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Position and momentum operators on Ly(R):
Qf(x) = xf(x);  Pf(x) = —ihf'(x).

Commutation relation:

[Q, P] = inl

Uncertainty relation:

o(Q,f)o(P,f) >

9

N | St

where o(Q, ) = \/((Q = (Qf, £)2F, ), and [|f]l2 = 1.
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Background

Q and P are unitarily equivalent via Fourier transform (i = 1):

F(F)(& e F(x

-7 .

Stronger relation using entropy:

- / (x) log((x))dx
R

where f € L1(R) is a probability density.

Theorem (Hirschman '57; Beckner '75)
For f € L»(R) such that ||f]|2 = 1, we have

H(If1?) + H(F(F)I?) > log(me)

whenever the LHS is defined.
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Fact: H(|F?) + H(IF(F)2) > log(re) = o(Q, Flo(P, f) >

Theorem (Hirschman '57)

Let G be a locally compact Abelian group. Then for f € Ly(G)
such that ||f|l2 = 1, we have

H(If1?) + H(IF(f)IP) > 0
whenever the LHS is defined.

Remark: For compact Abelian groups, 3 f such that
H(If?) + H(|F(f)[?) = 0.

Question: Manifestation in non-Abelian group duality?
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Definition (Kustermans—Vaes '00)
ALCQGG = (M,T, 1)
e M is a von Neumann algebra;
e [: M — M®M is a co-multiplication.
e o is a left Haar weight on M:

o((w@ )M (x)) =w(l)p(x), xe€ My, we M,
e Y is a right Haar weight on M:

P @W)N(x) = w(L)(x), x € My, we M.
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Definition (Kustermans—Vaes '00)
ALCQGG = (M,T, 1)
e M is a von Neumann algebra;
e [: M — M®M is a co-multiplication.
e o is a left Haar weight on M:

o((w@ )M (x)) =w(l)p(x), xe€ My, we M,
e Y is a right Haar weight on M:

P @W)N(x) = w(L)(x), x € My, we M.

Notation: L(G) := M, Li(G) := M,, Lo(G) := Lo(M, ¢).
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G is unimodular if ¢ = 1) is tracial (i.e., G is a unimodular Kac
algebra).

In this case, V state f € L1(G) there exists a density D 7 L(G)

such that
(f,x) = p(Dx), x € Lo(G).

If D= [y° Adey, then we define the entropy of f by
H(f) := H(D) = —(Dlog D) — / Mog Ad(ey).
Ex: If G, = (Loo(G), T2, 02 = 1,), and f € L1(G) is a state, then

H(f) = —/Gf(s) log f(s)ds
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Main Result

Non-commutative Fourier transform F : [5(G) — Ly(G) is the
unique extension of the map

My 3 x = Apx) € Loo(G).
F is an isometric isomorphism of L»(G) onto Ly(G) (Cooney '10).

Given a state p € T(L2(G)), let D, be the density of p|, (), and
D, be the density of FoF @)

Theorem (C—Kalantar '14)

Let G be a unimodular LCQG, and p € T(L2(G)) be a state.
Then if H(D,), H(Dp), Suwn(p) are finite,

H(D,) + F(D,) = Sun(p)-

In particular, if p = wg, then H(D¢) + I:I(DAg) > 0.
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Lemma (Gibbs Variational Principle)
Let A € L(H) be self-adjoint s.t. tr(e ") < co. ThenV state
p € T(H)

tr(pA) + tr(plog p) > — logtr(e™*)

Lemma (Golden—Thompson Inequality)

Let A, B € L(H) be self-adjoint operators bounded from above,
then
tr(e?B) < tr(e/?eBe??).

Lemma (C-Kalantar '14)

Let G be a Kac algebra and let f € L1(G)*. Then 3 a net (3) in

LOO(G) s.t. ZkGK ézak = ZkEK ékéz = <f7 1>1, and

O(FNT) =(FRYW* (1o T)W = > 3;Ta, T cB(L(G)).
keK
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H(Dy) + H(Dy) = Sun(p)
If D, = [s° Adey and D, = [5° \d®&y, their t' singular numbers:
pe(Dp) = inf{s = 0 | p(e(s o)) < t} and
fie(D,) = inf{s > 0| $(&s,0)) < t}, for t > 0.
~~ probability densities on (0, c0) satisfying
H(D,) = — Jo~ 1t(Dy) log p1¢(D,)dt
H(D,) = = J5° it(D,) log fie(Dy)dt
where dt is the Lebesgue measure (Fack—Kosaki '86).

H(u) + H(f) > Sun(p)
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Theorem (Matolcsi-Sziics '73)
Let G be compact group and let f € L»(G), f # 0. Then

he( suppf)( Z dﬂ)_a
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where f(m) = [ f( )*ds, m € G.
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Compact Case

Theorem (Matolcsi-Sziics '73)
Let G be compact group and let f € L»(G), f # 0. Then

hsuppf)( Z dw)_,
7| (w)#£0
where f(m) = [ f( )*ds, m € G.

Theorem (Alagic—Russell '09)
Let G be compact group and let f € L(G), f #0. Then

he(supp(f)) ( Z dn - rank(f w)))
w|f ()70
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Compact Case
If G is a compact Kac algebra, A := Irred(G), then

F:L(G)3¢ = @ ab() € - P HS(Ha)

acA acA

where b : Lr(G) — L1(G) and a(f) = (f @ ¢)(u®).
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Compact Case
If G is a compact Kac algebra, A := Irred(G), then

F:L(G)3¢ = @ ab() € - P HS(Ha)

a€cA a€cA
where b : Lr(G) — L1(G) and a(f) = (f @ ¢)(u®).

Corollary (C-Kalantar '14)
Let G be a compact Kac algebra, and p € T(L2(G))* —{0}. Then

A0 (X o rank(D)) = ()

acA

where s(D,) = supp(p|r..(z))- In particular, for { € L>(G) — {0},

P(s(w)) (32 - rank(ab(e)) ) =1

a€cA
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Observation: If G is unimodular, f € L1(G)7, then

H(f) = —S(f, ), the relative entropy.

Let M C B(H), and let ¢ be a n.s.f. weight on M’. Then
D(H,p) = {€ € H| 3Re € B(Hy, H) s.t. Rehy(x') = x'€}
It follows that ReRf € M for all £ € D(H, ).

For any normal semi-finite weight ¢ on M, the spatial derivative
dy/dv is the largest positive self-adjoint operator T € L(H) s.t

H T1/2§ if £ € D(H,)ND(TY?),

p(ReRe) =
400 otherwise.
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where wé = we|r(gy- Definition is independent of the
representing vector &.
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Let G = (Loo(G), T, , 1) be an arbitrary LCQG. Then any state
f € L1(G) satisfies f = we|;_(g). We define the entropy of f by

H(f) := =S(f,¢) = —< log (Cﬁf)&&»

where wé = we|r(gy- Definition is independent of the
representing vector £. Moreover,

H(we) = H'(W)e) = —< log (dd Jf)Jﬁ J§>

Ex: G, = (Lo(G), T2, 0a,v2), £ € La(G), ||£]|2 =1, then

HR) = = [ 1€(5) P log ¢(s) s
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Theorem (Kunze '58; Terp '80)

Let G be a locally compact group, and let £ € Ly(G). The Fourier
Transform of ¢ is the closed densely defined operator on Ly(G)
given by

F(&)n =€ =AY,

where D(F(€)) = {n € Lo(G) | £ x AY?y € L(G)}. Moreover,
F : L(G) — La(VN(G), L) is an isometric isomorphism.
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Let G be a locally compact group, and let £ € Ly(G). The Fourier
Transform of ¢ is the closed densely defined operator on Ly(G)
given by
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Theorem (Kunze '58; Terp '80)

Let G be a locally compact group, and let £ € Ly(G). The Fourier
Transform of ¢ is the closed densely defined operator on Ly(G)
given by

F(&)n=¢x a2,
where D(F(€)) = {n € Lo(G) | £ x AY?y € L(G)}. Moreover,
F : L(G) — La(VN(G), L) is an isometric isomorphism.

Ex: Gs = (VN(G),Ts,¥s), € € C(G), [|€]]l2 = 1. If ¢ is the
Plancherel weight on VN(G)’, then one can show that

dw j¢
dys
Thus, H(we) = H'(w)e) = — (log (IF(€)2) . JE).

= |[F ()P
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Uncertainty Principle for Locally Compact Groups

Theorem (C—Kalantar '14)

Let G be a locally compact group and let ¢ € L%(G) with
€ll2 = 1. If H(we) and H(wz¢) are finite, then

H(we) + H(wre) = —log||A™Y%¢|3,

where for ¢ ¢ D(A™Y?) we let |A~Y/2¢||, = .



Non-unimodular Setting

Thank you!
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