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Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E

B(E) = the algebra of bounded linear operators on E

C[t ] B(E)

O(C)

O(U)

γpoly : t 7→ T ; f (T )
def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.

If γhol
U exists, then it is unique.

γhol
U (f ) = f (T ) =

∫
Γ

f (λ)(λ1− T )−1dλ, where Γ is a contour in U
surrounding σ(T ).
σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E
B(E) = the algebra of bounded linear operators on E

C[t ] B(E)

O(C)

O(U)

γpoly : t 7→ T ; f (T )
def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.

If γhol
U exists, then it is unique.

γhol
U (f ) = f (T ) =

∫
Γ

f (λ)(λ1− T )−1dλ, where Γ is a contour in U
surrounding σ(T ).
σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E
B(E) = the algebra of bounded linear operators on E

C[t ]
γpoly
// B(E)

O(C)

O(U)

γpoly : t 7→ T ; f (T )
def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.

If γhol
U exists, then it is unique.

γhol
U (f ) = f (T ) =

∫
Γ

f (λ)(λ1− T )−1dλ, where Γ is a contour in U
surrounding σ(T ).
σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E
B(E) = the algebra of bounded linear operators on E

C[t ]
γpoly
//

� _

incl.

��

B(E)

O(C)

O(U)

γpoly : t 7→ T ; f (T )
def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.

If γhol
U exists, then it is unique.

γhol
U (f ) = f (T ) =

∫
Γ

f (λ)(λ1− T )−1dλ, where Γ is a contour in U
surrounding σ(T ).
σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E
B(E) = the algebra of bounded linear operators on E

C[t ]
γpoly
//

� _

incl.

��

B(E)

O(C)
γhol

99

O(U)

γpoly : t 7→ T ; f (T )
def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.

If γhol
U exists, then it is unique.

γhol
U (f ) = f (T ) =

∫
Γ

f (λ)(λ1− T )−1dλ, where Γ is a contour in U
surrounding σ(T ).
σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E
B(E) = the algebra of bounded linear operators on E

C[t ]
γpoly
//

� _

incl.

��

B(E)

O(C)
γhol

99

O(U)

γpoly : t 7→ T ; f (T )
def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.

If γhol
U exists, then it is unique.

γhol
U (f ) = f (T ) =

∫
Γ

f (λ)(λ1− T )−1dλ, where Γ is a contour in U
surrounding σ(T ).
σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E
B(E) = the algebra of bounded linear operators on E

C[t ]
γpoly
//

� _

incl.

��

B(E)

O(C)
γhol

99

restr.

��
O(U)

γpoly : t 7→ T ; f (T )
def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.

If γhol
U exists, then it is unique.

γhol
U (f ) = f (T ) =

∫
Γ

f (λ)(λ1− T )−1dλ, where Γ is a contour in U
surrounding σ(T ).
σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E
B(E) = the algebra of bounded linear operators on E

C[t ]
γpoly
//

� _

incl.

��

B(E)

O(C)
γhol

99

restr.

��
O(U)

γhol
U?

KK
γpoly : t 7→ T ; f (T )

def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.

If γhol
U exists, then it is unique.

γhol
U (f ) = f (T ) =

∫
Γ

f (λ)(λ1− T )−1dλ, where Γ is a contour in U
surrounding σ(T ).
σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E
B(E) = the algebra of bounded linear operators on E

C[t ]
γpoly
//

� _

incl.

��

B(E)

O(C)
γhol

99

restr.

��
O(U)

γhol
U?

KK
γpoly : t 7→ T ; f (T )

def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.

If γhol
U exists, then it is unique.

γhol
U (f ) = f (T ) =

∫
Γ

f (λ)(λ1− T )−1dλ, where Γ is a contour in U
surrounding σ(T ).
σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E
B(E) = the algebra of bounded linear operators on E

C[t ]
γpoly
//

� _

incl.

��

B(E)

O(C)
γhol

99

restr.

��
O(U)

γhol
U?

KK
γpoly : t 7→ T ; f (T )

def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.
If γhol

U exists, then it is unique.

γhol
U (f ) = f (T ) =

∫
Γ

f (λ)(λ1− T )−1dλ, where Γ is a contour in U
surrounding σ(T ).
σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E
B(E) = the algebra of bounded linear operators on E

C[t ]
γpoly
//

� _

incl.

��

B(E)

O(C)
γhol

99

restr.

��
O(U)

γhol
U?

KK
γpoly : t 7→ T ; f (T )

def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.
If γhol

U exists, then it is unique.
γhol

U (f ) = f (T ) =
∫

Γ
f (λ)(λ1− T )−1dλ, where Γ is a contour in U

surrounding σ(T ).

σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Gelfand’s functional calculus

T = a bounded linear operator on a complex Banach space E
B(E) = the algebra of bounded linear operators on E

C[t ]
γpoly
//

� _

incl.

��

B(E)

O(C)
γhol

99

restr.

��
O(U)

γhol
U?

KK
γpoly : t 7→ T ; f (T )

def
= γpoly(f ) .

γhol(f ) = f (T ) =
∑

n cnT n, where
f (z) =

∑
n cnzn.

Let U ⊂ C be an open set.

Question. Does there exist γhol
U making the diagram

commute?

Theorem (Gelfand, 1941)
γhol

U exists ⇐⇒ σ(T ) ⊂ U.
If γhol

U exists, then it is unique.
γhol

U (f ) = f (T ) =
∫

Γ
f (λ)(λ1− T )−1dλ, where Γ is a contour in U

surrounding σ(T ).
σ(f (T )) = f (σ(T )) (the Spectral Mapping Theorem).

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 3 / 32



Multivariable functional calculus
Statement of the problem and early developments

T = (T1, . . . ,Tn) ∈ B(E)n; TiTj = TjTi (i , j = 1, . . . ,n).

Question 1. Is there a multivariable analog
of Gelfand’s theorem?
Question 2. What is σ(T )?
G. E. Shilov (1953): the definition of σ(a),
a ∈ An, where A is a commutative Banach
algebra.

R. Harte (1972): the definition of σ(a), a ∈ An, where A is any Banach
algebra.
Disadvantage: the Harte spectrum does not carry a holomorphic
functional calculus (L. A. Fialkow, 1985).
The best solution: J. L. Taylor (1970).
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The Koszul complex

E = a Banach space;
T = (T1, . . . ,Tn) ∈ B(E)n, TiTj = TjTi (i , j = 1, . . . ,n).
Kp(T ,E) = E ⊗

∧p Cn (p = 0, . . . ,n);
dp : Kp(T ,E)→ Kp−1(T ,E),

x ⊗ ei1 ∧ · · · ∧ eip 7→
p∑

k=1

(−1)k−1Tik x ⊗ ei1 ∧ · · · ∧ êik ∧ · · · ∧ eip .

dpdp+1 = 0 for all p. Hence we have a chain complex

0← K0(T ,E)← K1(T ,E)← · · · ← Kn(T ,X )← 0.

Definition
K (T ,E) = (Kp(T ,E),dp) is the Koszul complex of T .

Example

If n = 1, then K (T ,E) = (0← E T←− E ← 0).
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The Taylor spectrum

λ = (λ1, . . . , λn) ∈ Cn, T − λ = (T1 − λ11, . . . ,Tn − λn1).

Definition
The Taylor spectrum of T is σ(T ) = {λ ∈ Cn : K (T − λ,E) is not exact}.

Example
If n = 1, then

0← E T−λ1←−−− E ← 0

is exact ⇐⇒ T − λ1 is invertible.

Hence σ(T ) is the usual spectrum of T .
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Taylor’s functional calculus

Theorem (Taylor, 1970–72)
If U is an open subset of Cn and σ(T ) ⊂ U, then there exists a unital
continuous homomorphism

γhol
U : O(U)→ B(E), zi 7→ Ti (i = 1, . . . ,n). (1)

If U ⊂ Cn is a domain of holomorphy and γhol
U exists, then σ(T ) ⊂ U, and

γhol
U is unique.

Theorem (Taylor, 1970)
For each holomorphic map f : U → Cm, we have σ(f (T )) = f (σ(T )).

Here f (T )
def
= γhol

U (f ) if m = 1, and

f (T )
def
= (f1(T ), . . . , fm(T )) if f = (f1, . . . , fm) ∈ O(U,Cm).
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Two approaches to Taylor’s functional calculus

Taylor’s 1st approach (1970): an abstract form of the Cauchy-Weil
integral.

Taylor’s 2nd approach (1972): Topological Homology.

Further developments:

Taylor’s 1st approach: E. Albrecht, M. Andersson, R. Curto, S. Frunza,
V. Müller, F.-H. Vasilescu. . .
Taylor’s 2nd approach: J. Eschmeier, M. Putinar, R. Levi.
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Functional calculus via Banach modules

{
Commuting n-tuples

(T1, . . . ,Tn) ∈ B(E)n

}
�

 Continuous
homomorphisms
O(Cn)→ B(E)

�

{
Banach

O(Cn)-modules

}

Given a Banach O(Cn)-module M, let σ(M) = σ(T ), where T ∈ B(M)n is
the respective n-tuple of operators.
Given an open subset U ⊂ Cn, let rU : O(Cn)→ O(U) denote the
restriction map.
We have a “forgetful” functor r ]U : O(U)-Banmod→ O(Cn)-Banmod.
Observation. T ∈ B(M)n admits a holomorphic functional calculus on U
⇐⇒ ∃N ∈ O(U)-Banmod such that M ∼= r ]UN in O(Cn)-Banmod.
Question. Suppose σ(M) ⊂ U. By Taylor’s theorem, N exists.
Is it possible to construct N explicitly?
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An explicit formula for the functional calculus

Taylor (1972): if U is a domain of holomorphy, then

N = O(U) ⊗̂O(Cn) M.

For general U, N is the 0th cohomology of a certain double complex C.
Disadvantage: C is rather complicated and is not canonically
determined by M.

Goal:

N = RΓ(U,OCn ) ⊗̂L
O(Cn) M.

RΓ is the total right derived functor of Γ,

⊗̂L
O(Cn) is the total left derived functor of ⊗̂O(Cn).
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The idea of derived category

A = an algebra
F : A-mod→ Vect an additive covariant functor

Classical derived functors

Take an A-module M;
Choose a projective resolution 0← M ← P0 ← P1 ← · · · ;
Apply F to get 0← F (P0)← F (P1)← · · · ;
Take the homology of the above complex to get the classical left derived
functors L0F (M), L1F (M), . . .

Grothendieck’s idea: the last step is redundant.
It is convenient to define the “total” left derived functor LF (M) to be the
complex F (P), where P is a projective resolution of M.
Problem: if P and Q are projective resolutions of M, then F (P) 6∼= F (Q).
Solution: add new morphisms to the category of complexes in such a
way that F (P) and F (Q) become isomorphic in the new category.
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The construction of the derived category

an exact category A
(e.g., the category of Fréchet modules

over a Fréchet algebra)

��
the category C(A ) of cochain complexes over A

quot.
��

the homotopy category H(A )

localization
��

the derived category D(A )
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Exact categories

Quasi-definition (D. Quillen, 1973; A. Heller, 1958)
An exact category is (A ,E ), where A is an additive category and E is a class
of diagrams in A of the form

X i−→ Y
p−→ Z ,

which are called exact pairs (or short admissible sequences) and which
satisfy a number of axioms.
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Examples of exact categories

A = any additive category

, E = split exact pairs. (A ,E ) = Aspl.
A = an additive category with kernels and cokernels,
E = the class of all exact pairs in A .

A is quasi-abelian if (A ,E ) is an exact category
(D. A. Raikov (1969), J.-P. Schneiders (1999), W. Rump (2001)).

A = a Fréchet algebra.
A = {Fréchet A-modules} is quasi-abelian.

A-mod def
= (A , {all exact pairs}).

In particular, Fr = C-mod is quasi-abelian.
A = a Fréchet algebra.
A = {Fréchet A-modules}.
E = {exact pairs P in A : P splits in Fr}.

A-mod def
= (A ,E ).

mod-A, mod-A, A-mod-B, A-mod-B . . .
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Categories of complexes

A = an exact category
C(A ) = the category of cochain complexes over A

We convert each chain complex (Xn,dn) into a cochain one by letting
X n = X−n, dn = d−n.
The homotopy category H(A ):

Ob H(A ) = Ob C(A )

HomH(A )(X ,Y ) = HomC(A )(X ,Y )/{f : X → Y : f is zero homotopic}
Both C(A ) and H(A ) are additive categories.
The shift functor [1] : C(A )→ C(A ), H(A )→ H(A ):

If X ∈ C(A ), then X [1]n def
= X n+1 and dn

X [1] = −dn+1
X ;

If f : X → Y is a morphism in C(A ), then f [1]n def
= f n+1.
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Admissible complexes

Definition
A cochain complex X ∈ C(A ) is admissible if, for every n ∈ Z,

dn : X n → X n+1 has a kernel, and
Ker dn → X n → Ker dn+1 is an admissible pair.

Examples

If A is abelian, then X ∈ C(A ) is admissible ⇐⇒ X is exact.
If A = Aspl, then X ∈ C(A ) is admissible ⇐⇒ X is split exact.
If A = A-mod, then X ∈ C(A ) is admissible ⇐⇒ X is split exact in Fr.
If A = A-mod, then X ∈ C(A ) is admissible ⇐⇒ X is exact.
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Quasi-isomorphisms

Let f : X → Y be a morphism in C(A ).
The mapping cone of f is the complex M(f ) given by

M(f )n = X n+1 ⊕ Y n, dn
M(f ) =

(
−dn+1

X 0
f n+1 dn

X

)

Definition
A morphism f : X → Y in C(A ) is a quasi-isomorphism (qis) if M(f ) is
admissible.

Examples
If A is abelian, then f : X → Y is a qis ⇐⇒ Hn(f ) : Hn(X )→ Hn(Y ) is an
isomorphism for every n.
If A = Aspl, then f : X → Y is a qis ⇐⇒ f is a homotopy equivalence.
If A = A-mod, then f : X → Y is a qis ⇐⇒ f is a hmt. equiv. in C(Fr).
If A = A-mod, then f : X → Y is a qis ⇐⇒ Hn(f ) : Hn(X )→ Hn(Y ) is an
isomorphism for every n.
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The derived category

Definition
The derived category of A is (D(A ),qA ), where

D(A ) is a category;
qA : H(A )→ D(A ) is a functor that takes quasi-isomorphisms to
isomorphisms;
For each category B and each functor F : H(A )→ B that takes
quasi-isomorphisms to isomorphisms there exists a unique functor
G : D(A )→ B making the following diagram commute:

H(A )
F //

qA

��

B

D(A )

G

==
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Construction of D(A )

Ob D(A ) = Ob H(A ) = Ob C(A ).

Given X ,Y ∈ Ob(D(A )), let

HomD(A )(X ,Y ) = {“right fractions” fs−1 : s is a qis}

= {eqv. classes of pairs (f , s) : X s←− Z f−→ Y ,
f is any morphism, s is a qis}.

(f , s) ∼ (g, t) ⇐⇒ ∃(h,u) making the diagram Zs
yy

f
%%X Wuoo h //

OO

��
Y

Z ′t

ee
g

99

commute.

Composition:
U∃a qis u

��
∃h
  

Z
s
��

f
��

W
t
}}

g
  

X Y Z

(gt−1) ◦ (fs−1)
def
= (gh)(su)−1.

D(A ) is an additive category.
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Subcategories of D(A )

C+(A ) = {X ∈ C(A ) : ∃N ∈ Z such that X n = 0 ∀n < N}.
C−(A ) = {X ∈ C(A ) : ∃N ∈ Z such that X n = 0 ∀n > N}.
Cb(A ) = C+(A ) ∩ C−(A ).

C±(A )
quot.−−−→ H±(A )

loc.−−→ D±(A ).

Cb(A )
quot.−−−→ Hb(A )

loc.−−→ Db(A ).
D+(A ), D−(A ), Db(A ) are full additive subcategories of D(A ).
A is a full additive subcategory of Db(A ) : X 7→ (0→ X → 0).
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Derived functors of exact functors

A , B = exact categories F : A → B an additive functor

C(F ) : C(A )→ C(B) H(F ) : H(A )→ H(B)

H(A )
H(F ) //

qA ��

H(B)

qB��
D(A ) D(B)

In general, there is no functor D(A )→ D(B) making the above diagram
commute.

Definition
F is exact ⇐⇒ F : { admissible pairs } → { admissible pairs }
⇐⇒ C(F ) : { admissible complexes } → { admissible complexes }
⇐⇒ F : { qis } → { qis }.

F is exact ⇐⇒ there exists a unique functor D(A )→ D(B) making the
above diagram commute.
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F -projective subcategories

Let F : A → B be an additive functor.

Definition
A full additive subcategory P ⊂ A is F -projective if

(FP1) ∀X ∈ A ∃P ∈P and an adm. epi P → X .
(FP2) X → Y → Z adm., Y ,Z ∈P =⇒ X ∈P.
(FP3) X → Y → Z adm., X ,Y ,Z ∈P =⇒ FX → FY → FZ adm.

F -injective subcategories are defined dually.

Example

P ∈ A is projective if for each admissible epi X → Y in A the map
Hom(P,X )→ Hom(P,Y ) is onto.
P = {projectives} satisfies (FP2) and (FP3) for every F .
If A has enough projectives (i.e., P satisfies (FP1)), then P is
F -projective for every F .
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Derived functors

Fact
Let P ⊂ A be a full additive subcategory satisfying (FP1). Then
∀X ∈ C−(A ) ∃P ∈ C−(P) and a qis P → X .

D−(P)
I−→ D−(A ) is an equivalence.

Suppose that P ⊂ A is F -projective.

H−(P)

exact
++

//

��

H−(A )
H−(F )

//

��

H−(B)

��
D−(P)

α

33
I // D−(A ) D−(B)

Definition. The left derived functor of F is

LF = α ◦ I−1 : D−(A )→ D−(B).

Right derived functors are defined dually.
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Classical derived functors

Suppose that B is quasi-abelian, and let n ∈ Z.

C(B)
Hn

// B

Let F : A → B be an additive functor such that LF exists.

Definition
The nth classical left derived functor of F is

LnF = H−n ◦ LF |A : A → B.

Classical right derived functors are defined similarly.
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The derived projective tensor product

Example
A = a Fréchet algebra, A = A-mod, B = LCS.
Y ∈ mod-A, F = Y ⊗̂A(−) : A → B.

A-mod has enough projectives =⇒ LF exists.

LF (X ) = Y ⊗̂L
A X is the derived projective tensor product of Y and X .

LnF (X ) = TorA
n (Y ,X ).

Example

A = a nuclear Fréchet algebra, A = A-mod, B = LCS.
Y ∈ nmod-A, F = Y ⊗̂A(−) : A → B.
A-mod does not have enough projectives (Geiler 1978 for A = C).
Nevertheless,

{
projectives in A-mod

}
is F -projective =⇒ LF exists

(follows from the fact that Y ⊗̂(−) : Fr→ Fr is exact).

LF (X ) = Y ⊗̂L
A X .
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The derived projective tensor product

D−(nmod-A)× D−(A-mod)
⊗̂L

A // LCS

D−(nmod-A)× D−(A-mod)

⊗̂L
A

55OO

Alexei Yu. Pirkovskii Taylor’s functional calculus and derived categories 26 / 32



Quasi-coherent analytic Fréchet sheaves

X = a finite-dimensional Stein space (e.g., Cn)

OX = the sheaf of germs of holomorphic functions on X
F = an analytic sheaf on X (i.e., a sheaf of OX -modules)
F is a Fréchet sheaf if

for each open U ⊂ X F (U) is a Fréchet O(U)-module;
F (U)→ F (V ) is continuous (V ⊂ U open).

Definition (J.-P. Ramis and G. Ruget, 1974)
An analytic Fréchet sheaf F is quasi-coherent if for each Stein open set
U ⊂ X

TorO(X)
k (O(U),F (X )) = 0 for k > 0 and is Hausdorff for k = 0;

O(U) ⊗̂O(X) F (X )→ F (U) is an isomorphism.

Example. OX , any coherent analytic sheaf.
Fact. (QCoh(X ),all exact pairs) is an exact category
(follows from M. Putinar, 1980).
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The derived functor of sections

U ⊂ X open
Γ(U,−) : QCoh(X )→ O(U)-mod

is not exact (unless U is a Stein set)
Does there exist RΓ(U,−)?
Definition. A sheaf F over X is soft if F (X )→ F (Z ) is onto for every
closed Z ⊂ X .
Examples. CX ; C∞X ; each sheaf of modules over CX or C∞X .

Theorem (M. Putinar, 1986)
Each soft analytic Fréchet sheaf is quasi-coherent.
For each F ∈ QCoh(X ) there exists a resolution F → S consisting of
soft analytic Fréchet sheaves.

Corollary

For each open set U ⊂ X the subcategory
{

soft sheaves
}
⊂ QCoh(X ) is

Γ(U,−)-injective.

There exists RΓ(U,−) : D+(QCoh(X ))→ D+(O(U)-mod).
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The Taylor spectrum

A = a nuclear Fréchet algebra, N ∈ D−(nmod-A), M ∈ D−(A-mod).

Definition

N and M are disjoint over A (N ⊥A M) if N ⊗̂L
A M = 0.

X = a finite-dimensional Stein space (e.g. Cn), A = O(X ), M ∈ D−(A-mod).

Definition
The resolvent set of M is

ρ(M) =
{
λ ∈ X : ∃ a nbhd U 3 λ such that O(U) ⊥A M

}

The spectrum of M is σ(M) = X \ ρ(M).

σ(M) is closed.
If M ∈ A-mod, then λ ∈ ρ(M) ⇐⇒ there exists a nbhd U 3 λ such that
TorA

k (O(U),M) = 0 for all k ∈ Z (equiv. to Putinar’s definition (1980)).
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The presheaf associated to M

Given an open set U ⊂ X , let M (U) = RΓ(U,OX ) ⊗̂L
A M ∈ Db(O(U)-mod).

Properties of M (U)

M (X ) = M.
V ⊂ U ⊂ X open =⇒ ∃ a canonical map M (U)→M (V ).
M is a presheaf on X with values in Db(Fr).

Proposition

Let U be an open subset of X . Then
U ∩ σ(M) = ∅ ⇐⇒ M (U) = 0.

Hence ρ(M) is the largest open subset U ⊂ X such that M (U) = 0.

Corollary. If M 6= 0, then σ(M) 6= ∅.
Indeed, otherwise M (X ) = 0, but M (X ) = M.
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Corollary. If M 6= 0, then σ(M) 6= ∅.
Indeed, otherwise M (X ) = 0, but M (X ) = M.
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The case of a Banach complex

A-Banmod ⊂ A-mod D−(A-Banmod) ⊂ D−(A-mod)

Given λ ∈ X , let O(X ) act on C by f · z = f (λ)z.
Cλ = the resulting O(X )-module.

Proposition
If X is a Stein manifold and M ∈ D−(A-Banmod), then

ρ(M) = {λ ∈ X : Cλ ⊥A M}.

If M ∈ A-Banmod, then λ ∈ ρ(M) ⇐⇒ TorA
k (Cλ,M) = 0 for all k ∈ Z

(equiv. to Taylor’s definition (1972)).
Let X = Cn; z = (z1, . . . , zn) the coordinates on Cn.
0← Cλ ← K (z − λ,A) is a free resolution of Cλ (Taylor, 1972).
K (z − λ,A) ⊗̂A M ∼= K (T − λ,M).
TorA

k (Cλ,M) ∼= Hk (K (T − λ,M)).
Hence λ ∈ ρ(M) ⇐⇒ K (T − λ,M) is exact
(Taylor’s original definition (1970)).
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Taylor’s functional calculus

Theorem
Consider the following properties of M ∈ D−(A-mod):

(i) σ(M) ⊂ U;
(ii) M = M (X )→M (U) is an isomorphism in D−(A-mod);
(iii) σ(M) ⊂ U.
Then (i) =⇒ (ii) =⇒ (iii).
If, in addition, X is a manifold and M ∈ D−(A-Banmod), then (i) ⇐⇒ (ii).

Corollary
Let M ∈ A-mod, and suppose that σ(M) ⊂ U. Then

M → H0(M (U))

is an isomorphism in A-mod.
As a consequence, the action of O(X ) on M extends to an action of O(U).
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