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Cantor set : the topological space characterized by
© compactness
© total disconnectedness
© metrizability
© without isolated point
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Cantor set : the topological space characterized by
© compactness
© total disconnectedness
© metrizability
© without isolated point

= The property ‘homeomorphic to the Cantor set’ is preserved by
many operations.

(E.g., finite direct sum, countable direct product, projective limit,...)
= We can regard the Cantor set as a topological analogue of the
Lebesgue space.
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Classification theory of C*-algebras

A . C*-algebra.
~ K (A) = (Ko(A), [1a]o. Ki(A)) : an invariant of A.
K.(—) is a functor that preserves the inductive limits.
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Classification theory of C*-algebras

A . C*-algebra.

~ K (A) = (Ko(A), [1a]o. Ki(A)) : an invariant of A.
K.(—) is a functor that preserves the inductive limits.

Theorem (Kirchberg and Phillips)

K, is a complete invariant for Kirchberg algebras in the UCT class.

Example :
@ The Cuntz algebras O, (2 < n < o0).
@ The Cuntz—Krieger algebras O,.
@ The boundary algebras C(0I') x [ of ICC hyperbolic groups.
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Amenable dynamical systems

Amenability of discrete groups is generalized to that of topological
dynamical systems.

@ Any dynamical system of an amenable group.

© The boundary action of a hyperbolic group.
@ SL(n,Z) ~SO(n) =SL(n,R)/P.
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Amenable dynamical systems

Amenability of discrete groups is generalized to that of topological
dynamical systems.

@ Any dynamical system of an amenable group.

© The boundary action of a hyperbolic group.
@ SL(n,Z) ~SO(n) =SL(n,R)/P.

a: T ~ X : amenable = C(X) X,eq [ has nice properties.
@ C(X) X [ = C(X) Xyea I' canonically.
e C(X) xT is nuclear.
@ C(X) x T satisfies the universal coefficient theorem. (Tu 1999)
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Amenable minimal Cantor [ ,-system

Minimality = Topological analogue of ergodicity
Our Interest : amenable minimal Cantor systems of free groups IF,,.
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Amenable minimal Cantor [ ,-system

Minimality = Topological analogue of ergodicity
Our Interest : amenable minimal Cantor systems of free groups IF,,.
Motivation:

© How well does C(X) %, F, remember the information of
amenable minimal Cantor systems a: F,, ~ X7

@ Give a new presentation for a Kirchberg algebra in the UCT
class.

Y. SUZUKI (RIMS) AMENABLE MINIMAL CANTOR SYSTEMS 30 May 2014 5/13



Amenable minimal Cantor IF,-system

Minimality = Topological analogue of ergodicity
Our Interest : amenable minimal Cantor systems of free groups IF,.
Motivation:
© How well does C(X) %, F, remember the information of
amenable minimal Cantor systems a: F,, ~ X7
@ Give a new presentation for a Kirchberg algebra in the UCT
class.
For both purposes, it is important to construct concrete and tractable
examples. Until now, only a few examples were known.

Y. SUZUKI (RIMS) AMENABLE MINIMAL CANTOR SYSTEMS 30 May 2014 5/13



Amenable minimal Cantor IF,-system

Minimality = Topological analogue of ergodicity
Our Interest : amenable minimal Cantor systems of free groups IF,.
Motivation:
@ How well does C(X) %, F, remember the information of
amenable minimal Cantor systems a: F, ~ X7
@ Give a new presentation for a Kirchberg algebra in the UCT
class.
For both purposes, it is important to construct concrete and tractable
examples. Until now, only a few examples were known.

@ The boundary action ,: F, ~ JF,. (Analysed by J. Spielberg.)

@ (G. A. Elliott and A. Sierakowski 2011)
4 amenable minimal Cantor F,-system s.t. Ko =0 .
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Main Theorem

Theorem (S. 13)

Let Z*° < G < Q> with [G: Z®] =00,2<n< o0, k € Z.
Then 4 amenable minimal Cantor IF,-system ~ s.t.
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Main Theorem

Theorem (S. 13)
Let Z*° < G < Q> with [G: Z®] =00,2<n< o0, k € Z.
Then 4 amenable minimal Cantor IF,-system ~ s.t.

o (Ko(C(X) %, Fp),[1o) 2 (G ® Agn, 0@ [k(n—1)71]).

Here

N n:={x € Q/Z : 3 finite H < G, s.t. ord(x)|(n — 1)tH}.
o Ki(C(X) x,F,) =Z>.
@ The crossed product is a Kirchberg algebra in the UCT class.

o’
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Sketch of the construction

(We only deal the case k =1.)
Take a decreasing sequence (I',,)%_; of finite index subgroups of F,,.

m=1

We study @(Fn A OF, X Fo /T )%,
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Sketch of the construction

(We only deal the case k =1.)

Take a decreasing sequence (I',,)%_; of finite index subgroups of F,,.
We study lim(F, ~ OF, x F,/T,)%_;.

Computation of (Ky, [1]o)

Each Ko(C(OF, x F,,/T ) x TF,) is explicitly computable. [Spielberg
(1991), Cuntz (1981)] Then determine Ky-maps of the inclusions

C(OF, x F,/T ) X F, — C(OF, x F,/T p11) x F,.

By continuity of Kp-groups, the construction of suitable systems and
the computation of Ky-group are now reduced to algebraic problems.
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Sketch of the construction

(We only deal the case k = 1.)

Take a decreasing sequence (I',,)%_; of finite index subgroups of F,,.
We study lim(F, ~ OF, x F,/T,)%_;.

Computation of (Ky, [1]o)

Each Ko(C(OF, x F,/T ) x TF,) is explicitly computable. [Spielberg

(1991), Cuntz (1981)] Then determine Ky-maps of the inclusions
C(OF, x F,/T ) X F, — C(OF, x F,/T p11) x F,.

By continuity of Kp-groups, the construction of suitable systems and
the computation of Ky-group are now reduced to algebraic problems.
Computation of K;

Use the Pimsner—Voiculescu Exact Sequence for free groups.
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Consequence of the Main Theorem

Induced dynamical system construction

~Similar results for virtually free groups

(Ex : SL(2,Z), Gy % Gy x - -- % G, ; G; finite or Z.).

We obtain a decomposition theorem for certain Kirchberg algebras.
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Consequence of the Main Theorem

Induced dynamical system construction

~Similar results for virtually free groups

(Ex : SL(2,Z), Gy x Gy % - - - * G, ; G; finite or Z.).

We obtain a decomposition theorem for certain Kirchberg algebras.

Corollary (S. 13)

G : torsion free abelian group of infinite rank. A : Kirchberg algebra
in the UCT class s.t.

K.(A) = (G® Q/Z,0,Z%).

Then ¥V [ : virtually free group, A is decomposed as the crossed
product of an amenable minimal Cantor [ -system.
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Free Examples

[~ X: Free & Vg €T\ {e}, 7 fixed point.
We can construct continuously many amenable minimal free Cantor
systems for any virtually free groups.
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Free Examples

[~ X: Free & Vg €T\ {e}, 7 fixed point.
We can construct continuously many amenable minimal free Cantor
systems for any virtually free groups.

Let I be a virtually free group. Then 3 continuously many amenable
minimal free Cantor systems whose crossed products are mutually
non-isomorphic Kirchberg algebras in the UCT class.
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Free Examples

[~ X: Free & Vg €T\ {e}, 7 fixed point.
We can construct continuously many amenable minimal free Cantor
systems for any virtually free groups.

Let I be a virtually free group. Then 3 continuously many amenable
minimal free Cantor systems whose crossed products are mutually
non-isomorphic Kirchberg algebras in the UCT class.

We also can prove the same result for non f.g. case. In this case, we
use F, = [Fy, 5] ~ OF, instead of the boundary action.
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Application to classification of Cantor systems

The proof of Main Theorem also provides a technique of computation
of K-groups for certain Cantor systems.
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Application to classification of Cantor systems

The proof of Main Theorem also provides a technique of computation
of K-groups for certain Cantor systems.

Odometer transformations

(nk)?2; : sequence of positive integers > 2.

Consider

Ii_m>(ozk: Z~ZL/ng - mZL)3 .

This only depends on the formal infinite product N = [, n.

Denote it by apn and call it the odometer transformation of type M.

v
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Application to classification of Cantor systems

The proof of Main Theorem also provides a technique of computation
of K-groups for certain Cantor systems.

Odometer transformations

(nk)?2; : sequence of positive integers > 2.
Consider

Ii_m>(ozk: Z~ZL/ng - mZL)3 .
This only depends on the formal infinite product N = [, n.
Denote it by apn and call it the odometer transformation of type M.

v

Example

N = p*>, p : prime number.
Then (X, an) = (Zp,+1). (Z, : the ring of p-adic integers.)
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Application to classification of Cantor systems

For 2 < n<ooand N, ..., Ny : sequence of infinite supernatural
numbers with k < n, consider the Cantor I ,-system

k
n) .__
7N1,...,Nk( ) Cha Bn X HaNI o 7T’
i=1

Here m;: F, = (s1,...,5,) — Z is a homomorphism given by s; — 1
and s; — 0 for j # i.
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Application to classification of Cantor systems

Definition
vi: Ti ™~ X; : minimal topologically free Cantor system (i=1, 2).
~1 and 7, are orbit equivalent < Jh: X; — X5 homeomorphism, s.t.

Vx € Xl, h(rlX) = rgh(X)
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Application to classification of Cantor systems

Definition

vi: Ti ™~ X; : minimal topologically free Cantor system (i=1, 2).
~1 and 7, are orbit equivalent < Jh: X; — X5 homeomorphism, s.t.
Vx € Xl, h(rlX) = rgh(X)

We are interested in stronger orbit equivalent conditions:
Continuous orbit equivalent and Strong orbit equivalent.

Continuous OE = Strong OE = OE J

Definition

~v: '~ X : minimal topologically free Cantor system.
Topological full group [[]]:= the group consists of all
h € Homeo(X) which are “locally” given by s € T
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Classification results for v's

Theorem (S. 13)

For two Cantor systems p := ,y( ) N, and ¢ = 'yf\z) v, T-FAE.

..........

@ They are strong orbit equivalent.

© They are continuous orbit equivalent.

o [l = 1411

Q C(X) x,F,= C(X) xy Fp,.

Q@ K.(C(X) x,F,) = K(C(X) xy Fp).

Q@ k=1, n=m, and Jo € &y and I(ny,...,nx), I(my, ..., mg)
S.t. Hj'(zl nj = Hj'(zl mj and I’l,'N,' = m;MG(,-) VI
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Classification results for +'s

Theorem (S. 13)

For two Cantor systems p := ’Y/(v? N, and ¢ = fyf\z) v, T-FAE.

..........

© They are strong orbit equivalent.

© They are continuous orbit equivalent.

Q [[]l = [[¥1]-

Q C(X) x,F,= C(X) xy Fp,.

Q@ K.(C(X) x,F,) = K(C(X) xy Fp).

Q@ k=1, n=m, and do € &y and I(ny,...,ng), I(my,..., mg)
s.t. Hj'(zl n; = Hj—;l m; and I’l,'N,' = m,-MG(,-) Vi.

Y. Suzuki, Amenable minimal Cantor systems of free groups arising
from diagonal actions. to appear in J. reine angew. Math.
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