
Locally compact quantum groups
2. C ∗-algebras and compact quantum groups

Matthew Daws

Leeds

Fields, May 2014

Matthew Daws (Leeds) Compact quantum groups Fields, May 2014 1 / 22



Obligatory non-commutative topology 2

Theorem (Gelfand)

Let A be a commutative C∗-algebra, and let ΦA be the collection of characters on
A, given the relative weak∗-topology. Then ΦA is a locally compact Hausdorff
space, and the map

G : A→ C0(ΦA); G(a)(ϕ) = ϕ(a),

is an isometric isomorphism.

But how do we capture the notion of a continuous map between ΦA and ΦB?

∗-homomorphisms A→ B correspond to proper continuous maps
ΦB → (ΦA)∞, the one-point compactification of ΦA.
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Multiplier algebras
Let A be a C∗-algebra.

Regard A as acting non-degenerately (so lin{a(ξ) : a ∈ A, ξ ∈ H} is dense in
H) on H. Then

M(A) = {T ∈ B(H) : Ta, aT ∈ A (a ∈ A)}.

Regard A as a subalgebra of its bidual A∗∗; then

M(A) = {x ∈ A∗∗ : xa, ax ∈ A (a ∈ A)}.

These are isomorphic (and independent of H).

An abstract way to think of M(A) is as the pairs of maps (L,R) from A to A with
aL(b) = R(a)b. A little closed graph argument shows that L and R are bounded,
and that

L(ab) = L(a)b, R(ab) = aR(b) (a, b ∈ A).

The involution in this picture is (L,R)∗ = (R∗, L∗) where R∗(a) = R(a∗)∗,
L∗(a) = L(a∗)∗. You can move between these pictures by a bounded approximate
identity argument.
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Multiplier algebras 2

M(A) is the largest C∗-algebra containing A as an essential ideal: if
x ∈ M(A) and axb = 0 for all a, b ∈ A, then x = 0.

So M(A) is the largest (sensible) unitisation of A.

Applied to C0(X ), unitisations correspond to compactifications of X .

Indeed, M(C0(X )) is isomorphic to C b(X ) the algebra of all bounded
continuous functions on X .

The character space of C b(X ) is βX , the Stone-Čech compactification.
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Morphisms

A morphism A→ B between C∗-algebras is a non-degenerate ∗-homomorphism
θ : A→ M(B).

θ is non-degenerate if {θ(a)b : a ∈ A, b ∈ B} is linearly dense in B.

The strict topology on M(B) is:

xα → x ⇔ xαb → xb, bxα → bx (b ∈ B).

Non-degeneracy is equivalent to:

For any (or all) bounded approximate identity (eα) in A, the net (θ(eα))
converges strictly to 1 ∈ M(B);

θ is the restriction of a strictly continuous ∗-homomorphism
θ̃ : M(A)→ M(B).

We can construct the extension: θ̃(x)θ(a)b = θ(xa)b and so forth.
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Application

Theorem
Let X ,Y be locally compact spaces.

Given a continuous map φ : Y → X , the map
θ : C0(X )→ C b(Y ); f 7→ f ◦ φ is a morphism.

Any morphism C0(X )→ C0(Y ) is induced in this way.

So we have some machinery: but it captures exactly what we want!
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Compact quantum groups
Let G be a compact semigroup (associative, continuous product).

Define ∆ : C (G )→ C (G × G ); ∆(f )(s, t) = f (st) which is a unital
∗-homomorphism;

again this is coassociative (∆⊗ id)∆ = (id⊗∆)∆;

Every coassociative ∆ : C (G )→ C (G × G ) arises in this way (from some
product on G ).

How do we capture the notion of a group?

Write down the identity and inverse, as maps on C (G )?

Inelegant; doesn’t generalise.

Theorem
A compact semigroup G is a group if and only if satisfies cancellation:

st = sr =⇒ t = r , ts = rs =⇒ t = r .

If you’re bored: prove this.
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Cancellation as density

Theorem
G satisfies cancellation if and only if

lin{(a⊗ 1)∆(b) : a, b ∈ C (G )}, lin{(1⊗ a)∆(b) : a, b ∈ C (G )}

are dense in C (G × G ) = C (G )⊗ C (G ).

Sketch proof.

Commutative, so these are ∗-subalgebras, so can apply Stone-Weierstrauss:
dense if and only if they separate points;

(a⊗ 1)∆(b)(s, t) = a(s)b(st);

so st = sr if and only if f (s, t) = f (s, r) for all f in the 1st set;

so separates points if and only if cancellation.
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Compact quantum groups

Definition (Woronowicz)

A compact quantum group is a unital C∗-algebra A with a coassociative unital
∗-homomorphism ∆ : A→ A⊗ A with

{(a⊗ 1)∆(b) : a, b ∈ A}, {(1⊗ a)∆(b) : a, b ∈ A}

linearly dense in A⊗ A.

So if A is commutative, we exactly capture the notion of a compact group.

Let Γ be a discrete group, and A = C∗r (Γ) the reduced group C∗-algebra, say
generated by {λ(s) : s ∈ Γ}.

Exactly as in the last lecture, can construct a coproduct
∆ : λ(s) 7→ λ(s)⊗ λ(s).

Cancellation is easy to verify: (λ(st−1)⊗ 1)∆(λ(t)) = λ(s)⊗ λ(t).

Every cocommutative (∆ = σ∆) compact quantum group is of this form.
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Construction of Haar state

From now on, (A,∆) is a compact quantum group.

Turn A∗ into a (completely contractive) Banach algebra:

〈µ ? λ, a〉 = 〈µ⊗ λ,∆(a)〉 (µ, λ ∈ A∗, a ∈ A).

Theorem

There is a unique state ϕ with (ϕ⊗ id)∆(a) = (id⊗ϕ)∆(a) = 〈ϕ, a〉1.

Very sketch proof.

Equivalent to ϕ ? µ = µ ? ϕ = 〈µ, 1〉ϕ.

If want this for one state µ then ϕ = lim 1
n (µ+ µ2 + · · ·+ µn).

See van Daele, PAMS 1995.

For a ∈ C (G ):

(id⊗ϕ)∆(a)(t) =

∫
G

a(ts) dϕ(s), 〈ϕ, a〉1(t) =

∫
G

a(s) dϕ(s).
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Regular representation

Let G be the “object” which is our compact quantum group.

Let L2(G) be the GNS space for the Haar state ϕ. Let πϕ, ξϕ be the
representation and the cyclic vector.

Let π : A→ B(K ) be some auxiliary non-degenerate ∗-representation.

Theorem

There is a unitary U ∈ B(K ⊗ L2(G)) with

U∗(ξ ⊗ πϕ(a)ξϕ) = (π ⊗ πϕ)
(
∆(a)

)
(ξ ⊗ ξϕ).

(All this theory is due to Woronowicz; some presentation motivated by Maes, van
Daele, Timmermann.)
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Position, implementation, representations

We have that U is a multiplier of π(A)⊗ B0(L2(G)).

B0(L2(G)) is the compact operators on L2(G).

Also (π ⊗ πϕ)∆(a) = U∗(1⊗ πϕ(a))U.

A SOT continuous unitary representation π of a compact group G gives a map

G → B(H) = M(B0(H)); s 7→ π(s).

This is continuous for the strict topology; given f ∈ C0(G ,B0(H)) the map

G → B0(H); s 7→ π(s)f (s)

is continuous. So
(π(s))s∈G ∈ M

(
C0(G )⊗ B0(H)

)
.

Given V ∈ M
(
C0(G )⊗ B0(H)

)
how do we recognise that it’s a representation?
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Representations continued

C b
str (G ,B0(H)) ∼= M

(
C0(G )⊗ B0(H)

)
(π(s))↔ V

(
s 7→ f (s)π(s)ξ

)
↔ V (f ⊗ ξ) (f ∈ C0(G ), ξ ∈ H).

π(s) unitary for all s corresponds to V being a unitary operator.

a representation means:

(∆⊗ id)V ↔ (π(st))(s,t)∈G×G = (π(s)π(t))(s,t)∈G×G ↔ V13V23.

This is “leg-numbering notation”: V23 = 1⊗ V acts on the 2nd/3rd
components; V13 = σ12V23σ12.

Definition

A corepresentation of (A,∆) is V ∈ M(A⊗ B0(H)) with (∆⊗ id)(V ) = V13V23.
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Left regular representation

Theorem

If π : A→ B(H) is faithful, then U ∈ M(π(A)⊗ B0(L2(G )) is a corepresentation.

π faithful, so M(π(A)⊗ B0(L2(G )) ∼= M(A⊗ B0(L2(G ))).

Theorem

For a, b ∈ A set ξ = πϕ(a)ξϕ, η = πϕ(b)ξϕ. Then

(id⊗ωξ,η)(U) = (id⊗ϕ)(∆(b∗)(1⊗ a))

(id⊗ωξ,η)(U∗) = (id⊗ϕ)((1⊗ b∗)∆(a))

(Here I supress the π).

By cancellation, such slices are hence dense in A.

Matthew Daws (Leeds) Compact quantum groups Fields, May 2014 14 / 22



Finite dimensional corepresentations

If H finite dimensional then pick a basis, H ∼= Cn.

B0(H) ∼= Mn and M(A⊗ B0(H)) ∼= A⊗ B0(H) ∼= Mn(A).

A unitary V = (Vij) is a corepresentation if and only if

∆(Vij) =
n∑

k=1

Vik ⊗ Vkj .

A subspace K ⊆ H is invariant for V if

V (1⊗ p) = (1⊗ p)V (1⊗ p)

for p : H → K the orthogonal projection.

Given V ∈ M(A⊗ B0(HV )) and W ∈ M(A⊗ B0(HW )) an operator
T : HV → HW is an intertwiner if W (1⊗ T ) = (1⊗ T )V .

Hence have notions of being irreducible, a subcorepresentation, (unitary)
equivalence and so forth.
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Schur’s lemma

Theorem (Schur’s Lemma)

Let x intertwine corepresentations W ,V . The kernel, and the closure of the
image, of x are invariant subspaces of W , respectively, V . If

W and V are irreducible; or

W and V are finite-dimensional of the same dimension and one is
irreducible,

then x = 0 if W ,V are not equivalent; if x 6= 0 then x is invertible. Then span of
such invertibles is one-dimensional.
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Averaging with the Haar state

Theorem

Let W ,V be corepresentations, and let x ∈ B(HW ,HV ). Then

y = (ϕ⊗ id)(V ∗(1⊗ x)W ) ∈ B(HW ,HV )

satisfies V ∗(1⊗ y)W = 1⊗ y. If x compact, so is y .

Proof.

Using (ϕ⊗ id)∆(·) = ϕ(·)1,

(ϕ⊗ id⊗ id)(∆⊗ id)(V ∗(1⊗ x)W ) = 1⊗ (ϕ⊗ id)(V ∗(1⊗ x)W ) = 1⊗ y

(∆⊗ id)(V ∗(1⊗ x)W ) = V ∗23V ∗13(1⊗ 1⊗ x)W13W23

(ϕ⊗ id⊗ id)
(
V ∗23V ∗13(1⊗ 1⊗ x)W13W23

)
= V ∗(1⊗ y)W .

If V is unitary then (1⊗ y)W = V (1⊗ y) so we have an intertwiner.
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Applications 1

Theorem
An irreducible unitary corepresentation is finite-dimensional.

Proof.
Let V be the corepresentation.

Pick a compact x ∈ B0(HV ) and average to a compact intertwiner

y = (ϕ⊗ id)(V ∗(1⊗ x)V ) ∈ B(HU ,HV )

By Schur, y = 0 or y ∈ C1.

y is compact, so if y = t1 for t 6= 0 we’re done.

Let x vary through a net of finite-dimensional orthogonal projections to see
that y must be non-zero for some choice.
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Applications 2

Theorem
Any unitary corepresentation V decomposes as the direct sum of irreducibles.

Sketch proof.

If V is unitary then if K is an invariant subspace for V so is K⊥.

So the collection of intertwiners from V to itself is a C∗-algebra B say.

The previous averaging argument shows that we can find a bounded
approximate identity in B consisting of compact operators.

So B is the direct sum of matrix algebras.

So V decomposes as finite-dimensional corepresentations.

Can obviously decompose finite-dimensional corepresentations into
irreducibles.
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Applications 3

Theorem

Let V be an irreducible unitary corepresentation of (A,∆). Then V is equivalent
to a subrepresentation of U.

Proof.

Pick any x ∈ B(L2(G),HV ) and average to an intertwiner

y = (ϕ⊗ id)(V ∗(1⊗ x)U).

If y is non-zero, use Schur to conclude y is onto. Also y∗ is an intertwiner,
injective by Schur, so gives required equivalence.
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Continued proof

y = (ϕ⊗ id)(V ∗(1⊗ x)U).

Maybe y = 0 for all x , so test on rank-one maps x = θξ,aξϕ , giving

0 = (ybξϕ|η) = 〈ϕ⊗ ωbξϕ,η,V
∗(1⊗ θξ,aξϕ)U〉

= ϕ
(
(id⊗ωξ,η)(V ∗)(id⊗ωbξϕ,aξϕ)(U)

)
= ϕ

(
(id⊗ωξ,η)(V ∗)(id⊗ϕ)(∆(a∗)(1⊗ b))

)
Think of V = (Vij) ∈Mn(A).

By cancellation, and taking ξ, η to be basis vectors, conclude that
0 = ϕ(V ∗ij a) for all a ∈ A.

But V is unitary, so taking a = Vij gives

0 =
∑
i

ϕ(V ∗ij Vij) = ϕ(1) = 1.
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Algebra of “matrix elements”

Definition
Let A0 ⊆ A be the linear span of matrix elements Vij arising from all
finite-dimensional (irreducible) unitary corepresentations V = (Vij).

U decomposes as a direct sum of (all the) irreducible (finite-dimensional)
corepresentations.

So also L2(G) decomposes as (finite-dimensional) invariant subspaces.

Given ξ, η ∈ L2(G), approximate by vectors with “finite-support”.

So can approximate (id⊗ωξ,η)(U) by linear combination of matrix elements.

So A0 dense in A.

A0 is an algebra: tensor product of corepresentations (V >W = V12W13).

Is A0 a ∗-algebra?
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