Locally compact quantum groups
1. Locally compact groups from an (operator) algebra
perspective

Matthew Daws
Leeds

Fields, May 2014

Matthew Daws (Leeds)

&
Locally compact groups



Obligatory non-commutative topology

Theorem (Gelfand)

Let A be a unital commutative C*-algebra, and let ® 4 be the collection of
characters on A, given the relative weak*-topology. Then ®4 is a compact
Hausdorff space, and the map

G: A= C(Pa); G(a)(p) = ¢(a),

is an isometric isomorphism.

v

Furthermore, a x-homomorphism 6 : A — B between unital C*-algebras is always
given by a continuous map ¢ : g — $4 with

GgoloG ' (f)=fo¢ (f € C(Pa)).

So, in principle, studying compact spaces and continuous maps between them is
the same as studying commutative C*-algebras.
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Some (vague) motivation

@ I'm going to come back to the ideas of the previous slide (repeatedly).

@ But for now let's just take it as (vague) motivation for looking at various
operator algebras.

@ In particular, I'll look both a locally compact space G, for which we have a
choice of Co(G) and C(G);

@ and at measured spaces (X, ) where it's natural to look at L*°(X).

@ As the other talks in this series have looked at Banach algebras, I'll start
instead there.
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Locally compact groups

Let G be a locally compact group, and consider Co(G), C?(G) and L>=(G) (left
Haar measure). These are two C*-algebras and a von Neumann algebra: they
depend only on the topological and measure space properties of G.

@ For example, in the case when G is countable and discrete, these algebras
capture nothing of interest about the group.

We turn L}(G) into a Banach algebra for the convolution product:

(F % g)(s) = / F(D)g(t~1s) dt.
G
This does remember the structure of G, in the following sense:

Theorem (Wendel)

If LY(G) and L*(H) are isometrically isomorphic as Banach algebras, then G is, as
a topological group, isomorphic to H.
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At the Operator algebra level

Can we equip L>°(G) with “extra structure” so that it remembers G?
Define a map A : L°(G) — L*=(G x G) by
A(F)(s, t) = F(st) (F € L*°(G),s,t € G).
This is a unital, injective, *-homomorphism which is normal (weak*-continuous).

The pre-adjoint is a map L(G x G) — L}(G). As [}(G) ® L1(G) embeds into
L}(G x G), we get a bilinear map on L!(G). This is actually the convolution
product, as

(F,A(f®g))=(A(F),fog) = / F(st)f(s)g(t) ds dt

GXxG

:/ F(t)/ F(s)g(s1t) ds dt = (F,f  g).
G G
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Interpretation

@ We can think of (L*°(G), A) as an object which remembers G.
@ Indeed, A is “co-associative” in that (A ® id)A = (id @ A)A as maps
L>(G) = L=(G x G x G), as
(AQId)A(F)(s, t,r) = F((st)r), (d@A)A(F)(s,t,r)= F(s(tr)).
@ A pair (M, A) with M a von Neumann algebra and A : M — MM
coassociative is a “Hopf-von Neumann algebra”.
@ Not all commutative examples come from L>(G).

@ Another interpretation is that L}(G) is a particularly nice Banach algebra:
it's dual is a von Neumann algebra, and the dual of the product “respects”
the structure of L>°(G). Compare the notion of an “F-algebra”
(“Lau-algebra™).
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Amenability

@ A topologically left invariant mean on G is a state M on L*°(G) with
M(f  F) = M(F) for F € L(G) and f € L}(G) with f >0, [ f =1.

@ Given f € L}(G) let f(s) = V(s~)f(s™') with V the modular function;
then f + f is an isometric linear anti-homomorphism on L}(G).

@ We calculate:
f*F(S):/"(f)F(fls) dt:/f(t*)V(tfl)F(ts) dt = F -,

the module action of L}(G) on L>(G).
@ Using A this is (f @ id)A(F).
@ So M is a state with, for any f € L}(G), F € L=(G),

(M, (f @iId)A(F)) = (M,F)(1,f) < (ld@M)A(F)=(M,F)1.
@ Non-commutative: Can't talk about points of course. ..
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Towards the Fourier algebra: group algebras

We let G act on L?(G) by the left-regular representation:
(M) (1) =&(s7Mt) (€€ L(G),s,t€G).

The s~1 arises to make G — B(H);s — A(s) a group homomorphism.

We can integrate this to get a contractive homomorphism
A LY(G) — B(L?(G)). The action of L}(G) on L?(G) is just convolution:

A(FE(E) = / F)M)E(E) = / F(s)e(s1t) ds.

Let the norm closure of LY(G) in B(L?(G)) be C*(G), the (reduced) group
C*-algebra. The weak-operator closure is VN(G), the group von Neumann
algebra. Equivalently, VN(G) is {\(s) : s € G}".

We can similarly form the right-regular representation p(s)&(t) = £(ts)V(s)/?
leading to right group von Neumann algebra VN,(G). Then VN(G) = VN,(G)
and VN,(G) = VN(G).

(Particularly short proofs of this may be sent to the speaker on a postcard.)
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As a Hopf von Neumann algebra

We claim that there is a normal, unital injective *-homomorphism
A VN(G) — VN(G x G) satisfying

A(X(S)) = Ms) @ A(s) = A(s, s).

Here we identify VN(G)®VN(G) with VN(G x G). If A exists, then it's uniquely
defined by this property.

Define W : [2(G x G) — L%(G x G) by

We(s, t) =€E(ts,t) (€ € L3(G x G),&,n € G).
Then W is unitary, and

(W (10 A()WE)(s, 8) = (1@ M)W (s, )

Matthew Daws (Leeds) Locally compact groups Fields, May 2014 9/21



Definition of A

So we could define A by
A(x) =W (1ox)W  (x e VN(G)).

Then obviously A is an injective, unital, normal x-homomorphism, and
A(X(S)) = A(s) @ A(s), so by normality, A must map into VN(G x G).
Obviously (A ® id)A = (id @A)A.

So (VN(G),A) is a Hopf von Neumann algebra, and hence the pre-adjoint of A
turns the predual of VN(G) into a Banach algebra.
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The Fourier Algebra
Let A(G) be the predual of VN(G).

So A(G) is the (unique) Banach space such that A(G)* = VN(G).

As {A(s) : s € G} has weak*-dense linear span in VN(G), for w € A(G), the
values

w(s) := (A\(s),w) (s€G)
completely determine w.
As G — VN(G);s — A(s) is SOT continuous, s — w(s) is continuous.

We identify w with this continuous function, and so realise A(G) as a space
of continuous functions.

Another concrete realisation of the predual is as a quotient of the trace-class
operators on L2(G). For &,n € L?(G) let wg ,, be the normal functional
VN(G) 3 x — (x€|n).

Then

wen(s) = (\(s)Elm) = / E(sL(D) dt = we, € Go(G).
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The Fourier Algebra

@ So A(G) is a subspace of Cy(G).

@ But the norm comes from A(G)* = VN(G); the map A(G) — Go(G) is
norm-decreasing and has dense range.

@ We use the coproduct A to turn A(G) into a Banach algebra
(A(8), w1 *wa) := (A(A(S)), w1 @ wa) = (A(s) @ A(S), w1 ® wp) = wi(s)wa(s).

Here | use “x" for a product, not to denote convolution.

@ Indeed, we see that the product is the point-wise product. A(G) — Co(G) is
also an algebra homomorphism.

@ This is Eymard's Fourier algebra.

@ [Walter] If A(G) and A(H) are isometrically isomorphic, then G is
isomorphic to (maybe the opposite of) H. If we insist on completely
isometric, we have that G is isomorphic to H.
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For abelian groups

If G is abelian, we can form the Pontryagin dual G:
@ the collection of all continuous characters G — T;
@ with group product the pointwise product (¢1¢2)(s) = ¢1(s)¢2(s).
@ with topology given by uniform convergence on compacta.

We then have the Fourier transform:
F:L2(G) — L2(G); ﬂﬂ@:/#@ﬁﬁﬁ
G

If we normalise the Haar measures correctly, F is unitary.

o the dual of Z is T, where 6§ € [0, 27) parameterises the character
Z3ns e,

@ the dual of R is R, where x € R parameterises the character R 5 t — eftx,
You need a 27 somewhere to get the normalisation correct.
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The Fourier Transform

We regard L>°(G) as also acting on L2(G), by multiplication.

Then we have a x-isomorphism
VN(G) = L®(G)  x+— FoxoF 1

(On integrable functions, this will reduce to (some variant of) the familiar Fourier
transform formula.)

This s-isomorphism is normal, and so induces an isomorphism A(G) = L1(G).

Our intuition is that A(G), even for non-abelian G, can be thought of as being
the L! algebra on the “group” G.
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Amenability for A(G)

Theorem (Dunkl-Ramirez, Granirer, Renaud)

For any G there is a state M € VN(G)* with (id @ M)A(x) = (M, x)1 for
x € VN(G).

So G is always amenable.

Theorem (Leptin)
A(G) has a bounded approximate identity if and only if G is amenable.

Of course, L}(G) always has a bounded approximate identity.
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Duality between G and G

@ Given a homomorphism G — H we can define a homomorphism H— G.
These establishes an anti-equivalence of categories.

@ Pontryagin duality: G = G in a canonical fashion (biduality functor is
naturally equivalent to the identity.)
@ We have seen that A(G) behaves “like” it is L1(G).

@ Can we make this more precise? Single out a collection of objects, which
include A(G) and L}(G), which has a (bi)duality theory, and forms a
category.

@ Work of e.g. Takesaki, Tatsuuma, Stinespring, later Enock, Schwarz, Kac,
Vainermann lead to “Kac algebras”: Hopf von Neumann algebras (M, A)
with many other “gadgets”.

@ While this works, it is complicated, and Woronowicz's notion of a compact
quantum group does not fit into this framework: this is where we next look.

Matthew Daws (Leeds) Locally compact groups Fields, May 2014 16 / 21



Unitary implementing the coproduct

In defining A on VN(G) | made use of a unitary W. Set
W =oW'o = We(s, t) = &(s, s 1),

where o € B(L?(G x G)) is the “swap map” o(¢)(s,t) = £(t, s).
For F € L>(G) acting on L2(G) by multiplication,

W*(1® F)W¢E(s,t) = (1@ FYWE(s, st) = F(st)WE(s, st) = F(st)é(s, t),

and so, again, W*(1 @ F)W = A(F).
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Where does W live?

WE(s, t) = £(s, s tt)
@ Informally, given a von Neumann algebra M, we think of L>°(G)®@M as
being bounded measurable functions G — M.

@ Then s — A(s) is even SOT continuous, so defines A € L*°(G)® VN(G) say,
which acts on £ ® ) as

A€ @n)(s) = £(s)A(s)n under L*(G x G) = L*(G, L*(G)),
= NE@n)(s,t) =&(s)(s't) = W(E@n)(s, t).

@ More carefully, we could use Tomita's theorem and check that W commutes
with F ® p(s) € L>(G)®VN,(G) so
W e L®(G)R®VN,(G) = L=(G)RVN(G).

Matthew Daws (Leeds) Locally compact groups Fields, May 2014 18 / 21



Using W € L*(G)®VN(G)

The map A : LY(G) — VIN(G) is actually
M) = (feid)(W)  (f € L}G)).

@ This should be true given the informal thinking on the previous slide!

If ¢&,m € L2(G) and f = &7 € LY(G), then f is wg , restricted to
L=(G) C B(L2(G)) and
(e @ OWA[8) = Wig @ ln©8) = [ elsr(s™ o(=)aCe) os e
= / f(s)y(s't)o(t) ds dt = (f % |d).
GxG
Thus indeed (we , ® )W = A(f).
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For the dual

We(s,t) = &(ts. )
Similarly, we calculate (we,, ® id)(W):

((we,p @ id)(W 7!5:( (E@7)|n©d)
- / £(ts)1(1)(5)0(D) ds dt = / (A )1 (1)3(D) ot
GxG

@ So (we,, ®id)(W) is the operator on L2(G) of multiplication by the
continuous function t — w(t™1) := (A(t71)¢n).

@ So up to an inverse, this is the embedding of A(G) into Co(G) C L>=(G).

@ So W allows us to reconstruct L®°(G), VN(G), L1(G), A(G) their products
and the maps between them.
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Summary

@ Introduced L'(G) and A(G) from a von Neumann algebra perspective.
@ Motivated, a little, that these are “dual” to each other:

» Both from quite a “formal” level;
» Also at the level of how proofs works.

@ Saw how a single unitary operator essentially stores all the information.

What's next:

@ We've focused on von Neumann algebras: but arguably the topology is more
basic than the measure theory. So we should be looking at C*-algebras.

@ Haven't yet mentioned quantum groups.

Matthew Daws (Leeds) Locally compact groups Fields, May 2014 21 /21



