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CQGs: Recap

Unital C∗-algebra A with coproduct ∆, satisfying “cancellation”:

lin{(a⊗ 1)∆(b) : a, b ∈ A} = lin{(1⊗ a)∆(b) : a, b ∈ A} = A⊗ A.

There exists an invariant Haar state ϕ with GNS (L2(G), πϕ, ξϕ).

Formed “left-regular corepresentation” U ∈ M(A⊗ B0(L2(G))):

U∗(ξ ⊗ πϕ(a)ξϕ) = (π ⊗ πϕ)
(
∆(a)

)
(ξ ⊗ ξϕ)

Studied category of corepresentations.

U decomposes as direct sum of all the irreducibles.

A0 ⊆ A algebra of matrix coefficients.
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Is A0 a ∗-algebra?

Typical element Vij ∈ A0; so is V ∗ij ∈ A0?

Motivates looking at V := (V ∗ij ). Still a corepresentation:

∆(V ∗ij ) = ∆(Vij)
∗ =

(∑
k

Vik ⊗ Vkj

)∗
=
∑
k

V ∗ik ⊗ V ∗kj .

Theorem

Let V be an irreducible corepresentation. Then V is equivalent to a unitary
corepresentation. In particular, V ∗ij ∈ A0.

Proof.

Show that V is a sub-corepresentation of U. Same game: choose
x ∈ B(L2(G),HV ) and set

y = (ϕ⊗ id)(V
∗
(1⊗ x)U),

argue that if y 6= 0 then y∗ implements an isomorphism; if y = 0 for all x then
derive contradiction.

Matthew Daws (Leeds) Compact quantum groups 2 Fields, May 2014 3 / 19



“F-matrices”

Let Irr(G) be the collection of equivalence classes of irreducible representations of
(A,∆). Choose representatives uα.

Theorem
For each α there is a positive, invertible, trace 1 matrix Fα with

ϕ
(
(uβip)∗uαjq

)
=

{
Fαji : α = β, p = q,

0 : otherwise.

Sketch proof.

We apply our averaging argument to x = eij a matrix unit:

y = (ϕ⊗ id)((uβ)∗(1⊗ x)uα) = · · · =
∑
p,q

ϕ
(
(uβip)∗uαjq

)
epq.

Then y intertwines uα, uβ so is 0 if α 6= β; otherwise y = Fαji 1. Then . . .
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Application: A basis

ϕ
(
(uβip)∗uαjq

)
= δα,βδp,qFαji .

Theorem

The set {uαij : α ∈ Irr(G), 1 ≤ i , j ≤ nα} is a basis for A0.

Proof.

By definition this spans A0. If
∑

tαij uαij = 0 for some scalars (tαij ) then for any
β, p, q,

0 =
∑
α,i,j

tαij ϕ((uβpq)∗uαij ) =
∑
i

Fβip tβiq.

As Fβ is invertible, this implies that tβiq = 0 for all i , q, β, as required.
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A Hopf ∗-algebra

We define ε : A0 → C and S : A0 → A0 by

ε(uαij ) = δi,j , S(uαij ) = (uαji )∗.

Or equivalently, for any (finite-dimensional) unitary corepresentation V ,

(S ⊗ id)(V ) = V ∗, (ε⊗ id)(V ) = I .

Theorem

Then (A0,∆, ε,S) is a Hopf ∗-algebra.

This gives a purely algebraic approach to compact quantum groups: the Hopf
∗-algebras which can arise are exactly those which are spanned by matrix
coefficients of unitary corepresentations.
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What happens in the commutative case?

V corresponds to a unitary group representation π : G →Mn:

V ∈ C (G )⊗Mn
∼= C (G ,Mn), V = (π(s))s∈G .

(id⊗ωξ,η)(V ) =
(
(π(s)ξ|η)

)
s∈G ∈ C (G ),

(id⊗ωξ,η)(V ∗) =
(
(π(s−1)ξ|η)

)
s∈G ∈ C (G ).

Such continuous functions are linearly dense in C (G ).

(ε⊗ id)(V ) = I ⇔ 〈ε, (π(s)ξ|η)s∈G 〉 = (ξ|η)

so we conclude that ε ∈ C (G )∗ is the functional: “evaluate at the group identity”.

(S ⊗ id)(V ) = V ∗ ⇔ S
(
(π(s)ξ|η)s∈G

)
= (π(s−1)ξ|η)s∈G

so S : C (G )→ C (G ) is the ∗-homomorphism induced by the group inverse.
In general ε and S are unbounded.
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Characters

Theorem

ϕ
(
uαip(uβjq)∗

)
= δα,βδi,j

(Fα)−1qp

Tr((Fα)−1)
.

Set tα = Tr((Fα)−1) > 0 and define a linear map by

fz : A0 → C; uαij 7→ ((Fα)−z)ij t
−z/2
α .

Turn A∗0 into an algebra via 〈µ ? λ, a〉 = 〈µ⊗ λ,∆(a)〉.

Theorem

Each fz is a character on A0, f0 = ε, fz(a∗) = fz(a)∗ and fz ? fw = fz+w . If we
define

σ(a) = f1 ? a ? f1 := (f1 ⊗ id⊗f1)∆2(a) (a ∈ A0),

then ϕ(ab) = ϕ(bσ(a)). (Note: ∆2 = (∆⊗ id)∆ = (id⊗∆)∆).

ϕ is not a trace but it nearly is.
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Properties of Haar state on A

Theorem

ϕ is “faithful” on A0 (ϕ(a∗a) = 0 =⇒ a = 0).

Proof.

If ϕ(a∗a) = 0 then ϕ(a∗b) = 0 for all b ∈ A0 (Cauchy-Schwarz). Set b = uβpq and
use an F-matrix argument again.

Theorem

For a ∈ A, ϕ(a∗a) = 0⇔ ϕ(aa∗) = 0.

Proof.

Cauchy-Schwarz =⇒ ϕ(a∗b) = 0 for all b ∈ A.

Find (an) ⊆ A0 converging to a in norm.

Recall automorphism σ; then 0 = limn ϕ(a∗nσ(b)) = limn ϕ(ba∗n) = ϕ(ba∗).
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Further conclusions

Theorem

Nϕ = {a ∈ A : ϕ(a∗a) = 0} is a two-sided ideal in A. If
Λ : A→ L2(G); a 7→ πϕ(a)ξϕ is the GNS map, then ker Λ = ker πϕ = kerϕ = Nϕ.

Proof.

Standard C∗-theory: Nϕ is a left ideal.

Previous theorem shows Nϕ self-adjoint, so an ideal.

Cauchy-Schwarz shows kerϕ = ker Nϕ (A is unital!)

By definition ker Λ = Nϕ and ker πϕ ⊆ ker Λ

a ∈ Nϕ =⇒ b∗a ∈ Nϕ =⇒ a∗b ∈ Nϕ =⇒ πϕ(a∗) = 0 =⇒ πϕ(a) = 0.

ϕ really “looks like” it is a trace!
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“Reduced” C ∗-algebras

ker Λ = ker πϕ = kerϕ = Nϕ.

Let C (G) = A/Nϕ a C∗-algebra; ϕ drops to C (G) and is faithful.

Theorem

The GNS space for ϕ on C (G) is isomorphic to L2(G), and C (G) ∼= πϕ(A).
There is a unital ∗-homomorphism ∆ : C (G)→ C (G)⊗ C (G) turning C (G) into
a compact quantum group.

Proof.
Form the left-regular representation, but this time use π = πϕ to get
W ∈ M(πϕ(A)⊗ B0(L2(G))) = M(C (G)⊗ B0(L2(G))) with

W ∗(1⊗ πϕ(a))W = (πϕ ⊗ πϕ)∆(a) (a ∈ A).

So define ∆ on C (G) by ∆(x) = W ∗(1⊗ x)W . Density of A0 in C (G) shows
that ∆ does map to C (G)⊗ C (G); similarly cancellation holds for C (G).
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von Neumann algebra
Let L∞(G) = C (G)′′ in B(L2(G)). Again define

∆(x) = W ∗(1⊗ x)W (x ∈ L∞(G)),

which by weak∗-continuity maps into L∞(G)⊗L∞(G).

Theorem

The normal extension of ϕ to L∞(G) is faithful.

Proof.

Let ϕ(x∗x) = 0 so xϕξ = 0.

Kaplansky Density: bounded net (ai ) in C (G) with converges strongly to x .
For b, c ∈ A0,

(xσ(b)ξϕ|cξϕ) = lim
i
ϕ(c∗aiσ(b)) = lim

i
ϕ(bc∗ai ) = lim

i
(aiξϕ|cb∗ξϕ)

= (xξϕ|cb∗ξϕ) = 0.

Density: (xξ|η) = 0 for ξ, η ∈ L2(G), so x = 0.
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Discussion of amenability and C ∗(Γ)

Let Γ be a discrete group, so Γ̂ := C∗r (Γ) is a compact quantum group,
∆(λ(s)) = λ(s)⊗ λ(s)

ϕ(λ(s)) = δs,e =⇒ L2(Γ̂) = `2(Γ).

Could also work with C∗(Γ)

Existence of ∆ follows from universal property, as s 7→ λ(s)⊗ λ(s) is a
unitary representation.

ϕ is now faithful if and only if Γ is amenable.

C∗r (Γ) = C∗(Γ) if and only if Γ is amenable.

A0 = C[Γ] and ε : λ(s) 7→ 1 is bounded on C∗(Γ).

ε bounded on C∗r (Γ) if and only if Γ is amenable.
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Duality

As ∆(·) = W ∗(1⊗ ·)W and (∆⊗ id)(W ) = W13W23,

W ∗
12W23W12 = W13W23 =⇒ W23W12 = W12W13W23.

This says that W is multiplicative.

See Baaj–Skandalis, Woronowicz and So ltan–Woronowicz.

Ŵ := σW ∗σ is also multiplicative.

c0(Ĝ) =
{

(ω ⊗ id)(W )
}‖·‖

=
{

(id⊗ω)(Ŵ )
}‖·‖

`∞(Ĝ) = c0(Ĝ)′′

are a C∗-algebra and a von Neumann algbera with a coproduct

∆̂(x) = Ŵ ∗(1⊗ x)Ŵ (x ∈ c0(G), `∞(G)).

But here ∆̂ : c0(Ĝ)→ M(c0(Ĝ)⊗ c0(Ĝ)) is a morphism.

W ∈ L∞(G)⊗`∞(Ĝ) W ∈ M(C (G)⊗ c0(Ĝ)).
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Identifying c0(Ĝ)

ϕ
(
(uβip)∗uαjq

)
= δα,βδp,qFαji =⇒

(
uαjqξϕ

∣∣uβipξϕ) = δα,βδp,qFαji .

For fixed α, lin{uαjqξϕ} is isomorphic to Cnα ⊗ Cnα .

So L2(G) ∼=
⊕

α∈Irr(G) Cnα ⊗ Cnα .

Under this isomorphism,

W =
∑
α

∑
i,j

uαij ⊗ eαij

where eαij ∈Mnα acts on the (e.g.) first variable of Cnα ⊗ Cnα .

Now easy to see that c0(Ĝ) =
{

(ω ⊗ id)(W )
}‖·‖

is isomorphic to
⊕

αMnα .

So as an algebra c0(Ĝ) is easy; but ∆̂ is complicated (essentially encodes
how uα > uβ is written as irreducibles.)
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Discrete/Compact duality

Ĝ is a discrete quantum group. (van Daele: axiomatisation not in terms of
compact G.)

There are weights ϕ̂, ψ̂ on `∞(Ĝ)

(id⊗ϕ̂)∆̂(x) = ϕ̂(x)1, (ψ̂ ⊗ id)∆̂(x) = ψ̂(x)1.

For x = (xα) ∈ `∞(Ĝ) =
∏
αMnα ,

ϕ̂(x) =
∑
α

Λ2
αTrα(Fαxα)

where Λ2
α = Tr((Fα)−1).

Tomita-Takesaki theory: ∇̂ on L2(G) implements the modular automorphism

group σ̂t(x) = ∇̂−itx∇̂it and conjugation `∞(Ĝ)→ `∞(Ĝ)′; x 7→ Ĵx∗Ĵ.
(Generalises modular function on G and behaviour of VN(G )).
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Antipode

The map x 7→ ∇̂−itx∇̂it also maps C (G) into itself, and implements a
continuous automorphism group (τt), the scaling group.

On A0 we can express this using the characters fit .

Recall the antipode

S
(
(id⊗ω)(W )

)
= (id⊗ω)(W ∗).

Define R(x) = Ĵx∗Ĵ for x ∈ C (G), which also maps C (G) into itself. An
anti-∗-homomorphism which commutes with (τt).

We get an (unbounded) analytic extension τ−i/2 and S = Rτ−i/2.

R = S iff τt = id iff ϕ̂ = ψ̂ iff ϕ is tracial iff G is a Kac algebra.
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Examples/Buzzwords

Deformations of compact Lie groups: SUq(2) (Woronowicz). Non-Kac type.

Quantum permutation groups S+
n and quantum orthogonal groups O+

n

(Wang).

“Universal quantum groups”. (Wang, van Daele).

Liberation of quantum groups; Easy quantum Groups Sn ⊆ G ⊆ O+
n

(Banica, Speicher).

Easy quantum groups now well classified (e.g. Curran, Weber, Raum,
Freslon).

Key tool is to study the representation category Irr(G) and Woronowicz’s
generalisation of Tannaka-Krein duality.

Mostly of Kac type: L∞(G) finite von Neumann algebra, lots of work on von
Neumann algebra properties of L∞(G). (e.g. Brannan, Freslon).

Next time: what can we say for L1(G)?
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Time allowing: S+
n

Let (aij)
n
i,j=1 be a matrix of functions on some space X with:

aij = a∗ij = a2ij (so aij is 0, 1-valued);

for all i ,
∑

j aij = 1 and for all j ,
∑

i aij = 1 (so at each point of X , if we
evaluate, we get a permutation matrix).

The maximal commutative C∗-algebra generated by such matrices is just the
collection of all permutation matrices, i.e. C (Sn).

Let C (S+
n ) be the non-commutative C∗-algebra generated by such matrices.

Universal property: if A any C∗-algebra and âij ∈ A elements with the
relations, there is a unique ∗-homomorphism θ : C (S+

n )→ A with
θ(aij) = âij .

Apply with A = C (S+
n )⊗ C (S+

n ) and âij =
∑

k aik ⊗ akj .

Gives ∆ : A→ A⊗ A coproduct.

Can manually check the cancellation conditions.
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