An uncertainty principle for unimodular quantum groups

Jason Crann
with Mehrdad Kalantar

Carleton University and Université Lille 1

Workshop on Operator Spaces, Locally Compact Quantum Groups and Amenability May 30th, 2014

Outline

Background

Main Result

Non-unimodular Setting

Outline

Background

Main Result

Non-unimodular Setting

Position and momentum operators on $L_2(\mathbb{R})$:

$$Qf(x) = xf(x); \quad Pf(x) = -i\hbar f'(x).$$

Position and momentum operators on $L_2(\mathbb{R})$:

$$Qf(x) = xf(x);$$
 $Pf(x) = -i\hbar f'(x).$

Commutation relation:

$$[Q,P]=i\hbar I$$

Position and momentum operators on $L_2(\mathbb{R})$:

$$Qf(x) = xf(x);$$
 $Pf(x) = -i\hbar f'(x).$

Commutation relation:

$$[Q,P]=i\hbar I$$

Uncertainty relation:

$$\sigma(Q, f)\sigma(P, f) \geq \frac{\hbar}{2},$$

where $\sigma(Q, f) = \sqrt{\langle (Q - \langle Qf, f \rangle)^2 f, f \rangle}$, and $||f||_2 = 1$.

Q and P are unitarily equivalent via Fourier transform ($\hbar \equiv 1$):

$$\mathcal{F}(f)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\xi x} f(x) dx.$$

Q and P are unitarily equivalent via **Fourier transform** ($\hbar \equiv 1$):

$$\mathcal{F}(f)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\xi x} f(x) dx.$$

Stronger relation using entropy:

$$H(f) := -\int_{\mathbb{R}} f(x) \log(f(x)) dx,$$

where $f \in L_1(\mathbb{R})$ is a probability density.

Q and P are unitarily equivalent via **Fourier transform** ($\hbar \equiv 1$):

$$\mathcal{F}(f)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\xi x} f(x) dx.$$

Stronger relation using entropy:

$$H(f) := -\int_{\mathbb{R}} f(x) \log(f(x)) dx,$$

where $f \in L_1(\mathbb{R})$ is a probability density.

Theorem (Hirschman '57; Beckner '75)

For $f \in L_2(\mathbb{R})$ such that $||f||_2 = 1$, we have

$$H(|f|^2) + H(|\mathcal{F}(f)|^2) \ge \log(\pi e)$$

whenever the LHS is defined.

Fact:
$$H(|f|^2) + H(|\mathcal{F}(f)|^2) \ge \log(\pi e) \Rightarrow \sigma(Q, f)\sigma(P, f) \ge \frac{\hbar}{2}$$

Fact:
$$H(|f|^2) + H(|\mathcal{F}(f)|^2) \ge \log(\pi e) \Rightarrow \sigma(Q, f)\sigma(P, f) \ge \frac{\hbar}{2}$$

Theorem (Hirschman '57)

Let G be a locally compact Abelian group. Then for $f \in L_2(G)$ such that $||f||_2 = 1$, we have

$$H(|f|^2) + H(|\mathcal{F}(f)|^2) \ge 0$$

whenever the LHS is defined.

Fact:
$$H(|f|^2) + H(|\mathcal{F}(f)|^2) \ge \log(\pi e) \Rightarrow \sigma(Q, f)\sigma(P, f) \ge \frac{\hbar}{2}$$

Theorem (Hirschman '57)

Let G be a locally compact Abelian group. Then for $f \in L_2(G)$ such that $\|f\|_2 = 1$, we have

$$H(|f|^2) + H(|\mathcal{F}(f)|^2) \ge 0$$

whenever the LHS is defined.

Remark: For compact Abelian groups, $\exists f$ such that $H(|f|^2) + H(|\mathcal{F}(f)|^2) = 0$.

Fact:
$$H(|f|^2) + H(|\mathcal{F}(f)|^2) \ge \log(\pi e) \Rightarrow \sigma(Q, f)\sigma(P, f) \ge \frac{\hbar}{2}$$

Theorem (Hirschman '57)

Let G be a locally compact Abelian group. Then for $f \in L_2(G)$ such that $||f||_2 = 1$, we have

$$H(|f|^2) + H(|\mathcal{F}(f)|^2) \ge 0$$

whenever the LHS is defined.

Remark: For compact Abelian groups, $\exists f$ such that $H(|f|^2) + H(|\mathcal{F}(f)|^2) = 0$.

Question: Manifestation in non-Abelian group duality?

Outline

Background

Main Result

Non-unimodular Setting

Definition (Kustermans-Vaes '00)

$$A$$
 LCQG $\mathbb{G} = (M, \Gamma, \varphi, \psi)$

- M is a von Neumann algebra;
- $\Gamma: M \to M \bar{\otimes} M$ is a **co-multiplication**.
- φ is a left Haar weight on M:

$$\varphi((\omega \otimes \iota)\Gamma(x)) = \omega(1)\varphi(x), \quad x \in \mathcal{M}_{\varphi}, \ \omega \in \mathcal{M}_*;$$

• ψ is a **right Haar weight** on M:

$$\psi((\iota \otimes \omega)\Gamma(x)) = \omega(1)\psi(x), \quad x \in \mathcal{M}_{\psi}, \ \omega \in \mathcal{M}_{*}.$$

Definition (Kustermans-Vaes '00)

$$A$$
 LCQG $\mathbb{G} = (M, \Gamma, \varphi, \psi)$

- M is a von Neumann algebra;
- $\Gamma: M \to M \bar{\otimes} M$ is a **co-multiplication**.
- φ is a **left Haar weight** on M:

$$\varphi((\omega \otimes \iota)\Gamma(x)) = \omega(1)\varphi(x), \quad x \in \mathcal{M}_{\varphi}, \ \omega \in \mathcal{M}_*;$$

• ψ is a **right Haar weight** on M:

$$\psi((\iota \otimes \omega)\Gamma(x)) = \omega(1)\psi(x), \quad x \in \mathcal{M}_{\psi}, \ \omega \in M_*.$$

Notation: $L_{\infty}(\mathbb{G}) := M$, $L_1(\mathbb{G}) := M_*$, $L_2(\mathbb{G}) := L_2(M, \varphi)$.

In this case, \forall state $f \in L_1(\mathbb{G})$ there exists a **density** D η $L_{\infty}(\mathbb{G})$ such that

$$\langle f, x \rangle = \varphi(Dx), \quad x \in L_{\infty}(\mathbb{G}).$$

In this case, \forall state $f \in L_1(\mathbb{G})$ there exists a **density** D η $L_{\infty}(\mathbb{G})$ such that

$$\langle f, x \rangle = \varphi(Dx), \quad x \in L_{\infty}(\mathbb{G}).$$

If $D = \int_0^\infty \lambda de_\lambda$, then we define the **entropy** of f by

$$H(f) := H(D) = -\varphi(D \log D) = -\int_0^\infty \lambda \log \lambda d\varphi(e_\lambda).$$

In this case, \forall state $f \in L_1(\mathbb{G})$ there exists a **density** D η $L_{\infty}(\mathbb{G})$ such that

$$\langle f, x \rangle = \varphi(Dx), \quad x \in L_{\infty}(\mathbb{G}).$$

If $D = \int_0^\infty \lambda de_\lambda$, then we define the **entropy** of f by

$$H(f) := H(D) = -\varphi(D \log D) = -\int_0^\infty \lambda \log \lambda d\varphi(e_\lambda).$$

Ex: If $\mathbb{G}_a = (L_{\infty}(G), \Gamma_a, \varphi_a = \psi_a)$, and $f \in L_1(G)$ is a state, then $D = M_f$ and

$$H(f) = -\int_G f(s) \log f(s) ds.$$

$$\mathcal{M}_{\varphi} \ni x \mapsto \lambda(\varphi_x) \in L_{\infty}(\hat{\mathbb{G}}).$$

$$\mathcal{M}_{\varphi} \ni \mathsf{x} \mapsto \lambda(\varphi_{\mathsf{x}}) \in L_{\infty}(\hat{\mathbb{G}}).$$

 \mathcal{F} is an isometric isomorphism of $L_2(\mathbb{G})$ onto $L_2(\hat{\mathbb{G}})$ (Cooney '10).

$$\mathcal{M}_{\varphi} \ni \mathsf{x} \mapsto \lambda(\varphi_{\mathsf{x}}) \in L_{\infty}(\hat{\mathbb{G}}).$$

 \mathcal{F} is an isometric isomorphism of $L_2(\mathbb{G})$ onto $L_2(\hat{\mathbb{G}})$ (Cooney '10).

Given a state $\rho \in \mathcal{T}(L_2(\mathbb{G}))$, let D_ρ be the **density** of $\rho|_{L_\infty(\mathbb{G})}$, and $\hat{D_\rho}$ be the **density** of $\mathcal{F}\rho\mathcal{F}^*|_{L_\infty(\hat{\mathbb{G}})}$.

$$\mathcal{M}_{\varphi} \ni \mathsf{x} \mapsto \lambda(\varphi_{\mathsf{x}}) \in L_{\infty}(\hat{\mathbb{G}}).$$

 \mathcal{F} is an isometric isomorphism of $L_2(\mathbb{G})$ onto $L_2(\hat{\mathbb{G}})$ (Cooney '10).

Given a state $\rho \in \mathcal{T}(L_2(\mathbb{G}))$, let D_ρ be the **density** of $\rho|_{L_\infty(\mathbb{G})}$, and $\hat{D_\rho}$ be the **density** of $\mathcal{F}\rho\mathcal{F}^*|_{L_\infty(\hat{\mathbb{G}})}$.

Theorem (C–Kalantar '14)

Let \mathbb{G} be a **unimodular** LCQG, and $\rho \in \mathcal{T}(L_2(\mathbb{G}))$ be a state. Then if $H(D_\rho)$, $\hat{H}(\hat{D}_\rho)$, $S_{vN}(\rho)$ are finite,

$$H(D_{\rho}) + \hat{H}(\hat{D_{\rho}}) \geq S_{\nu N}(\rho).$$

In particular, if $\rho = \omega_{\xi}$, then $H(D_{\xi}) + \hat{H}(\hat{D}_{\xi}) \geq 0$.

Lemma (Gibbs Variational Principle)

Let $A \in \mathcal{L}(H)$ be self-adjoint s.t. $\mathrm{tr}(e^{-A}) < \infty$. Then \forall state $\rho \in \mathcal{T}(H)$

$$\operatorname{tr}(\rho A) + \operatorname{tr}(\rho \log \rho) \ge -\log \operatorname{tr}(e^{-A})$$

Lemma (Gibbs Variational Principle)

Let $A \in \mathcal{L}(H)$ be self-adjoint s.t. $\operatorname{tr}(e^{-A}) < \infty$. Then \forall state $\rho \in \mathcal{T}(H)$

$$\operatorname{tr}(\rho A) + \operatorname{tr}(\rho \log \rho) \ge -\log \operatorname{tr}(e^{-A})$$

Lemma (Golden-Thompson Inequality)

Let $A, B \in \mathcal{L}(H)$ be self-adjoint operators bounded from above, then

$$\operatorname{tr}(e^{A+B}) \leq \operatorname{tr}(e^{A/2}e^Be^{A/2}).$$

Lemma (Gibbs Variational Principle)

Let $A \in \mathcal{L}(H)$ be self-adjoint s.t. $\operatorname{tr}(e^{-A}) < \infty$. Then \forall state $\rho \in \mathcal{T}(H)$

$$\operatorname{tr}(\rho A) + \operatorname{tr}(\rho \log \rho) \ge -\log \operatorname{tr}(e^{-A})$$

Lemma (Golden-Thompson Inequality)

Let $A, B \in \mathcal{L}(H)$ be self-adjoint operators bounded from above, then

$$\operatorname{tr}(e^{A+B}) \le \operatorname{tr}(e^{A/2}e^Be^{A/2}).$$

Lemma (C–Kalantar '14)

Let \mathbb{G} be a Kac algebra and let $f \in L_1(\mathbb{G})^+$. Then \exists a net (\hat{a}_k) in $L_{\infty}(\hat{\mathbb{G}})$ s.t. $\sum_{k \in K} \hat{a}_k^* \hat{a}_k = \sum_{k \in K} \hat{a}_k \hat{a}_k^* = \langle f, 1 \rangle 1$, and

$$\Theta(f)(T) := (f \otimes \iota)W^*(1 \otimes T)W = \sum_{k \in K} \hat{a}_k^* T \hat{a}_k, \quad T \in \mathcal{B}(L_2(\mathbb{G})).$$

$$H(D_{
ho}) + \hat{H}(\hat{D_{
ho}}) \geq S_{vN}(
ho)$$

$$H(D_{
ho}) + \hat{H}(\hat{D_{
ho}}) \geq S_{\nu N}(
ho)$$

If $D_{\rho} = \int_{0}^{\infty} \lambda de_{\lambda}$ and $\hat{D}_{\rho} = \int_{0}^{\infty} \lambda d\hat{e}_{\lambda}$, their t^{th} singular numbers:

$$\mu_t(D_
ho) = \inf\{s \geq 0 \mid arphi(e_{(s,\infty)}) \leq t\}$$
 and

$$\hat{\mu}_t(\hat{D}_{\rho}) = \inf\{s \geq 0 \mid \hat{\varphi}(\hat{e}_{(s,\infty)}) \leq t\}, \text{ for } t > 0.$$

$$H(D_{
ho}) + \hat{H}(\hat{D_{
ho}}) \geq S_{vN}(
ho)$$

If $D_{\rho} = \int_{0}^{\infty} \lambda de_{\lambda}$ and $\hat{D}_{\rho} = \int_{0}^{\infty} \lambda d\hat{e}_{\lambda}$, their t^{th} singular numbers:

$$\mu_t(D_
ho) = \inf\{s \geq 0 \mid arphi(e_{(s,\infty)}) \leq t\}$$
 and

$$\hat{\mu}_t(\hat{D_\rho}) = \inf\{s \geq 0 \mid \hat{\varphi}(\hat{e}_{(s,\infty)}) \leq t\}, \text{ for } t > 0.$$

 \leadsto **probability densities** on $(0,\infty)$ satisfying

$$H(D_{\rho}) = -\int_{0}^{\infty} \mu_{t}(D_{\rho}) \log \mu_{t}(D_{\rho}) dt$$

$$\hat{H}(\hat{D}_{
ho}) = -\int_{0}^{\infty} \hat{\mu}_{t}(\hat{D}_{
ho}) \log \hat{\mu}_{t}(\hat{D}_{
ho}) dt$$

where dt is the Lebesgue measure (Fack-Kosaki '86).

$$H(D_{
ho}) + \hat{H}(\hat{D_{
ho}}) \geq S_{vN}(
ho)$$

If $D_{\rho} = \int_{0}^{\infty} \lambda de_{\lambda}$ and $\hat{D}_{\rho} = \int_{0}^{\infty} \lambda d\hat{e}_{\lambda}$, their t^{th} singular numbers:

$$\mu_t(D_
ho) = \inf\{s \geq 0 \mid arphi(e_{(s,\infty)}) \leq t\}$$
 and

$$\hat{\mu}_t(\hat{D_\rho}) = \inf\{s \geq 0 \mid \hat{\varphi}(\hat{e}_{(s,\infty)}) \leq t\}, \text{ for } t > 0.$$

 \leadsto **probability densities** on $(0,\infty)$ satisfying

$$H(D_{\rho}) = -\int_{0}^{\infty} \mu_{t}(D_{\rho}) \log \mu_{t}(D_{\rho}) dt$$

$$\hat{H}(\hat{D_{
ho}}) = -\int_0^\infty \hat{\mu}_t(\hat{D_{
ho}}) \log \hat{\mu}_t(\hat{D_{
ho}}) dt$$

where dt is the Lebesgue measure (Fack-Kosaki '86).

$$H(\mu) + \hat{H}(\hat{\mu}) \ge S_{\nu N}(\rho)$$

Theorem (Matolcsi-Szücs '73)

Let G be compact group and let $f \in L_2(G)$, $f \neq 0$. Then

$$h_G(\mathit{supp}(f))igg(\sum_{\pi\mid\hat{f}(\pi)
eq 0}d\pi^2igg)\geq 1,$$

where
$$\hat{f}(\pi) = \int_G f(s)\pi(s)^*ds$$
, $\pi \in \hat{G}$.

Theorem (Matolcsi-Szücs '73)

Let G be compact group and let $f \in L_2(G)$, $f \neq 0$. Then

$$h_G(supp(f))\Big(\sum_{\pi\mid \hat{f}(\pi)\neq 0}d\pi^2\Big)\geq 1,$$

where $\hat{f}(\pi) = \int_G f(s)\pi(s)^*ds$, $\pi \in \hat{G}$.

Theorem (Alagic–Russell '09)

Let G be compact group and let $f \in L_2(G)$, $f \neq 0$. Then

$$h_G(\mathit{supp}(f))\Big(\sum_{\pi\mid \hat{f}(\pi)
eq 0} d\pi \cdot \mathit{rank}(\hat{f}(\pi))\Big) \geq 1.$$

If \mathbb{G} is a compact Kac algebra, $A := \operatorname{Irred}(\mathbb{G})$, then

$$\mathcal{F}: L_2(\mathbb{G}) \ni \xi \to \bigoplus_{\alpha \in A} \alpha(b(\xi)) \in \ell^2 - \bigoplus_{\alpha \in A} \mathcal{HS}(H_\alpha)$$

where $b: L_2(\mathbb{G}) \to L_1(\mathbb{G})$ and $\alpha(f) = (f \otimes \iota)(u^{\alpha})$.

If \mathbb{G} is a compact Kac algebra, $A := \operatorname{Irred}(\mathbb{G})$, then

$$\mathcal{F}: L_2(\mathbb{G}) \ni \xi \to \bigoplus_{\alpha \in A} \alpha(b(\xi)) \in \ell^2 - \bigoplus_{\alpha \in A} \mathcal{HS}(H_\alpha)$$

where $b: L_2(\mathbb{G}) \to L_1(\mathbb{G})$ and $\alpha(f) = (f \otimes \iota)(u^{\alpha})$.

Corollary (C-Kalantar '14)

Let $\mathbb G$ be a compact Kac algebra, and $\rho\in \mathcal T(L_2(\mathbb G))^+-\{0\}$. Then

$$arphi(s(D_
ho))\left(\sum_{lpha\in A}\,d_lpha\cdot {\sf rank}(\hat{D}^lpha)
ight)\,\geq\,{
m e}^{{\sf S}_{\sf vN}\left(rac{
ho}{{
m tr}(
ho)}
ight)}$$

where $s(D_{\rho}) = supp(\rho|_{L_{\infty}(\mathbb{G})})$. In particular, for $\xi \in L_{2}(\mathbb{G}) - \{0\}$,

$$arphi(s(\omega_{\xi}))\left(\sum_{lpha\in A}d_{lpha}\cdot \mathsf{rank}(lpha(b(\xi))
ight)\geq 1$$

Outline

Background

Main Result

Non-unimodular Setting

$$H(f) = -S(f, \varphi)$$
, the **relative entropy**.

$$H(f) = -S(f, \varphi)$$
, the **relative entropy**.

Let $M \subseteq \mathcal{B}(H)$, and let ψ be a n.s.f. weight on M'. Then

$$\mathcal{D}(H,\psi) := \{ \xi \in H \mid \exists R_{\xi} \in \mathcal{B}(H_{\psi}, H) \text{ s.t. } R_{\xi} \Lambda_{\psi}(x') = x'\xi \}$$

$$H(f) = -S(f, \varphi)$$
, the **relative entropy**.

Let $M \subseteq \mathcal{B}(H)$, and let ψ be a n.s.f. weight on M'. Then

$$\mathcal{D}(H,\psi) := \{ \xi \in H \mid \exists R_{\xi} \in \mathcal{B}(H_{\psi},H) \text{ s.t. } R_{\xi} \Lambda_{\psi}(x') = x'\xi \}$$

It follows that $R_{\xi}R_{\xi}^* \in M$ for all $\xi \in \mathcal{D}(H, \psi)$.

$$H(f) = -S(f, \varphi)$$
, the **relative entropy**.

Let $M \subseteq \mathcal{B}(H)$, and let ψ be a n.s.f. weight on M'. Then

$$\mathcal{D}(H,\psi) := \{ \xi \in H \mid \exists R_{\xi} \in \mathcal{B}(H_{\psi},H) \text{ s.t. } R_{\xi} \Lambda_{\psi}(x') = x'\xi \}$$

It follows that $R_{\xi}R_{\xi}^* \in M$ for all $\xi \in \mathcal{D}(H, \psi)$.

For any normal semi-finite weight φ on M, the **spatial derivative** $d\varphi/d\psi$ is the largest positive self-adjoint operator $T \in \mathcal{L}(H)$ s.t.

$$\varphi(R_{\xi}R_{\xi}^{*}) = \begin{cases} \left\| T^{1/2}\xi \right\|^{2} & \text{if } \xi \in \mathcal{D}(H,\psi) \cap \mathcal{D}(T^{1/2}), \\ +\infty & \text{otherwise.} \end{cases}$$

Let $\mathbb{G} = (L_{\infty}(\mathbb{G}), \Gamma, \varphi, \psi)$ be an arbitrary LCQG. Then any state $f \in L_1(\mathbb{G})$ satisfies $f = \omega_{\xi}|_{L_{\infty}(\mathbb{G})}$. We define the **entropy of f** by

$$H(f) := -S(f, \varphi) = -\left\langle \log\left(\frac{d\omega'_{\xi}}{d\varphi}\right)\xi, \xi\right\rangle,$$

where $\omega'_{\xi}=\omega_{\xi}|_{L_{\infty}(\mathbb{G})'}$. Definition is independent of the representing vector ξ .

Let $\mathbb{G} = (L_{\infty}(\mathbb{G}), \Gamma, \varphi, \psi)$ be an arbitrary LCQG. Then any state $f \in L_1(\mathbb{G})$ satisfies $f = \omega_{\xi}|_{L_{\infty}(\mathbb{G})}$. We define the **entropy of f** by

$$H(f) := -S(f, \varphi) = -\left\langle \log\left(\frac{d\omega'_{\xi}}{d\varphi}\right)\xi, \xi\right\rangle,$$

where $\omega'_{\xi}=\omega_{\xi}|_{L_{\infty}(\mathbb{G})'}$. Definition is independent of the representing vector ξ . Moreover,

$$H(\omega_{\xi}) = H'(\omega'_{J\xi}) = -\Big\langle \log\Big(\frac{d\omega_{J\xi}}{d\varphi'}\Big)J\xi, J\xi\Big
angle.$$

Let $\mathbb{G} = (L_{\infty}(\mathbb{G}), \Gamma, \varphi, \psi)$ be an arbitrary LCQG. Then any state $f \in L_1(\mathbb{G})$ satisfies $f = \omega_{\xi}|_{L_{\infty}(\mathbb{G})}$. We define the **entropy of f** by

$$H(f) := -S(f, \varphi) = -\left\langle \log\left(\frac{d\omega'_{\xi}}{d\varphi}\right)\xi, \xi\right\rangle,$$

where $\omega'_{\xi}=\omega_{\xi}|_{L_{\infty}(\mathbb{G})'}$. Definition is independent of the representing vector ξ . Moreover,

$$H(\omega_{\xi}) = H'(\omega'_{J\xi}) = -\Big\langle \log\Big(\frac{d\omega_{J\xi}}{d\varphi'}\Big)J\xi, J\xi\Big
angle.$$

Ex: $\mathbb{G}_a=(L_\infty(G),\Gamma_a,\varphi_a,\psi_a)$, $\xi\in L_2(G)$, $\|\xi\|_2=1$, then $\frac{d\omega'_\xi}{d\varphi}=M_{|\xi|^2}$ and

$$H(|\xi|^2) = -\int_G |\xi(s)|^2 \log |\xi(s)|^2 ds.$$

Theorem (Kunze '58; Terp '80)

Let G be a locally compact group, and let $\xi \in L_2(G)$. The **Fourier Transform** of ξ is the closed densely defined operator on $L_2(G)$ given by

$$\mathcal{F}(\xi)\eta = \xi * \Delta^{1/2}\eta,$$

where $\mathcal{D}(\mathcal{F}(\xi)) = \{ \eta \in L_2(G) \mid \xi * \Delta^{1/2} \eta \in L_2(G) \}$. Moreover, $\mathcal{F}: L_2(G) \to L_2(VN(G), \varphi'_s)$ is an isometric isomorphism.

Theorem (Kunze '58; Terp '80)

Let G be a locally compact group, and let $\xi \in L_2(G)$. The **Fourier Transform** of ξ is the closed densely defined operator on $L_2(G)$ given by

$$\mathcal{F}(\xi)\eta = \xi * \Delta^{1/2}\eta,$$

where $\mathcal{D}(\mathcal{F}(\xi)) = \{ \eta \in L_2(G) \mid \xi * \Delta^{1/2} \eta \in L_2(G) \}$. Moreover, $\mathcal{F}: L_2(G) \to L_2(VN(G), \varphi_s')$ is an isometric isomorphism.

Ex: $\mathbb{G}_s = (VN(G), \Gamma_s, \varphi_s), \ \xi \in C_c(G), \ \|\xi\|_2 = 1.$ If φ_s' is the Plancherel weight on VN(G)', then one can show that

$$\frac{d\omega_{J\xi}}{d\varphi_s'}=|\mathcal{F}(\xi)|^2.$$

Theorem (Kunze '58; Terp '80)

Let G be a locally compact group, and let $\xi \in L_2(G)$. The **Fourier Transform** of ξ is the closed densely defined operator on $L_2(G)$ given by

$$\mathcal{F}(\xi)\eta = \xi * \Delta^{1/2}\eta,$$

where $\mathcal{D}(\mathcal{F}(\xi)) = \{ \eta \in L_2(G) \mid \xi * \Delta^{1/2} \eta \in L_2(G) \}$. Moreover, $\mathcal{F}: L_2(G) \to L_2(VN(G), \varphi'_s)$ is an isometric isomorphism.

Ex: $\mathbb{G}_s = (VN(G), \Gamma_s, \varphi_s), \ \xi \in C_c(G), \ \|\xi\|_2 = 1.$ If φ_s' is the Plancherel weight on VN(G)', then one can show that

$$\frac{d\omega_{J\xi}}{d\varphi_s'}=|\mathcal{F}(\xi)|^2.$$

Thus, $H(\omega_{\xi}) = H'(\omega'_{J\xi}) = -\langle \log(|\mathcal{F}(\xi)|^2)J\xi, J\xi \rangle.$

Uncertainty Principle for Locally Compact Groups

Theorem (C-Kalantar '14)

Let G be a locally compact group and let $\xi \in L^2(G)$ with $\|\xi\|_2 = 1$. If $H(\omega_{\xi})$ and $\hat{H}(\omega_{\mathcal{F}\xi})$ are finite, then

$$H(\omega_{\xi}) + \hat{H}(\omega_{\mathcal{F}\xi}) \ge -\log \|\Delta^{-1/2}\xi\|_2^2$$

where for $\xi \notin \mathcal{D}(\Delta^{-1/2})$ we let $\|\Delta^{-1/2}\xi\|_2 = \infty$.

Thank you!