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CQGs: Recap

@ Unital C*-algebra A with coproduct A, satisfying “cancellation”:
lin{(a®1)A(b):a,bc A} =lin{(1®a)A(b):a,bc A} = A® A.

@ There exists an invariant Haar state ¢ with GNS (L*(G), 7y, &,).

@ Formed “left-regular corepresentation” U € M(A ® By(L%(G))):

U (€ @ mp(a)€y) = (7 ® m) (A(a)) (§ @ &)

@ Studied category of corepresentations.

@ U decomposes as direct sum of all the irreducibles.

Ao C A algebra of matrix coefficients.
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Is Ay a x-algebra?
@ Typical element Vj; € Ag; so is Vi € Ag?

@ Motivates looking at V := (Vi). Still a corepresentation:

AWV =AW = (X Ve Vy) =Y Vie V.
k k

Theorem

Let V be an irreducible corepresentation. Then V is equivalent to a unitary
corepresentation. In particular, \/U* € Ao.

Proof.

Show that V is a sub-corepresentation of U. Same game: choose
x € B(L*(G), Hy) and set

y=(p®id)(V'(1ex)U),
argue that if y # 0 then y* implements an isomorphism; if y = 0 for all x then

derive contradiction. O
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“F-matrices”

Let Irr(G) be the collection of equivalence classes of irreducible representations of
(A, A). Choose representatives u®.

Theorem
For each « there is a positive, invertible, trace 1 matrix F* with

: otherwise.

. Fy ra=p,p=aq,
‘P((Ug) uj) = {oﬂ . :

Sketch proof.

We apply our averaging argument to x = ej; a matrix unit:

= (p@id)((v") (1 @x)u*) = _Z‘P(”:p uy) €pq-

Then y intertwines u®, u® so is 0 if o # 3; otherwise y = Fi1. Then ... O
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Application: A basis

@((ui)*uﬁ;) =34 ﬁapq i+

Theorem

The set {uf : a € Irr(G),1 < i,j < no} is a basis for Ag.
W

Proof.

By definition this spans Ag. If 3 t¥uff = 0 for some scalars (t) then for any

B,p,q, y

O—Ztucp Upq U?):Z":iptiq'
a,l,j i

As F5 is invertible, this implies that t,fg =0 for all i, q, B, as required. O

W
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A Hopf *-algebra

We define e : Ag — C and S : Ay — Ag by
e(uf}‘) =9i;, S(Ufj’-“) = (uﬁ‘)*
Or equivalently, for any (finite-dimensional) unitary corepresentation V/,

(S@id)(V)=V*,  (e@id)(V)=1.

Theorem
Then (Ao, A, €,S) is a Hopf x-algebra. J

This gives a purely algebraic approach to compact quantum groups: the Hopf
x-algebras which can arise are exactly those which are spanned by matrix
coefficients of unitary corepresentations.
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What happens in the commutative case?

V corresponds to a unitary group representation 7 : G — M,

Ve C(G)oM, = C(G,M,), V= (n(s))sec.
(id @we )(V) = ((7(s)é]n)) ¢ € C(G),
(id ®we ) (V*) = ((x(s7)€|n)) .o € C(G).

Such continuous functions are linearly dense in C(G).

(e@id)(V) =1 & (& (n(s)¢In)sec) = (€ln)

so we conclude that e € C(G)* is the functional: “evaluate at the group identity”.

(S@id)(V) = V" < S((r(s)éln)sec) = (r(s)&n)sec

so S: C(G) — C(G) is the x-homomorphism induced by the group inverse.
In general € and S are unbounded.
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Characters

Theorem

ul(u?y) = (F)qp
90( :p( jq) ) da ,B(sdT(( ) )

Set t, = Tr((F*)~') > 0 and define a linear map by
fz: Ay — C; ug = ((F*) %), t7%/2,
Turn A§ into an algebra via (ux A, a) = (u® A, A(a)).

Theorem

Each f, is a character on Ao, fo = €, f,(a*) = fz(a)* and f, x f,, = fo1v,. If we
define
o(a)=fxaxf :=(AL®IdRA)A%E) (a€ Ay,

then p(ab) = p(bo(a)). (Note: A2 = (A ®id)A = (idRA)A).

@ is not a trace but it nearly is.
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Properties of Haar state on A

Theorem
@ is “faithful” on Ay (p(a*a) =0 = a=0).

Proof.

If p(a*a) = 0 then ¢(a*b) = 0 for all b € Ay (Cauchy-Schwarz). Set b = u5 and
O

use an F-matrix argument again.
v

Theorem
Forae A, p(a*a) =0 < p(aa*) = 0.

Proof.
@ Cauchy-Schwarz = ¢(a*b) =0 for all b € A.
@ Find (a,) C Ap converging to a in norm.

@ Recall automorphism o; then 0 = lim, p(a0(b)) = lim, p(ba}) = p(ba*).

O
y
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Further conclusions

Theorem

N, ={a€ A:p(a*a) =0} is a two-sided ideal in A. If
A: A= L3(G); arr my(a), is the GNS map, then ker A = ker , = ker p = N,,.

Proof.
Standard C*-theory: N, is a left ideal.

Previous theorem shows N, self-adjoint, so an ideal.

Cauchy-Schwarz shows ker ¢ = ker N, (A is unitall)

By definition ker A = N, and ker m, C ker A

aeN, = b*ae N, = a*be N, = m,(a*)=0 = m,(a) =0.

o really “looks like” it is a trace! O

v
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“Reduced” C*-algebras

ker A = kerm, = kerp = N,,.
Let C(G) = A/N,, a C*-algebra; ¢ drops to C(G) and is faithful.

Theorem

The GNS space for ¢ on C(G) is isomorphic to L?(G), and C(G) = m,(A).
There is a unital x-homomorphism A : C(G) — C(G) ® C(G) turning C(G) into
a compact quantum group.

v

Proof.

Form the left-regular representation, but this time use 7 = 7, to get
W e M(m,(A) ® Bo(L3(G))) = M(C(G) ® Bo(L*(G))) with

W*(1 ® my(a))W = (7, ® m,)A(a) (a € A).

So define A on C(G) by A(x) = W*(1® x)W. Density of Ag in C(G) shows
that A does map to C(G) ® C(G); similarly cancellation holds for C(G). O

v
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von Neumann algebra
Let L=(G) = C(G)" in B(L?*(G)). Again define

Alx) =W (1o x)W (x € L*(G)),
which by weak*-continuity maps into L>(G)®L>(G).
Theorem

The normal extension of ¢ to L>°(G) is faithful.

Proof.
@ Let p(x*x) =0 so xpe = 0.

@ Kaplansky Density: bounded net (a;) in C(G) with converges strongly to x.
For b, c € Ao,

(xa(b)ép|cty) = Iip1 p(c*ajo(b)) = Iip1 p(bc*a;) = IiFn(a;§<P|cb*§¢)
= (X§<p|Cb*§<p) =0.
@ Density: (x¢|n) =0 for £,n € L%(G), so x = 0. -
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Discussion of amenability and C*(T")

Let ' be a discrete group, so r= C;(T) is a compact quantum group,
A(A(s)) = Als) @ A(s)

P(A(s)) = ds.e = L3(T) = £2(T).

@ Could also work with C*(I)

@ Existence of A follows from universal property, as s — A\(s) @ A(s) is a
unitary representation.

@ ¢ is now faithful if and only if I is amenable.
@ Cr(I')= C*(T) if and only if I is amenable.
@ Ay =CJ[l and €: A\(s) — 1 is bounded on C*(T).

@ ¢ bounded on C(I) if and only if [' is amenable.
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Duality
As A() = W*(l ® )W and (A & Id)(W) = Wiz3Whos,
Wi WosWhy = WisWos = WasWio = Wi Wiz Whos.
@ This says that W is multiplicative.

@ See Baaj—Skandalis, Woronowicz and Sottan—Woronowicz.

@ W :=cW?*o is also multiplicative.

(@) = {(wid) W)} = {(dew) (W)} @) = o(G)”

are a C*-algebra and a von Neumann algbera with a coproduct
AX)=W 1@ )W  (x € (G),>(G)).
But here A : ¢o(G) — M(cp(G) ® co(G)) is a morphism.

W e L®(G)R6=(G) W e M(C(G) ® ¢(G)).
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~

|dentifying ¢y(G)
cp((uf))*uf‘) =0ap0pqFfi = (uﬁ;&p‘ui@) = 0a,80.qFji"

@ For fixed o, lin{ug &y} is isomorphic to C" @ C".
® So L2(G) = @aelrr(({}) Cre @ Cre.

@ Under this isomorphism,

W=2_2 vjoe

a iy
where eff € M, acts on the (e.g.) first variable of C"> @ C"=.
@ Now easy to see that ¢y(G) = {we id)(W)}”'|| is isomorphic to @, M,,..
@ So as an algebra co(@) is easy; but A is complicated (essentially encodes

how u®@u” is written as irreducibles.)
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Discrete/Compact duality

o G is a discrete quantum group. (van Daele: axiomatisation not in terms of
compact G.)

@ There are weights 3, on E‘X’(@)

(d®P)A(x) = 3(x)1, (P ®@id)A(x) = d(x)1.

~

@ For x = (x*) € £>(G) =[], M,,_,
P(x) =D N Tra(Fx*)

where A2 = Tr((F*)™1).

@ Tomita-Takesaki theory: V on L?(G) implements the modular automorphism
group 7+(x) = V™ xV' and conjugation />°(G) — £>°(G)’; x — Jx*J.
(Generalises modular function on G and behaviour of VN(G)).
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Antipode

@ The map x — VxV't also maps C(G) into itself, and implements a
continuous automorphism group (7¢), the scaling group.

@ On Ag we can express this using the characters f;.

@ Recall the antipode

S((id @w)(W)) = (id @w)(W*).

@ Define R(x) = Jx*J for x € C(G), which also maps C(G) into itself. An
anti-*-homomorphism which commutes with (7).

@ We get an (unbounded) analytic extension 7_;/, and S = R7_;/,.

@ R=Siffp,=idiff g = 12 iff o is tracial iff G is a Kac algebra.

Matthew Daws (Leeds) Compact quantum groups 2 Fields, May 2014 17 /19



Examples/Buzzwords

@ Deformations of compact Lie groups: SUg(2) (Woronowicz). Non-Kac type.

@ Quantum permutation groups S,T and quantum orthogonal groups O,,+
(Wang).

@ “Universal quantum groups”. (Wang, van Daele).

@ Liberation of quantum groups; Easy quantum Groups S, C G C O,
(Banica, Speicher).

@ Easy quantum groups now well classified (e.g. Curran, Weber, Raum,
Freslon).

@ Key tool is to study the representation category Irr(G) and Woronowicz's
generalisation of Tannaka-Krein duality.

@ Mostly of Kac type: L*°(G) finite von Neumann algebra, lots of work on von
Neumann algebra properties of L>°(G). (e.g. Brannan, Freslon).

@ Next time: what can we say for L}(G)?
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- o CF
Time allowing: S,
Let (a;)];—; be a matrix of functions on some space X with:

= a2 (so aj is 0, 1-valued);

Ve — *
® a3 =aj; i

o for all /, ZJ- aj =1 and for all j, >~ a; =1 (so at each point of X, if we
evaluate, we get a permutation matrix).

The maximal commutative C*-algebra generated by such matrices is just the
collection of all permutation matrices, i.e. C(S,).

Let C(S;) be the non-commutative C*-algebra generated by such matrices.

Universal property: if A any C*-algebra and 3;; € A elements with the
relations, there is a unique *x-homomorphism 6 : C(S5;7) — A with
9(2,]') = élj

Apply with A= C(5,;) ® C(S,7) and 3;; = >~ aix @ ay;.
Gives A : A— A® A coproduct.

@ Can manually check the cancellation conditions.
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