Locally compact quantum groups
4. Locally compact quantum groups, amenability,

Matthew Daws (Leeds)

cohomological properties

Matthew Daws

Leeds

Fields, May 2014

LCQGS and amenability Fields, May 2014

1/18



Locally compact quantum groups

Definition (Kustermans, Vaes)

A locally compact quantum group G is a Hopf von Neumann algebra (M, A) with
invariant weights ¢, ¢

((doe)AKX) = e(x)1, (Y ®id)A(x) = (x)1.

@ Means e.g. that if x € M with ¢(x) < oo, and w € M;", then
p((w@id)A(x)) = p(x)(1,w).
@ Write M = L*°(G); let L?(G) be the GNS space of .

o Letn, = {x € L°(G) : p(x*x) < oo} and A : n, — L?(G) be the GNS
map: (A(x)IA(y)) = ¢(y*x).
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Constructions

@ Define W* on [3(G) ® L?(G), as before, by

W*(A(a) @ A(b)) = (A®@ N)(A(b)(a ® 1)).

@ (left-)invariant implies W* is an isometry.

@ More subtle argument using ¥ shows W is unitary.

@ W is a corepresentation, (A ® id)(W) = Wi3Whs.

o A(x) = W*(1®@x)W for x € L=(G).

@ L(G) is the weak*-closure of {(id @w)(W) : w € B(L*(G)).}.

@ There is an unbounded antipode S defined by/ which satisfies
5((id @w)(W)) = (id @w)(W*), S(S(x)")* =x (x € D(S)).

@ Decompose S as S = R7_;/, where R is an anti-x-isomorphism and (7;) a
continuous one-parameter group.
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Duality

L®(G) = {(w®id)(W) : w € LYG)}”

W is multiplicative; W = o W*0, ﬁ(x) = W*(l ® X)W
W e [>(G)BL>(G).

@ Can construct invariant weights @,QZ so that LOO(@) becomes a locally
compact quantum group.

Same duality interactions: e.g. Jx*J = R(x) for x € L>=(G).

~
=

@ G = G canonically.

@ Becomes a category (Ng, and Meyer—Roy—Woronowicz).
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C*-algebra considerations

Co(G) = {(id @w)(W) : w € LY(G)}I.

@ This is a C*-algebra, and R, (7¢) restrict to it, and S becomes a norm-closed
operator.

@ The weights restrict to densely defined, faithful, KMS weights.

@ (Gy(G) satisfies the cancellation laws.

@ Can analogously axiomatise a C*-algebraic version of the theory.
@ Thisis a “reduced” theory: C}(G) is the cocommutative example.

@ There is a procedure to form the “full” or “universal” C*-completion,
leading to CJ'(G): everything holds, but weights are no longer faithful.
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Coamenability
Definition

G is coamenable if Co(G)* is a unital Banach algebra.

Theorem

The following are equivalent to G being coamenable:

O LY(G) has a bounded approximate identity.

@ there is a net of unit vectors (&;) with ||W(& ® &) — & @ &|| — 0 for each

¢eH.
Q@ G(G) = ¢(G).

Sketch proof of (2)=-(1).
For we ,, € LY(G) and x € L=(G),

(X, we; e *we ) = (W1 @ X)W, wE;, § @ we ) = (L@ x)W(& @ EIW(E 1))
~ ((1®@x)(& ® &) @ n) = (xE|n) = (x,we,4)-
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Amenability

Definition
G is amenable if there is a state M € L*°(G)* with (id @ M)A(x) = (M, x)1 for
x € L=(G).

Theorem

G coamenable implies that G is amenable.

Proof.

If [[W(& ® &) — & @ €| — 0 then W unitary, W = o W*o implies
[W(E®&)—E@&| — 0. If M is a weak*-limit point of the net (wg,¢,) in L}(G)
then for x € L>(G),

((id@M)A(X), we ) = Iilm<W*(1 RX)W,wen @ we e) = = (M, x)(1,we ).

How do you “reverse” the argument? O

v

See Bédos—Tuset, Int. J. Math, 2003.
Matthew Daws (Leeds) LCQGS and amenability Fields, May 2014 7 /18



Amenability 2

Theorem

Let G be compact with G amenable. Then G is coamenable.

Proof.

See Tomatsu, J. Math. Soc. Japan, 2006 (or for Kac algebras, Ruan, JFA,
1996). O

Open outside the compact/discrete case.
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Cohomological condition: biprojectivity
Definition

A Banach algebra A is biprojective if the multiplication map A, : ARA — A has a
right inverse which is an A-bimodule map: i.e. p: A — ARA with A, o p = id,.

Can also ask in the category of operator spaces.

Theorem (Helemskii)

A is amenable if and only if it has a bounded approximate identity and is biflat
(< biprojective).

Theorem (Ruan/Xu, Aristov)

If LX(G) is operator biprojective then G is compact. If G is compact of Kac type,
then L(G) is operator biprojective.

Theorem (Caspers—Lee—Ricard)

If LX(G) is operator biprojective, then G is compact of Kac type.

v
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Proof: diagonalisation

Fix G a compact quantum group.

Have u* € M,_(A) 2 A® M,_ and associated “F matrix" F.

By a change of (orthonormal) basis of C", say u® — X*u®*X, we can
diagonalise F<.
Get strictly positive (A?) with >°. A* = >~.(A¢)~! = m, the “quantum
dimension”,

(0%

1 :
B k) _ . L
o P ) = Bty

‘P((“g)*uﬁ) = 0q,30;,10k,i
Set Q“ = t(F*)~1 with t chosen so that Tr(Q%) = Tr((Q%)™1) = m,.
Cauchy-Schwarz:
1/2 1/2
na = SO0 < (Sa) (00 7) T = ma
So ng = mq iff A¥ =1 iff G is of Kac type.
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Structure theory of splitting map

Suppose p : L1(G) — [1(G)®L(G) is a completely bounded splitting map, and
set 0 = p* : L2(G)RL>®(G) — L>(G).

Theorem (D.)

There exist matrices X with unit trace with

9(“? ® “E/) = o, X kUi -

Caspers—Lee—Ricard showed this also works for biflatness (when 6 is not assumed
weak*-continuous).

Theorem (D.)
If 0 is contractive (or completely positive), then G is of Kac type. J
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General case

Theorem (Caspers—Lee—Ricard)
Always G is of Kac type. J

@ Q% x (F*)~!is actually an intertwiner:
(u™) (1@ Q)™ =1 Q.

@ Drop the “1®" and regard M, as a subalgebra of M,(A).
@ Q is diagonal with positive entries.

o Hence [[(Q)1/2(u")(@)21| = (@) "/2(u")* Q(Q) /2|2 = 1,

(Qa)fl/Z( Qa 1/2 _ Z )\a uﬂ ®€U
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Step Il

Using that M,(L®)@M,(L>°) = M, @ M, ® L>°®L*> and that u® unitary,

1= ||(Q“)‘”z(ua)t(Q”‘)”2 @ ut|

= HZ%@% V/\a i ®“k/‘-

Then apply 0 : ujf @ ug — X7 ufj to get

doe®en® o ik Ui

Then norm of this is < ||| so the aim is to bound ||6]| . below.
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Row /Column spaces

Recall that C, is the n-dim column Hilbert space, and R,, the row space.

For an operator space E C B(H) we have

|5 e0n]c e =[Sl [

@ Then M, =2 G, ® R, via g <> &/ ® €.

= H Z Xix;'
R.QE

B(H)'

All tensor products are minimal/spacial Operator Space ones.

Cn 02y Cm = Lnxm and Rn & Rm = Rn><m-
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Apply this

AS
Ze,j@ek/@\/» ~ (Z\/)\_ae,®ek)®(;ej®e,®\/x\>fuﬁ‘)
EM, M, @L® 2 C, @R, R Cr @Ry L™ ~ (C, 0 C,) @ (R, ® Ry ® L),

@ All minimal tensor products, so “shuffle” is a complete isometry.

@ st part in C,2 with norm

(350"

ik i

@ 2nd part in R ® L with norm (as u® unitary)

g ] |- (2
/ J

NG
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First bound

| 2

10l > (Z|X,k| >1/2 (Z|Xa

Now swap things around:

Aa
L= (@) 2 (@) = || Y e ew @ | T
k

Applying 6 we get

ACM
DD eiPendu J?\/; (Ze@ek@“'k\/)\—a) (Zej®e,® ?W)

i,k

)1/2 s

0 (Co® Co® L) @ (R @ Ry).
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Second bound

Repeat the argument (and use intertwining relations again) to get:
/2
I6lles > ( Z| | Aa) NG
Then
X2\ 1/2 1/2
ma SOIXP 2 < (ma Y 'A—‘) (ma > IXEPAR) " < 10112,

by Cauchy-Schwarz. Again by C.-S.

N 1/2

1= ZXI? < \/”a(z |Xi?|2)
i=1 i

so conclude

m,
16125 > —=

«
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The trick

@ If V is any finite-dimensional unitary corepresentation then can write V as a

sum of irreducibles:
m
V = g u™,
i=1

@ Then if @ = P Q™ we have ViQV = Q.

@ Estimate from before gives:
ZTF Q%) = Zma < ZIIHII eba; = [|0]12, dim(V).

@ Set V = u*(Mu*® - - -Du™ say d times.
@ Fact: Q for V is equal to (Q“)@’d.
@ So md =Tr(Q¥)? <0,

@ d — oo implies m,, < n, so G Kac.
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