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Equivalent notions of the Haagerup property

A group G has the Haagerup property if:

There exists a net of positive definite normalized functions in C0(G)
converging to 1 pointwise

G admits a proper affine action on a real Hilbert space

There exists a real, proper, conditionally negative function on G
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Amenable groups

Fn (Haagerup, ’78/’79)

SL(2,Z)

Haagerup property + Property (T) implies compactness
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HAP for von Neumann algebras

Definition Haagerup property (Choda ’83, Jolissaint ’02)

A finite von Neumann algebra (M, τ) has HAP if there exists a net (Φi )i of cp
maps Φi : M → M such that:

τ ◦ Φi ≤ τ
The map Ti : xΩτ 7→ Φi (x)Ωτ is compact

Ti → 1 strongly

Remark:

In the definition (M, τ) has HAP than Φi ’s can be chosen unital and such
that τ ◦ Φi = τ .
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HAP for groups versus HAP for vNA’s

Theorem (Choda ’83)

A discrete group G has HAP⇔ The group von Neumann algebra L(G) has HAP

Idea of the proof: (Haagerup)

⇒ ϕi the positive definite functions⇒ Φi : L(G)→ L(G) : λ(f ) 7→ λ(ϕi f ).

⇐ Φi cp maps⇒ use the ‘averaging technique’:

ϕi (s) = τ(λ(s)∗Φi (λ(s)).
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Definition Haagerup property

A σ-finite von Neumann algebra (M, ϕ) has HAP if there exists a net (Φi )i of cp
maps Φi : M → M such that:

ϕ ◦ Φi ≤ ϕ
The map Ti : xΩϕ 7→ Φi (x)Ωϕ is compact

Ti → 1 strongly
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Definition Haagerup property (MC, Skalski)

An arbitrary von Neumann algebra (M, ϕ) with nsf weight ϕ has HAP if there
exists a net (Φi )i of cp maps Φi : M → M such that:

ϕ ◦ Φi ≤ ϕ
The map Ti : Λϕ(x) 7→ Λϕ(Φi (x)) is compact

Ti → 1 strongly

Remark:
In our approach it is essential to treat weights instead of states.
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Motivating examples

Brannan ’12: Free orthogonal and free unitary quantum groups have HAP.

Kac case⇒ Semi-finite.

De Commer, Freslon, Yamashita ’13:

Non-Kac case of this result⇒ Non-semi-finite.

Houdayer, Ricard ’11: Free Araki-Woods factors.
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Problems arising?

Definition Haagerup property

An arbitrary von Neumann algebra (M, ϕ) with nsf weight ϕ has HAP if there
exists a net (Φi )i of cp maps Φi : M → M such that:

ϕ ◦ Φi ≤ ϕ
The map Ti : Λϕ(x) 7→ Λϕ(Φi (x)) is compact

Ti → 1 strongly

Questions:

Does the definition depend on the choice of the weight?

Can the maps Φi be taken ucp and ϕ-preserving?

Can we always assume that Φi ◦ σϕt = σϕt ◦ Φi ?



Introduction

HAP for von
Neumann
algebras

HAP for
arbitrary von
Neumann
algebras

Equivalent
notions

Quantum
groups

Homological
properties of
quantum
groups

Weight independence

Theorem (MC, A. Skalski)

The HAP is independent of the choice of the n.s.f. weight: (M, ϕ) has HAP iff
(M, ψ) has HAP.

Idea of the proof:

Treat the semi-finite case using Radon-Nikodym derivatives.

ϕ(h · h) = ψ( · )

Let ϕ have cp maps Φi . Then formally,

Φ′i ( · ) := h−1Φi (h · h)h−1,

will yield the cp maps for ψ.

Let α be any ϕ-preserving action of R on (M, ϕ). If (M o R, ϕ̂) has HAP
then (M, ϕ) has HAP.

Use crossed product duality to conclude the converse.

Conclude from the semi-finite case (Step 1).
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Crossed products

Consequence

Let α be any action of a group G on M.

If M oα G has HAP then so has M

If M has HAP and G amenable then M oα G has HAP

Comments:
M oα G has HAP implies that G has HAP in case G discrete

Z2 o SL(2,Z) does not have HAP whereas SL(2,Z) has HAP and is weakly
amenable
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Markov property

Let M be a von Neumann algebra with normal state ϕ. We say that a map
Φ : M → M is Markov if it is a ucp ϕ-preserving map.

Theorem (MC, A. Skalski)

The following are equivalent:

(M, ϕ) has HAP

(M, ϕ) has HAP and the cp maps Φi are Markov

Corollary: If (M1, ϕ1) and (M2, ϕ2) have HAP then so does the free product
(M1 ?M2, ϕ1 ? ϕ2). (following Boca ’93).
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Modular HAP

We say that (M, ϕ) has the modular HAP if the cp maps Φi commute with
σt , t ∈ R.

Theorem (MC, Skalski)

(M, ϕ) is the von Neumann algebra of a compact quantum group with Haar state
ϕ. TFAE:

(M, ϕ) has HAP

(M, ϕ) has the modular HAP
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Questions:

Does the definition depend on the choice of the weight? NO

Can the maps Φi be taken ucp and ϕ-preserving (Markov)? YES if ϕ is a
state.

Can we always assume that Φi ◦ σϕt = σϕt ◦ Φi ? YES in every known
example.

Question: Can we find Markov maps in case (B(H),Tr)?
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Equivalent Haagerup properties

Haagerup property via standard forms (Okayasu-Tomatsu) see also [COST,
C.R. Adad. Sci. Paris 2014]

Symmetric Haagerup property

An arbitrary von Neumann algebra (M, ϕ) with nsf weight ϕ has symmetric HAP if
there exists a net (Φi )i of cp maps Φi : M → M such that:

ϕ ◦ Φi ≤ ϕ

The map Ti : D
1
4
ϕxD

1
4
ϕ 7→ D

1
4
ϕΦi (x)D

1
4
ϕ is compact

Ti → 1 strongly

or Φi → 1 in the point σ-weak topology
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Definition
Let (Φt )t≥0 be a semigroup of cp maps on M. (Φt )t≥0 is called Markov if Φt , t ≥ 0

is Markov. It is called KMS-symmetric if Tt : D
1
4
ϕxD

1
4
ϕ 7→ D

1
4
ϕxD

1
4
ϕ is self-adjoint. It is

called immediately L2-compact if Tt , t > 0 is compact.

Theorem: HAP via Markov semigroups (MC, Skalski)

M von Neumann algebra with normal state ϕ. TFAE:

(M, ϕ) has HAP.

There exists an immediately L2-compact KMS-symmetric Markov semigroup
(Φt )t≥0 on M.

Comment: Proof via symmetric HAP + ideas of Jolissaint-Martin ’04/Cipriani
Sauvageot ’03.
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The next result describes the Haagerup property in terms of quantum Dirichlet
forms. This is the non-commutative analogue of the existence of a conditionally
negative definite function on a discrete group.

Theorem (MC, Skalski)

M von Neumann algebra with normal state ϕ. The following are equivalent:

M has HAP

L2(M, ϕ) admits an orthonormal basis {en}n and a non-decreasing
sequence of non-negative numbers {λn}n such that limn λn →∞ and

Q(ξ) =
∞∑

n=1

λn|〈en, ξ〉|2, ξ ∈ Dom(Q),

where Dom(Q) = {ξ ∈ L2(M, ϕ) |
∑

n λn|〈en, ξ〉|2 <∞} defines a
conservative completely Dirichlet form.
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Locally compact quantum groups (Kustermans, Vaes)

A von Neumann algebraic quantum group G consists of:

a von Neumann algebra L∞(G);

a comultiplication, i.e. a unital normal ∗-homomorphism
∆: L∞(G)→ L∞(G)⊗ L∞(G) such that (∆⊗ ι)∆ = (ι⊗∆)∆;

two normal semi-finite faithful Haar weights ϕ,ψ : L∞(G)+ → [0,∞], i.e.

(ι⊗ ϕ)∆(x) = ϕ(x)1, ∀x ∈ L∞(G)+,

(ψ ⊗ ι)∆(x) = ψ(x)1, ∀x ∈ L∞(G)+.

Classical examples:
L∞(G) with ∆G(f )(x , y) = f (xy) and ϕ(f ) =

∫
f (x)dl x Haar measure.

VN(G), ∆(λx ) = λx ⊗ λx , ϕ(λf ) = f (e) Plancherel weight.
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Haagerup property for quantum groups (Daws, Fima, Skalski, White)

A quantum group G has the Haagerup property if:

c0(G) admits an approximate unit build from ‘positive definite functions’ [DS]

G admits a mixing representation weakly containing the trivial representation

G admits a proper real cocycle

[DS] Daws, Salmi: Completely positive definite functions and Bochner’s theorem
for locally compact quantum groups, ’13.

Open question: G has HAP if and only if L∞(Ĝ) has HAP
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Theorem (MC)

The quantum group SUq(1, 1) (=non-compact+non-discrete+non-amenable) has
the following properties:

HAP

Weakly amenable

Coamenable

Comment: Proof based on Plancherel decomposition of the left multiplicative
unitary by Groenevelt-Koelink-Kustermans ’10 + De Canniere-Haagerup ’85.
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Theorem Groenevelt-Koelink-Kustermans (+ MC)

Part of the unitary corep’s that are weakly contained in the left regular
representation of SUq(1, 1) and which admit T-invariant vectors are partly indexed
by the following topological space (black part). (In fact [G-K-K] find a complete
Plancherel decomposition.)

·
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Definition: weak amenability

A quantum group G is called weakly amenable if there exists a net ai ∈ A(G) such
that,

‖ai x − x‖A(G) → 0, x ∈ A(G),

and ‖ai‖M0(A(G)) ≤ Λ.

One can find a sequence ai ∈ A(G)+ commuting with the scaling group τ
such that,

‖ai x − x‖C0(G) → 0, x ∈ A(G),

and ‖ai‖M0(A(G)) ≤ Λ.

Then work to turn C0(G)-norm to A(G)-norm. Remark:

‖ · ‖C0(G) ≤ ‖ · ‖A(G)
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Amenability

Definition:
Let A be a completely contractive Banach algebra and X a cb
A− A-bimodule. A cb map D : A→ X is a derivation if the Leibniz rule
holds:

D(ab) = aD(b) + D(a)b.

Derivations Dx (a) = ax − xa with x ∈ X are called inner.

Definition:

A is operator amenable if every cb derivation D : A→ X∗ is inner for every
cb A− A-bimodule X .
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Amenability

Let G be a compact quantum group. L1(G) is a cc Banach algebra with
convolution product ∆∗.

Theorem (Z.-J. Ruan ’96): Let G be a compact Kac algebra. The following are
equivalent:

1 L1(G) is operator amenable;

2 L1(G) is coamenable (it has a bounded approximate identity);

3 Ĝ is amenable.

Theorem (R. Tomatsu ’06): In Ruan’s theorem also (2)⇔ (3), without the
assumption that G is Kac.

Question 1: In Ruan’s theorem, also (1)⇔ (2), without the assumption that G is
Kac?
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Theorem (MC, H.H. Lee, E. Ricard)

Let G be a compact quantum group. If L1(G) is operator amenable, then it is of
Kac type.

Corollary: Let G be a compact quantum group. Then, L1(G) is operator
amenable if and only if Ĝ is amenable and G is of Kac type.

Comment: Proof uses operator spaces in an essential way: manipulations with
column and row Hilbert spaces.
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