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Obligatory non-commutative topology 2

Theorem (Gelfand)

Let A be a commutative C*-algebra, and let ® 5 be the collection of characters on

A, given the relative weak*-topology. Then ® 4 is a locally compact Hausdorff
space, and the map

G: A= G(Pa); G(a)(p) = ©(a),

is an isometric isomorphism.

But how do we capture the notion of a continuous map between ®,4 and g7

@ x-homomorphisms A — B correspond to proper continuous maps
®5 — (Pa)oo, the one-point compactification of ®4.

Matthew Daws (Leeds) Compact quantum groups Fields, May 2014 2/22




Multiplier algebras
Let A be a C*-algebra.

@ Regard A as acting non-degenerately (so lin{a(§) : a € A, € H} is dense in
H) on H. Then
M(A) ={T € B(H): Ta,aT € A(a € A)}.
@ Regard A as a subalgebra of its bidual A**; then

M(A) ={x € A" : xa,ax € A(ac A)}.

@ These are isomorphic (and independent of H).

An abstract way to think of M(A) is as the pairs of maps (L, R) from A to A with
aL(b) = R(a)b. A little closed graph argument shows that L and R are bounded,
and that

L(ab) = L(a)b, R(ab) = aR(b) (a, b € A).
The involution in this picture is (L, R)* = (R*, L*) where R*(a) = R(a*)*,
L*(a) = L(a*)*. You can move between these pictures by a bounded approximate
identity argument.
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Multiplier algebras 2

@ M(A) is the largest C*-algebra containing A as an essential ideal: if
x € M(A) and axb =0 for all a,b € A, then x = 0.

@ So M(A) is the largest (sensible) unitisation of A.
Applied to Co(X), unitisations correspond to compactifications of X.

@ Indeed, M(Gy(X)) is isomorphic to C?(X) the algebra of all bounded
continuous functions on X.

@ The character space of C?(X) is 3X, the Stone-Cech compactification.
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Morphisms

A morphism A — B between C*-algebras is a non-degenerate *-homomorphism
0:A— M(B).

@ 0 is non-degenerate if {6(a)b: a € A, b € B} is linearly dense in B.

The strict topology on M(B) is:
Xo = X & Xob— xb, bx, — bx (b€ B).

Non-degeneracy is equivalent to:

@ For any (or all) bounded approximate identity (e,) in A, the net (6(ey))
converges strictly to 1 € M(B);

@ 0 is the restriction of a strictly continuous x-homomorphism
0 : M(A) — M(B).

We can construct the extension: #(x)#(a)b = #(xa)b and so forth.
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Application

Theorem
Let X, Y be locally compact spaces.

@ Given a continuous map ¢ : Y — X, the map
0 : Co(X) — CE(Y); f s f oo isa morphism.

@ Any morphism Co(X) — Co(Y) is induced in this way.

So we have some machinery: but it captures exactly what we want!
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Compact quantum groups

Let G be a compact semigroup (associative, continuous product).

@ Define A: C(G) — C(G x G); A(f)(s, t) = f(st) which is a unital
*-homomorphism;

@ again this is coassociative (A ® id)A = (id @A)A,;

@ Every coassociative A : C(G) — C(G x G) arises in this way (from some
product on G).

How do we capture the notion of a group?
@ Write down the identity and inverse, as maps on C(G)?

@ Inelegant; doesn't generalise.

Theorem
A compact semigroup G is a group if and only if satisfies cancellation:

st=sr = t=r, ts=rs = t=r.

If you're bored: prove this.
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Cancellation as density

Theorem

G satisfies cancellation if and only if
lin{(a®@1)A(b) : a,b e C(G)},  lin{(1®a)A(b):a,be C(G)}

are dense in C(G x G) = C(G) ® C(G).

Sketch proof.

@ Commutative, so these are x-subalgebras, so can apply Stone-Weierstrauss:
dense if and only if they separate points;

@ (a®1)A(b)(s,t) = a(s)b(st);
@ so st = sr if and only if f(s,t) = f(s,r) for all f in the 1st set;

@ so separates points if and only if cancellation.
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Compact quantum groups

Definition (\Woronowicz)

A compact quantum group is a unital C*-algebra A with a coassociative unital
*-homomorphism A: A — A® A with

{(a®1)A(b):a,be A},  {(1®a)A(b): a,be A}

linearly dense in A® A.

So if A is commutative, we exactly capture the notion of a compact group.

Let I' be a discrete group, and A = C(I') the reduced group C*-algebra, say
generated by {A(s) :s €T},

@ Exactly as in the last lecture, can construct a coproduct
A A(s) = A(s) @ A(s).

@ Cancellation is easy to verify: (A(st™1) ® 1)A(A(t)) = A(s) ® A(t).

@ Every cocommutative (A = gA) compact quantum group is of this form.
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Construction of Haar state

@ From now on, (A, A) is a compact quantum group.

@ Turn A* into a (completely contractive) Banach algebra:

(px A a) = (e Aa)) (1, A € A" a e A).

Theorem
There is a unique state ¢ with (¢ ® id)A(a) = (id®p)A(a) = (¢, a)l.

Very sketch proof.

@ Equivalent to ¢ x u = px p = (i, L.
@ If want this for one state y then ¢ = lim L(pu+ p? + -+ + pu").

See van Daele, PAMS 1995. ]

For a € C(G):

(d=0)AE)(0) = [ a(t9) do(s). (e.a1(0) = [ o) die(s)
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Regular representation

Let G be the “object” which is our compact quantum group.

@ Let L?(G) be the GNS space for the Haar state . Let m,, &, be the
representation and the cyclic vector.

Let 7 : A — B(K) be some auxiliary non-degenerate *-representation.

Theorem
There is a unitary U € B(K ® L%(G)) with

Ur(€ @ mp(a)sy) = (7 @ 1) (A(a)) (€ ® &)

(All this theory is due to Woronowicz; some presentation motivated by Maes, van
Daele, Timmermann.)
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Position, implementation, representations

@ We have that U is a multiplier of 7(A) ® Bo(L%(G)).
@ By(L?(G)) is the compact operators on L?(G).
@ Also (7 ® m,)A(a) = U*(1 ® m,(a))U.
A SOT continuous unitary representation 7w of a compact group G gives a map
G — B(H) = M(Bo(H)); s+ m(s).
This is continuous for the strict topology; given f € Co(G, Bo(H)) the map
G — Bo(H); s~ m(s)f(s)

is continuous. So

(7(s))sec € M(Go(G) ® Bo(H)).

Given V € M(Go(G) ® Bo(H)) how do we recognise that it's a representation?
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Representations continued

C5.(G, Bo(H)) = M(Co(G) @ Bo(H))
(m(s)) & V (s — f(s)w(s)f) > V(FeE) (fe G(G),EeH).

@ 7(s) unitary for all s corresponds to V being a unitary operator.
@ a representation means:
(A ® id)\/ A (W(St))(s,t)erG = (W(S)W(t))(s,t)erG < Vi3 Vos.
@ This is “leg-numbering notation”: Vo3 =1 ® V acts on the 2nd/3rd
components; Vi3 = 015 Vo3010.
Definition
A corepresentation of (A,A) is V € M(A® Bo(H)) with (A ® id)(V) = Vi3 Vas. J
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Left regular representation

Theorem
If 7+ A— B(H) is faithful, then U € M(n(A) @ Bo(L%(G)) is a corepresentation.J

o r faithful, so M(m(A) ® Bo(L?(G)) = M(A @ Bo(L*(G))).
Theorem
Fora,b e A set { =m,(a)é,,n = my(b)l,. Then

(id ®we ) (V) = (id @) (A(b*)(1 ® a))
(id @we ) (U) = (id @9)((1 @ b*)A(a))

(Here | supress the ).

@ By cancellation, such slices are hence dense in A.
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Finite dimensional corepresentations

If H finite dimensional then pick a basis, H = C".
Bo(H) 2 M, and M(A® Bo(H)) = A® Bo(H) = M,(A).

A unitary V = (Vj;) is a corepresentation if and only if

n
A(Vy) = Z Vik @ Vi
k=1

A subspace K C H is invariant for V if
V(l®p)=(1®p)V(1ep)

for p: H — K the orthogonal projection.

Given V € M(A® By(Hy)) and W € M(A ® Bo(Hw)) an operator
T : Hy — Hw is an intertwinerif W(1®@ T) = (1® T)V.

@ Hence have notions of being irreducible, a subcorepresentation, (unitary)
equivalence and so forth.
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Schur’s lemma

Theorem (Schur's Lemma)

Let x intertwine corepresentations W, V. The kernel, and the closure of the
image, of x are invariant subspaces of W, respectively, V. If

@ W and V are irreducible; or

@ W and V are finite-dimensional of the same dimension and one is
irreducible,

then x =0 if W,V are not equivalent; if x # 0 then x is invertible. Then span of
such invertibles is one-dimensional.

v
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Averaging with the Haar state

Theorem
Let W,V be corepresentations, and let x € B(Hw, Hy). Then

y=(p@id)(V*(1®x)W) € B(Hw, Hv)

satisfies V*(1®@ y)W =1® y. If x compact, so is y.

Proof.
Using (¢ ® id)A(:) = »()1,

(pidid)(A®id)(V1®x)W) =12 (p@id)(V1Iex)W)=11y
(Aid)(V*(1ex)W) = ViEV5(1® 10 x)WisWos
(p@id®id)(V5Vi3(1 @ 1@ x)WisWas) = V¥ (1@ y)W.

If V is unitary then (1® y)W = V(1 ® y) so we have an intertwiner. O
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Applications 1

Theorem
An irreducible unitary corepresentation is finite-dimensional.

Proof.

Let V be the corepresentation.

@ Pick a compact x € By(Hy) and average to a compact intertwiner
y=(p®id)(V*(1®x)V) € B(Huy, Hv)

@ By Schur, y =0o0r y € CL.
@ y is compact, so if y = t1 for t # 0 we're done.

@ Let x vary through a net of finite-dimensional orthogonal projections to see
that y must be non-zero for some choice.

O

v
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Applications 2

Theorem

Any unitary corepresentation V' decomposes as the direct sum of irreducibles.

Sketch proof.

@ If V is unitary then if K is an invariant subspace for V so is K*.
@ So the collection of intertwiners from V to itself is a C*-algebra B say.

@ The previous averaging argument shows that we can find a bounded
approximate identity in B consisting of compact operators.

@ So B is the direct sum of matrix algebras.
@ So V decomposes as finite-dimensional corepresentations.

@ Can obviously decompose finite-dimensional corepresentations into
irreducibles.

O

v
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Applications 3

Theorem

Let V be an irreducible unitary corepresentation of (A, A). Then V is equivalent
to a subrepresentation of U.

Proof.
@ Pick any x € B(L?(G), Hy) and average to an intertwiner
y = (p@id)(V*(1©x)U).

@ If y is non-zero, use Schur to conclude y is onto. Also y* is an intertwiner,
injective by Schur, so gives required equivalence.

OJ

v
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Continued proof

y = (p@id)(V*(1®x)V).

Maybe y = 0 for all x, so test on rank-one maps x = 0¢ a¢,, giving

0= (¥b&e[n) = (¢ @ whe, ., V(1 @ g0, )U)
((id ®we ) (V*)(id ®wee,, a¢., ) (V)
((id @we,n)(V*)(id @p)(A(a")(1 @ b))

¥
¥

Think of V = (V;) € M,(A).

By cancellation, and taking &,n to be basis vectors, conclude that
0=¢(V;a) forall a € A.

@ But V is unitary, so taking a = Vj; gives

0= ¢V V) = p(D) =1
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Algebra of “matrix elements”

Definition
Let Ap C A be the linear span of matrix elements Vj; arising from all
finite-dimensional (irreducible) unitary corepresentations V = (Vj;).

@ U decomposes as a direct sum of (all the) irreducible (finite-dimensional)
corepresentations.

@ So also L?(G) decomposes as (finite-dimensional) invariant subspaces.

@ Given &1 € L%(G), approximate by vectors with “finite-support” .

@ So can approximate (id ®we ,,)(U) by linear combination of matrix elements.
@ So Ap dense in A.

@ A is an algebra: tensor product of corepresentations (VOOW = Vi, Wi3).

@ Is Ag a x-algebra?
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