
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Maximal torus, Quantum flag manifold

Let T :=T', the |/|-fold direct product group of T.
~» T is a closed subgroup of Gg, that is,
3 a canonical surjective *-homomorphism rr: C(Gg) — C(T) s.t.

ororr = (rT & FT) O(SGq.

~» We call T the maximal torus of Gg.
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Quantum flag manifolds

Maximal torus, Quantum flag manifold

Let T :=T', the |/|-fold direct product group of T.
~» T is a closed subgroup of Gg, that is,
3 a canonical surjective *-homomorphism rr: C(Gg) — C(T) s.t.

ororr = (rT & FT) O(SGq.

~» We call T the maximal torus of Gg.
The quantum flag manifold is defined by

C(T\Gy) = {x € C(Gy) | (rr @id)(5g,(x)) = 1 ® x}.

Then d¢, provides C(T\Gg) with a (right) action of Gj.
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Quantum flag manifolds

Our main ingredients are the following two results.
Recall a product type action a: M — M ® L>(Gg).

Theorem (lzumi, lzumi-Neshveyev-Tuset, T)

One has the following Gq4-equivariant isomorphisms:

—

L*(T\Gq) = H*(Gq) = (M*)' N M.
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Quantum flag manifolds

Our main ingredients are the following two results.
Recall a product type action a: M — M ® L>(Gg).

Theorem (lzumi, lzumi-Neshveyev-Tuset, T)

One has the following Gq4-equivariant isomorphisms:

—

L*(T\Gq) = H*(Gq) = (M*)' N M.

Remark

@ The Poisson boundary HOO(E:,) does not depend on a choice
of a generating probability measure .

o Z(M®) = H®(L>=(Irr(Gq))) = C (Hayashi).
~ M is a factor.

e (M*) N M does not depend on a choice of Ad v and ¢.
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The second one is about the structure of L*°(Gy).

Theorem (T)
The following statements hold:
o L®(T\Gq) is a factor of type I.
® L2(T\Gg)' N L>¥(Gq) = Z(L*(Gq))-
Thus L*°(Gq) = Z(L>™(Gq)) V L>*(T\Gy).
® The left action v of T on Z(L*°(Gg)) is faithful and ergodic.
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Proof.

Let ©: L®(T\Gq) — HOO(E:,) be the Poisson integral

(Gg- Gg-isomorphism).

Then © maps Z(L>°(Gq)) N L>®(T\Gy) into LOO(E;;)Gq =C.

oad

Z(L>(Gq)) N L=(T\Gq) =C.
~ oy Ty Z(L(Gy)) is ergodic.

Let C)’\\’WO/\ = v]Ci:WO/\] be the polar decomposition.
~ v is central.

~» 7 is faithful on the center.

~ L2(Gq) = Z(L™(Ggq)) V L>(T\ Gg).

It is well-known that L*°(Gg) is of type I.

]
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Product type actions I
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Tensor product decomposition

Recall
o a=Adv®°: M - M® L®(G).
0 Q:= (M NM=L>®(T\G,) = B(£?).
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Product type actions Il

Tensor product decomposition

Recall
o a=Adv®°: M - M® L®(G).
e Q:=(MYYNM = L>®(T\Gq) = B(Ez).

Therefore, we have a tensor product decomposition,

where R := Q' N M = (M) N M) N M.
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Tensor product decomposition

Recall
o a=Adv®°: M - M® L®(G).
0 Q:= (M NM=L>®(T\G,) = B(£?).

Therefore, we have a tensor product decomposition,

where R := Q' N M = (M) N M) N M.
Then
e M% C R is irreducible, ie. (M*)NR=C
o M C R is of depth 2.
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So, 3 a minimal action 8: H ~ R s.t. M® = R5,

What is a compact quantum group H?

The irreducible decomposition of the bimodule pqaL2(R) e
implies the following.
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Product type actions Il

So, 3 a minimal action 8: H ~ R s.t. M® = R5,
What is a compact quantum group H?
The irreducible decomposition of the bimodule e L2(R) e

implies the following.

The subfactor M C R comes from a minimal action (3 of the
maximal torus T on R.

Namely, H=T.
Actually, 8; = the restriction of oy on R though this fact is

non-trivial at first.
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To study /3, we need the canonical generators of Z(L*°(Gg)).
Recall v: T ~ Z(L*°(Gy)) is faithful and ergodic.

v Z(L(Gq)) = L=(T).

v Z(L®(Gg)) ={wa | A € T}, where vy is a unitary with

AV = Vadpu, Ye(va) = (£, A)va.
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To study /3, we need the canonical generators of Z(L*°(Gg)).
Recall v: T ~ Z(L*°(Gy)) is faithful and ergodic.
v Z(L(Gq)) = L=(T).
v Z(L®(Gg)) ={wa | A € T} where vy is a unitary with
AV = Vadpu, Ye(va) = (£, A)va.

Then

L>*(Gq) = Z(L=(Gq)) v L=(T\Gq)

={vx | A€ TY' VL®(T\Gy).
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Assumption: M is infinite.
Then the minimal action 8: T ~ R is dual, that is,
R=M*V{u | A€ T} =M%y T,

where 0\ = Ad uy on M, uyu, = uxiy.
Now R
M=RVQO=M*V{un|re T} v

Recall Q = [>°(T\Gy).
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Assumption: M is infinite.
Then the minimal action 8: T ~ R is dual, that is,
R=M*V{u | A€ T} =M%y T,

where 0\ = Ad uy on M, uyu, = uxiy.
Now R
M=RVQO=M*V{un|re T} v
Recall Q = [>°(T\Gy).
Compare this equality with the following:
LOO(Gq) = Z(LOO(Gq)) N LOO(T\Gq)
={wx | A e TY' VL®(T\G).
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Assumption: M is infinite.
Then the minimal action 8: T ~ R is dual, that is,
R=M*V{u | A€ T} =M%y T,

where 0\ = Ad uy on M, uyu, = uxiy.
Now R
M=RVQO=M*V{un|re T} v
Recall Q = [>°(T\Gy).
Compare this equality with the following:
Loo(Gq) = Z(LOO(Gq)) N LOO(T\Gq)
={wx | A e TY' VL®(T\G).

Problem
Is L>(Gq) Gg-equivariantly embeddable into M?
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How do ¢ and « act on vy and u), respectively?
Set wy and wy as follows:

I(vy) = (va @ Dwy,  a(uy) = (uy @ 1)wy

Then wy, wy € L*(T\Gq) ® L>(G) by regarding Q = L*°(T\Gg).
Obviously they are one-cocycles of §: L*(T\Gq) v Gg, that is,

(w®1)(d ®id)(w) = (id ®J)(w).
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How do ¢ and « act on vy and u), respectively?
Set wy and wy as follows:

I(vy) = (va @ Dwy,  a(uy) = (uy @ 1)wy

Then wy, wy € L*(T\Gq) ® L>(G) by regarding Q = L*°(T\Gg).
Obviously they are one-cocycles of §: L*(T\Gq) v Gg, that is,

(w® 1) ®id)(w) = (id @6)(w).
Moreover, for x € L%(T\G,):
wad(x)wi = (Vi ® 1)d(vaxv})(va ® 1) = 8(x),
and
wRO(x)(wR)" = (ux @ Da(uaxuy)(ux © 1) = 6(x).
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Invariant cocycles

Namely, wy, wy belong to the following set:

Z3o (8, L2(T\ Gg))
= {w € L®(T\Gq) ® L(Gq) | d-cocycle, 6" = 4§ on L(T\Gq)}.

Thus we must determine those invariant cocycles.

21/31



Product type actions Il

Invariant cocycles

Namely, wy, wy belong to the following set:

Z3o (8, L2(T\ Gg))
= {w € L®(T\Gq) ® L(Gq) | d-cocycle, 6" = 4§ on L(T\Gq)}.

Thus we must determine those invariant cocycles.

ZL (6, L°(T\Gy)) = {wr | A€ T}.

inv

~+ Wy = wy up to an automorphism of T.

~+ 3 a Gg-equivariant embedding:
L2(G) ={va | A€ TV VL®(T\Gy) = {ur | Ae T} VO C M.
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Using this embedding, we obtain our main result.

A faithful product type action of Gq is induced from a minimal
action of T on a type Il factor. The minimal action is uniquely
determined up to conjugacy.

We will give a sketch of a proof of the equality,
ZL,(6,L%(T\Gg)) = {wy | A€ T},
where wy is the canonical cocycle, that is,

S(v)=(va®1)wy, AeT.
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Sketch of a proof

@ Show that the perturbed action §" is ergodic on L*°(Gg).
e By 2 x 2-matrix trick, take a unitary v € L*°(Gg) such that

o(v)=(vel)w.
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Sketch of a proof

@ Show that the perturbed action §" is ergodic on L*°(Gg).
e By 2 x 2-matrix trick, take a unitary v € L*°(Gg) such that

o(v)=(vel)w.

o By Fourier type expansion, we have
V= § adx,
T

where ay € L(T\Gg).
In fact, there exists a unique X such that v = vya,.
We want to show that a) € C.
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Since 0" = ¢ on L>(T\Ggq), we have the following equality
putting 0 := Ad ay:

dof=(0®id)oyd,
which means that ¢ is a Gg-equivariant automorphism on
L>(T\Gg).
The following result shows that ay is a scalar.
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Since 0" = ¢ on L>(T\Ggq), we have the following equality
putting 0 := Ad ay:

dof=(0®id)oyd,
which means that ¢ is a Gg-equivariant automorphism on
L>(T\Gg).
The following result shows that ay is a scalar.

Autg, (L*(T\Gq)) = {id}.

This follows from the following result:
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Since 0" = ¢ on L>(T\Ggq), we have the following equality
putting 0 := Ad ay:

dof=(0®id)oyd,
which means that ¢ is a Gg-equivariant automorphism on
L>(T\Gg).
The following result shows that ay is a scalar.

Autg, (L*(T\Gq)) = {id}.

This follows from the following result:

Theorem (Dijkhuizen-Stokman)

The counit is the unique character of C(T\Gg).

Indeed, we have e 0§ = ¢ on C(T\Gg), and
0(x) = (e ®id)(6(0(x))) = (e 0 8 ®id)(4(x)) = (e ® id)(d(x)) = x.
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Classification

Let Gg = SUq(2).
~~ T is the one-dimensional torus.

Aim: Classification of product type actions up to cocycle
conjugacy.
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Classification

Let Gg = SUq(2).
~~ T is the one-dimensional torus.

Aim: Classification of product type actions up to cocycle
conjugacy.
Recal M =RV Q, Q=(M*NMand 3: T ~R.

It is not hard to show the following.

The minimal action 3 on R is cocycle conjugate to a; on M. \

~> (3 is (invariantly) approximately inner,

~ BA: Z ~ R xg T is centrally free.
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Classification results

It depends on a type of M.

If M is of type ll, then « is unique up to conjugacy. Indeed, « is

conjugate to Ind7G-‘7 a;’}qlogq, where g denotes the Powers state of
type Ill;.

In particular, M and M must be of type Il; and Ill,.

For0 < A <1 with X # q, Ind?" af/*log)\ is mutually non-conjugate

and non-product type actions of SUg4(2).
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Classification

If M% is of type Ill, then « is unique up to conjugacy. Indeed, a
is conjugate to Inds;-q(idygoo ®m), where m denotes the unique
minimal action of T on Rg.

In fact, this result holds for a general G.
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Classification

If M% is of type Ill, then « is unique up to conjugacy. Indeed, a
is conjugate to Inds;-q(idygoo ®m), where m denotes the unique
minimal action of T on Rg.

In fact, this result holds for a general G.

Proof.
May assume that R = M xg T

8= 0 is invariantly approximately inner

~> 6 has the Rohlin property ~~ 6 is centrally free.

& Aut(M?) = Int(M®) (Kawahigashi-Sutherland—Takesaki).
Thus @ is cocycle conjugate to idr_ ®6° (Ocneanu),

where 69 denotes the unique free action of T on Ry.

By duality argument, we are done. [
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Classification

When M“ is of type lll, write R = M® xy Z.
We know 6" is not centrally trivial (= not modular).

So, the automorphism @ is classified by Connes—Takesaki module
mod(6) € Rso/\ = [\, 1).

Let 0 < A\ < 1. If M* is of type Illy, then mod(#) = q or A\Y/?q in
R-o/AZ. In each case, a is unique up to conjugacy.

This immediately implies the following result.
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Classification

When M“ is of type lll, write R = M® xy Z.
We know 6" is not centrally trivial (= not modular).

So, the automorphism @ is classified by Connes—Takesaki module
mod(6) € Rso/\ = [\, 1).

Let 0 < A\ < 1. If M* is of type Illy, then mod(#) = q or A\Y/?q in
R-o/AZ. In each case, a is unique up to conjugacy.

This immediately implies the following result.

Corollary

Let 0 < A < 1.

Suppose that 1 € R satisfies 0 < pu < 1 and pu ¢ (\/2)%+
Then Ind< F(idr, ®Ut/ |ogu) is not of product type.

In particu/ar, for any such X, there exist uncountably many,
non-product type, mutually non-cocycle conjugate actions of
SUq(2) on R with type Illy fixed point factor.
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Classification

Related problem

We know that L>(T\Gy) is a type | factor.
Actually, the right action ¢ is implemented by a unitary:

I(x)=Uxa1)U*, xelL>®(T\G).
Then the following Q satisfies the 2-cocycle relation:
Uip Uiz = (id ®5)(U)(1 X Q*).

Then the twisted bialgebra G4 o = (L*°(Gq), dq) is again a (locally
compact) quantum group (De Commer).

Problem
Realize G4 q as a concrete quantum group.

If Gy = SUq(2), then Gyq =2 E4(2) (De Commer).
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Thank you!
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