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This course and these notes assume familiarity with some basic facts about
C∗-algebras, and material from a graduate functional analysis course. They are
a considerable expansion of most of Chapter 1 of my book [4] with Christian Le
Merdy. The presentation here is thus greatly shaped by that book (indeed some
is copied verbatim), and of course thanks go to Christian for permitting me to do
this.

Each of the four chapters roughly corresponds to one lecture. Since these notes
were aimed at the students in the class, I have not yet taken the trouble to compile
an adequate bibliography, or to make sure that results are always attributed, etc.
I thank Alex Bearden for finding many typos which have been corrected in the
current draft.



Chapter 1

Lectures 1-2 (Operator
spaces)

1.1 Introduction

Banach spaces or normed linear spaces are ‘just’ the linear subspaces of commutative
C∗-algebras, while operator spaces are the linear subspaces of general C∗-algebras.

The importance of operator space theory may perhaps be best stated as fol-
lows: it is a generalization of Banach spaces which is particularly appropriate for
studying ‘noncommutative’ or ‘quantized’ spaces, and ‘linear’ problems arising in
noncommutative situations. They are particularly appropriate for studying spaces
or algebras of operators on Hilbert space. Thus the field of operator spaces provides
a bridge from the world of Banach and function spaces, to the world of spaces of
operators on a Hilbert space, and of ‘noncommutative mathematics’.

Crudely put, when generalizing classical arguments in functional analysis, one
should often expect C∗-algebra theory to replace topology, von Neumann algebra
to replace arguments using measure and integrals, and operator space theory to
replace Banach space techniques.

After pioneering work by Arveson, Haagerup, and Wittstock, operator spaces
were developed by Effros and Ruan, who were soon joined by B and Paulsen, Pisier,
Junge, and many others.

1.2 Basic facts, examples, and constructions

1.2.1 (Matrix notation) Fix m,n ∈ N. If X is a vector space, then so is Mm,n(X),
the set of m × n matrices with entries in X. This may also be thought of as the
algebraic tensor product Mm,n ⊗X, where Mm,n = Mm,n(C). We write In for the
identity matrix of Mn = Mn,n. We write Mn(X) = Mn,n(X), Cn(X) = Mn,1(X)
and Rn(X) = M1,n(X).

If x is a matrix, then xij or xi,j denotes the i-j entry of x, and we write x as
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[xij ] or [xi,j ]i,j . We write (Eij)ij for the usual (matrix unit) basis of Mm,n (we
allow m,n infinite here too). We write A 7→ At for the transpose on Mm,n, or more
generally on Mm,n(X). We will sometimes meet large matrices with row and col-
umn indexing that is sometimes cumbersome. For example, a matrix [a(i,k,p),(j,l,q)]
is indexed on rows by (i, k, p) and on columns by (j, l, q), and may also be written
as [a(i,k,p),(j,l,q)](i,k,p),(j,l,q) if additional clarity is needed. To illustrate this nota-
tion, the reader may want to write down the matrix [δi,`δkj ](i,k),(j,`). Here δi,j is
Kronecker’s delta.

1.2.2 (Norms of matrices with operator entries) Clearly Mn(B(H)) is a C∗-
algebra for any Hilbert space H, with the norm that it gets via the ∗-isomorphism
Mn(B(H)) ∼= B(H(n)). Reviewing, recall that H(n) is the Hilbert space direct sum

of m copies of H, and the norm of a vector ζ = (ζk) there is (
∑n
k=1 ‖ζk‖2)

1
2 . This

∗-isomorphism is the map taking a matrix [Tij ] ∈ Mn(B(H)) to the operator from
H(n) to H(n) :

T11 T12 · · · T1n

T21 T22 · · · T2n

· · · · · ·
· · · · · ·
Tn1 Tn2 · · · Tnn



ζ1
ζ2
·
·
ζn

 =


∑
k T1kζk∑
k T2kζk
·
·∑

k Tnkζk

 .
Thus Mn(B(H)) is a C∗-algebra, and [Tij ] ∈Mn(B(H)) has a natural norm:

‖[Tij ]‖n = sup{‖[Tij ]
→
ζ ‖ :

→
ζ ∈ H(n), ‖

→
ζ ‖ ≤ 1}.

Using the principle that ‖ξ‖ = sup{|〈ξ, η〉| : η ∈ Ball(K)} in any Hilbert space K,
we deduce that

‖[Tij ]‖n = sup{|
∑
i,j

< Tijζj , ηi > | :
→
ζ = (ζi),

→
η = (ηi) ∈ Ball(H(n))}.

We can also view Mn(B(H)) as the spatial tensor product Mn ⊗ B(H) (we will
review the spatial tensor product later).

Similar identities hold for rectangular matrices. Indeed if m,n ∈ N, and K,H
are Hilbert spaces, then we always assign Mm,n(B(K,H)) the norm (written ‖·‖m,n)
ensuring that

Mm,n(B(K,H)) ∼= B(K(n), H(m)) isometrically (1.1)

via the natural algebraic isomorphism.

1.2.3 (Completely bounded maps) Suppose that X and Y are vector spaces and
that u : X → Y is a linear map. For a positive integer n, we write un for the
associated map [xij ] 7→ [u(xij)] from Mn(X) to Mn(Y ). This is often called the
(nth) amplification of u, and may also be thought of as the map IMn

⊗u on Mn⊗X.
Similarly one may define um,n : Mm,n(X)→Mm,n(Y ). If each matrix space Mn(X)
and Mn(Y ) has a given norm ‖ · ‖n, and if un is an isometry for all n ∈ N, then
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we say that u is completely isometric, or is a complete isometry. Similarly, u is
completely contractive (resp. is a complete quotient map) if each un is a contraction
(resp. takes the open ball of Mn(X) onto the open ball of Mn(Y )). A map u is
completely bounded if

‖u‖cb
def
= sup

{
‖[u(xij)]‖n : ‖[xij ]‖n ≤ 1, all n ∈ N

}
<∞.

As in the Banach space case, it is easy to prove that ‖u+ v‖cb ≤ ‖u‖cb + ‖v‖cb,
and ‖λu‖cb = |λ|‖u‖cb for a scalar λ, and so on. Compositions of completely
bounded maps are completely bounded, and one has the expected relation ‖u ◦
v‖cb ≤ ‖u‖cb‖v‖cb. If u : X → Y is a completely bounded linear bijection, and if its
inverse is completely bounded too, then we say that u is a complete isomorphism.
In this case, we say that X and Y are completely isomorphic and we write X ≈ Y .
If, further, u and u−1 are completely contractive, then just as in the Banach space
case they are complete isometries.

1.2.4 (Operator spaces) A concrete operator space is a (usually closed) linear sub-
space X of B(K,H), for Hilbert spaces H,K (indeed the case H = K usually
suffices, via the canonical inclusion B(K,H) ⊂ B(H ⊕K)). However we will want
to keep track too of the norm ‖ · ‖m,n that Mm,n(X) inherits from Mm,n(B(K,H)),
for all m,n ∈ N. We write ‖ · ‖n for ‖ · ‖n,n; indeed when there is no danger of
confusion, we simply write ‖[xij ]‖ for ‖[xij ]‖n.

An abstract operator space is a pair (X, {‖ · ‖n}n≥1), consisting of a vector space
X, and a norm on Mn(X) for all n ∈ N, such that there exists a linear complete
isometry u : X → B(K,H). In this case we call the sequence {‖ · ‖n}n an operator
space structure on the vector space X. An operator space structure on a normed
space (X, ‖ · ‖) will usually mean a sequence of matrix norms as above, but with
‖ · ‖ = ‖ · ‖1.

Clearly subspaces of operator spaces are again operator spaces. We often identify
two operator spaces X and Y if they are completely isometrically isomorphic. In
this case we often write ‘X ∼= Y completely isometrically’, or say ‘X ∼= Y as operator
spaces’. Sometimes we simply write X = Y .

1.2.5 (C∗-algebras) If A is a C∗-algebra, a closed ∗-subalgebra of B(H), then
Mn(A) may be viewed as a a closed ∗-subalgebra of Mn(B(H)) ∼= B(H(n)). Thus
Mn(A) is a C∗-algebra. A basic fact about C∗-algebras is that a one-to-one ∗-
homomorphism between C∗-algebras is isometric. Thus there can be at most one
norm on a ∗-algebra for which that ∗-algebra is a C∗-algebra. Thus the ∗-algebra
Mn(A) has a unique norm with respect to which it is a C∗-algebra. With respect
to these matrix norms, A is an operator space. Indeed A is a concrete operator
space in B(H). We call this the canonical operator space structure on a C∗-algebra.
If the C∗-algebra A is commutative, with A = C0(Ω) for a locally compact space
Ω, and then these matrix norms are determined via the canonical isomorphism
Mn(C0(Ω)) = C0(Ω;Mn). Explicitly, if [fij ] ∈Mn(C0(Ω)), then:

‖[fij ]‖n = sup
t∈Ω

∥∥[fij(t)]
∥∥. (1.2)
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To see this, note that by the above one only needs to verify that (1.2) does indeed
define a C∗-norm on Mn(C0(Ω)). Clearly the right hand side of (1.2) is a finite
number, since ‖[fij(t)]‖ ≤ n2 maxi,j |fij(t)|, and each of the functions fij is bounded
on Ω. Also, it is easy to check that (1.2) does define a norm. To see that (1.2) is a
Banach algebra, note that

‖[fi,j ][gi,j ]‖ = sup{‖[fi,j(t)][gi,j(t)]‖ : t ∈ Ω}
≤ sup{‖[fi,j(t)]‖ : t ∈ Ω} sup{‖[gi,j(t)]‖ : t ∈ Ω}
= ‖[fi,j ]‖‖[gi,j ]‖.

So Mn(C0(Ω)) is a Banach algebra. We check the C∗-identity:

‖[fj,i][fi,j ]‖n = sup{‖[fj,i(t)][fi,j(t)]‖ : t ∈ Ω}
= sup{‖[fi,j(t)]∗[fi,j(t)]‖ : t ∈ Ω}
= sup{‖[fi,j(t)]‖2 : t ∈ Ω}
= sup{‖[fi,j(t)]‖Mn

}2.

Thus Mn(C0(Ω)) is a C∗-algebra.

Proposition 1.2.6. For a homomorphism π : A → B between C∗-algebras, the
following are equivalent: (i) π is contractive, (ii) π is completely contractive, and
(iii) π is a ∗-homomorphism. If these hold, then π(A) is closed, and π is a complete
quotient map onto π(A); moreover π is one-to-one if and only if it is completely
isometric.

Proof. (ii) ⇒ (i) Obvious.

(iii)⇒ (ii) Note that πn is a ∗-homomorphism, and so contractive by C∗-algebra
theory. So π is completely contractive.

Clearly if π is completely isometric it is one-to-one. Conversely, if π is one-to-one
then πn is a one-to-one ∗-homomorphism and so isometric by C∗-algebra theory.
Thus π is completely isometric.

By C∗-algebra theory., any ∗-homomorphism π is a 1-quotient map (that is it
maps the unit ball onto the unit ball) onto its (closed) range. Similarly, πn is a
1-quotient map, so that π is a complete quotient map.

(i)⇒ (iii) This is a well fact about C∗-algebras that we shall not prove here.

1.2.7 (Maps into a commutative C∗-algebra) If [aij ] ∈Mn then

‖[aij ]‖ = sup
{ ∣∣∣∑

ij

aijzjwi

∣∣∣ : z = [zj ], w = [wi] ∈ Ball(`2n)
}
.

Moreover, if aij ∈ B(H), for a Hilbert space H, then

‖[aij ]‖ ≥ sup
{
‖
∑
ij

aijzjwi‖ : z = [zj ], w = [wi] ∈ Ball(`2n)
}
.
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Indeed, if one uses the fact that ‖T‖ = sup {|〈Tζ, η〉| : ζ, η ∈ Ball(H)}, for any
T ∈ B(H), then one sees that the right side of the last centered formula is

sup{

∣∣∣∣∣∣∣∣∣
〈

[ai,j ]


z1ζ
z2ζ

...
znζ

 ,

w1η
w2η

...
wnη


〉∣∣∣∣∣∣∣∣∣ : ζ, η ∈ Ball(H),−→z ,−→w ∈ Ball(l2n)},

which is dominated by ‖[ai,j ]‖.
Using these formulae, it is easy to see that any continuous linear functional

ϕ : X → C on an operator space X is completely bounded, with ‖ϕ‖ = ‖ϕ‖cb. We
have

‖[ϕ(xi,j)]‖n = sup


∣∣∣∣∣∣
∑
i,j

ϕ(xi,j)zjwi

∣∣∣∣∣∣ : −→z ,−→w ∈ Ball(l2n)


= sup


∣∣∣∣∣∣ϕ
∑

i,j

xi,jzjwi

∣∣∣∣∣∣ : −→z ,−→w ∈ Ball(l2n)


≤ ‖ϕ‖ sup


∥∥∥∥∥∥
∑
i,j

xi,jzjwi

∥∥∥∥∥∥ : −→z ,−→w ∈ Ball(l2n)


≤ ‖ϕ‖ ‖[xi,j ]‖.

Hence ‖ϕn‖ ≤ ‖ϕ‖, and so ‖ϕ‖cb = ‖ϕ‖.
Next we claim that ‖u‖ = ‖u‖cb for any bounded linear map u from an operator

space into a commutative C∗-algebra. We can assume that the commutative C∗-
algebra is C0(Ω), for a locally compact Ω. For fixed w ∈ Ω let φw ∈ X∗ be defined
by φw(x) = u(x)(w). Note that |φw(x)| = |u(x)(w)| ≤ ‖u(x)‖ ≤ ‖u‖‖x‖, if x ∈ E.
Thus ‖φw‖ ≤ ‖u‖. We then have

‖[u(xi,j)(w)]‖ = ‖[φw(xi,j)]‖ ≤ ‖φw‖‖[xi,j ]‖ ≤ ‖u‖‖[xi,j ]‖

Thus by equation (1.2), it follows that ‖[u(xi,j)]‖ ≤ ‖u‖‖[xi,j ]‖, and so ‖u‖n ≤ ‖u‖.
Since this is true for all n ∈ N we have ‖u‖cb = ‖u‖.

1.2.8 (Properties of matrix norms) If K,H are Hilbert spaces, and if X is a
subspace of B(K,H), then there are certain well-known properties satisfied by the
matrix norms ‖ · ‖m,n described in 1.2.2. Most important for us are the following
two.

(R1) ‖αxβ‖n ≤ ‖α‖‖x‖n‖β‖, for all n ∈ N and all α, β ∈ Mn, and x ∈ Mn(X)
(where multiplication of an element of Mn(X) by an element of Mn is defined
in the obvious way).

(R2) For all x ∈Mm(X) and y ∈Mn(X), we have∣∣∣∣∣∣∣∣[ x 0
0 y

]∣∣∣∣∣∣∣∣
m+n

= max{‖x‖m, ‖y‖n}.
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We often write x⊕ y for the matrix in (R2).
To see (R1), define

α̃ =

 α11IH α12IH . . . α1nIH
...

αn1IH αn2IH . . . αnnIH

 = α⊗ IH ∈Mn ⊗B(H) = Mn(B(H)).

Similarly define β̃ = β ⊗ IH ∈ Mn(B(H)). Note that ‖α̃‖ = ‖α‖ since the ∗-
homomorphism Mn −→ Mn(B(H)) taking α 7→ α̃ is one-to-one and hence is a
(complete) isometry. Also αxβ = α̃xβ̃ for all x ∈Mn(B(H)). Thus

‖αxβ‖ = ‖α̃xβ̃‖ ≤ ‖α̃‖‖x‖‖β̃‖ = ‖α‖‖x‖‖β‖

since Mn(B(H)) is a Banach algebra. This proves (R1).
To prove (R2), note that if a = [In : 0], b = [In : 0]t, then x = a(x⊕y)b (using the

notation after the statement of (R2)). If we let ã = [In ⊗ IH : 0] ∈Mn,n+m(B(H))
(that is, ã is an n × (n + m) matrix consisting of all zero entries except for an
IH in the i-i entry for i = 1, · · · , n), and if b̃ = ãt, then as in the proof of (R1),
x = ã(x⊕ y)b̃. Hence

‖x‖n = ‖ã(x⊕ y)b̃‖n ≤ ‖ã‖‖x⊕ y‖m+n‖b̃‖.

Note that ‖ã‖ = ‖ãã∗‖ 1
2 = ‖I‖

1
2

Mn(B(H)) = 1, and similarly ‖b̃‖ = ‖b̃∗b̃‖ 1
2 = 1. Thus

‖x‖n ≤ ‖x ⊕ y‖m+n. Similarly, ‖y‖n ≤ ‖x ⊕ y‖m+n, so that max{‖x‖n, ‖y‖m} ≤
‖x⊕ y‖m+n.

For the other direction, let ξ ∈ Hn, η ∈ Hm, then

‖(x⊕ y)

[
ξ
η

]
‖2 = ‖

[
xξ
yη

]
‖2 = ‖xξ‖2 + ‖yη‖2 ≤ ‖x‖2‖ξ‖2 + ‖y‖2‖η‖2.

Clearly this is dominated by max{‖x‖, ‖y‖}2(‖ξ‖2 + ‖η‖2). Thus we deduce that
‖x⊕ y‖ ≤ max{‖x‖, ‖y|}. This proves (R2).

• It follows from (R1) that switching rows (or columns) of a matrix of operators
does not change its norm. Such switching is equivalent to multiplying by a ‘per-
mutation’ matrix U , namely a matrix which is all zeroes except for one 1 in each
row and each column. Such a matrix has norm 1, being unitary, and so

‖Ux‖ ≤ ‖x‖ ≤ ‖U∗Ux‖ ≤ ‖Ux‖.

• Adding (or dropping) rows of zeros or columns of zeros does not change the norm
of a matrix of operators. To see this, note that by the last paragraph we can
suppose all the zero rows (resp. columns) are at the bottom (resp. right) of the
matrix. But then it is elementary to see that the norm is unchanged if we remove
those zero rows or columns. For example∣∣∣∣∣∣∣∣[ x

0

]∣∣∣∣∣∣∣∣
m,n

= sup{‖xζ‖ : ζ ∈ Ball(H(n))} = ‖x‖.
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• By the principle in the last paragraph, we really only need to specify the norms
for square matrices, that is, the case m = n above, since Mm,n(X) may be viewed
as a subspace of Mk(X) where k = max{m,n}.

• If X is an operator space then the canonical algebraic isomorphisms

Mn(Mm(X)) ∼= Mm(Mn(X)) ∼= Mmn(X) (1.3)

are isometric. To see this, we can assume that X is a C∗-algebra, and then no-
tice that these three canonical algebraic isomorphisms are ∗-isomorphisms, hence
completely isometric.

• If X is an operator space then so is Mn(X), the latter with the operator space
structure for which the canonical isomorphism Mm(Mn(X)) ∼= Mmn(X) becomes
an isometry. One way to see this1 is to note that if X is a subspace of a C∗-
algebra A, then Mn(X) ⊂ Mn(A), and the latter is a C∗-algebra and hence is
an operator space whose matrix norms are the ones making Mm(Mn(A)) a C∗-
algebra. Then Mn(X), with the inherited matrix norms, is an operator space.
However, Mm(Mn(A)) is ∗-isomorphic to Mmn(A), and hence the norm making
Mm(Mn(A)) a C∗-algebra is exactly the one coming from the C∗-algebra Mmn(A)
via the canonical ∗-isomorphism Mm(Mn(A)) ∼= Mmn(A). Restricting the latter
isomorphism to Mm(Mn(X)) gives the desired assertion.

• If T ∈ B(K,H), and if zij ∈ C then ‖[zijT ]‖ = ‖T‖‖[zij ]‖. We leave this as an
exercise.

• It is easy to see from the above that maxi,j ‖xij‖ ≤ ‖[xij ]‖n ≤ nmaxi,j ‖xij‖.
It follows from this that a sequence (xk) of matrices in Mn(X) converges iff the
i-j entry of xk converges as k →∞ to the same entry of x, for all i, j.

1.2.9 (An operator that is not completely bounded) The canonical example of a
map that is not completely bounded is the ‘transpose’ map π(x) = xt on K = K(`2)

thought of as infinite matrices (via the prescription x → [〈x→ej ,
→
ei〉]). Note that π

is an isometric linear ∗-antiisomorphism. Indeed if
→
z = (zi),

→
w = (wi) ∈ Ball(`2),

then ∣∣∣ ∞∑
i,j=1

xjiziwj

∣∣∣ =
∣∣∣ ∞∑
i,j=1

xijwizj

∣∣∣ ≤ ‖[xij ]‖.
This says that π is a contraction, and by symmetry (since π−1 = π) it is an isometry.
If {Eij} is the usual basis for Mn and if ρ : Mn → K is the ‘top left corner
embedding’, i.e. ρ(x) = x ⊕ 0, then π is a one-to-one ∗-homomorphism, and hence
is a complete isometry. If xn = [ρ(Eji)] ∈Mn(K) then

‖xn‖n = ‖[ρ(Eji)]‖ = ‖[Eji]‖ = 1,

as can be seen by switching rows and columns of the matrix [Eji] to make it an
‘identity matrix’. On the other hand, πn(xn) = [ρ(Eij)], which has the same norm
as [Eij ]. Erasing zero rows and columns, the latter becomes an n× n matrix with
all entries 1. By the C∗-identity the latter has the same norm as x∗x = n, where

1Another way to see this is as in 1.2.23 (7).
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x is a column of n entries each equal to 1. Thus we have ‖πn(xn)‖n = n, and so
‖πn‖ ≥ n. Hence π is not completely bounded.

Conditions (R1) and (R2) in 1.2.8 are often called Ruan’s axioms. Ruan’s theo-
rem asserts that (R1) and (R2) characterize operator space structures on a vector
space. This result is fundamental to our subject in many ways. At the most pedes-
trian level, it is used frequently to check that certain abstract constructions with
operator spaces remain operator spaces. At a more sophisticated level, it is the
foundational and unifying principle of operator space theory. We now proceed to
Effros and Ruan’s proof of Ruan’s theorem. We omit the proof of the first lemma,
which is an application of the geometric Hahn-Banach theorem, and which may be
found on [p. 30,ERbook].

Lemma 1.2.10. If X is a vector space, and if ‖ · ‖n is a norm on Mn(X), for each
n ∈ N, satisfying (R1) and (R2), and if F ∈ Ball(Mn(X)∗), then there are states
ϕ,ψ on Mn with

|F (αxβ)| ≤ ϕ(αα∗)
1
2 ‖x‖ ψ(β∗β)

1
2 , α, β ∈Mn, x ∈Mn(X).

Lemma 1.2.11. If (X, {‖ · ‖n}) are as in the last lemma, if F ∈ Ball(Mn(X)∗),
and if H is the Hilbert space `2n, then there exist vectors ζ, η ∈ Ball(H(n)), and a
completely contractive u : X → B(H) ∼= Mn such that F = 〈un(·)ζ, η〉.

Proof. By the last lemma there are states ϕ,ψ onMn with |F (α∗xβ)| ≤ ϕ(α∗α)
1
2 ‖x‖ψ(β∗β)

1
2

for α, β ∈Mn. States on Mn are well understood. Indeed we can write

ϕ(x) =

n∑
k=1

〈xζk, ζk〉 = 〈(x⊗ In)ζ, ζ〉, x ∈Mn,

where ζ = (ζk) ∈ Ball(H(n)), where H = `2n. It follows that for any α ∈ Mn we
have

ϕ(α∗α) = 〈(α∗α⊗ In)ζ, ζ〉 = 〈(α⊗ In)ζ, (α⊗ In)ζ〉 = ‖(α⊗ In)ζ‖2.

Similarly, ψ(β∗β)
1
2 = ‖(β ⊗ In)η‖ for some η ∈ Ball(H(n)). The inequality in the

first line of the proof then reads

|F (α∗xβ)| ≤ ‖x‖ ‖(α⊗ In)ζ‖ ‖(β ⊗ In)η‖, α, β ∈Mn.

Let E = (Mn ⊗ In)η and K = (Mn ⊗ In)ζ, subspaces of Cn
2

. Fix x ∈ Mn(X) for
a moment and define g : E × K → C by g((β ⊗ In)η, (α ⊗ In)ζ) = F (α∗xβ), for
α, β ∈Mn. Thus

|g((β ⊗ In)η, (α⊗ In)ζ)| ≤ ‖x‖ ‖(α⊗ In)ζ‖ ‖(β ⊗ In)η‖, α, β ∈Mn.

It is easy to see from this that g is a well-defined and bounded sesquilinear form
on E ×K. By Hilbert space theory there exists an operator in B(E,K), which we
shall write as T (x), with ‖T (x)‖ ≤ ‖x‖, and

〈T (x)(β ⊗ In)η, (α⊗ In)ζ〉 = F (α∗xβ), x ∈Mn(X), α, β ∈Mn.
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It is easy to see that T is linear. Let P be the projection from Cn
2

onto E. Since E is
invariant under Mn⊗ In, it follows from basic operator theory that P ∈ (Mn⊗ In)′.

Let R = T (·)P ∈ B(Cn
2

) ∼= Mn2 . Then R ∈ B(Mn(X),Mn2) is a linear contraction,
since ‖R(x)‖ ≤ ‖T (x)‖‖P‖ ≤ ‖x‖. We have

〈R(x)η, ζ〉 = 〈T (x)(In ⊗ In)η, (In ⊗ In)ζ〉 = F (InxIn) = F (x), x ∈Mn(X).

Notice next that if α, β, γ ∈Mn then

〈T (xγ)(β ⊗ In)η, (α⊗ In)ζ〉 = F (α∗xγβ) = 〈T (x)(γβ ⊗ In)η, (α⊗ In)ζ〉.

That is,
〈T (xγ)h, k〉 = 〈T (x)(γ ⊗ In)h, k〉, h ∈ E, k ∈ K,

which means that T (xγ) = T (x)(γ ⊗ In). Hence

R(xγ) = T (xγ)P = T (x)(γ ⊗ In)P = R(x)(γ ⊗ In), γ ∈Mn.

A similar argument shows that R(γx) = (γ ⊗ In)R(x) for γ ∈ Mn. It is a simple
linear algebra exercise that if S : Mn(Y ) → Mn(Z) is a linear map, where Y,Z
are vector spaces, then S = un for a linear u : Y → Z iff S(αxβ) = αS(x)β
for all x ∈ Mn(Y ) and α, β ∈ Mn. Hence R = un for some u : X → Mn with
‖un‖ = ‖R‖ ≤ 1. By Exercise 5 at the end of this section, this forces ‖um‖ ≤ 1 for
all m ≥ n, so that u is completely contractive.

Thus 〈un(x)η, ζ〉 = 〈R(x)η, ζ〉 = F (x) for all x ∈Mn(X).

Corollary 1.2.12. If (X, {‖ · ‖n}) are as in the last lemma, and if x ∈ Mn(X),
then there exists a completely contractive u : X →Mn such that ‖un(x)‖ = ‖x‖n.

Proof. By the Hahn–Banach theorem there exists F ∈ Ball(Mn(X)∗) with |F (x)| =
‖x‖n. By the last lemma, there exist vectors ζ, η ∈ Ball(Cn

2

), and a completely
contractive u : X →Mn such that F (x) = 〈un(x)ζ, η〉. Thus

‖x‖n = |F (x)| ≤ ‖un(x)‖‖ζ‖‖η‖ ≤ ‖un(x)‖.

However clearly ‖un(x)‖ ≤ ‖x‖n.

Theorem 1.2.13. (Ruan) Suppose that X is a vector space, and that for each
n ∈ N we are given a norm ‖ · ‖n on Mn(X) satisfying conditions (R1) and (R2)
above. Then X is linearly completely isometrically isomorphic to a linear subspace
of B(H), for some Hilbert space H.

Proof. Suppose that (X, {‖ · ‖n}) satisfies (R1) and (R2). Let I be the collection
of all completely contractive ϕ : X → Mn, for all n ∈ N. We write nϕ = n if
ϕ : X → Mn. Let M = ⊕∞ϕ∈I Mnϕ . This is a von Neumann algebra, and therefore
certainly an operator space. Define u : X → M by u(x) = (ϕ(x))ϕ∈I . This is a
complete contraction, as is very easy to check, and so un is a contraction for each
n ∈ N. Choose x ∈Mn(X), and by Corollary 1.2.12 choose completely contractive
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ϕ : X → Mn such that ‖ϕn(x)‖ = ‖x‖n. If x = [xij ] then since the projection
P : M → Mnϕ onto the ‘ϕ-entry’ is a ∗-homomorphism, and hence completely
contractive, we have

‖un(x)‖ = ‖[u(xij)]‖ ≥ ‖[P (u(xij))]‖ = ‖[ϕ(xij)]‖ = ‖ϕn(x)‖ = ‖x‖n.

Thus un is an isometry, and hence u is a complete isometry.

1.2.14 We next discuss some consequences and applications of Ruan’s theorem. It
follows immediately from this result that the ‘abstract operator spaces’ are precisely
the vector spaces X with matrix norms satisfying (R1) and (R2). More precisely, a
sequence of norms {‖·‖n}, with ‖·‖n a norm onMn(X), is an operator space structure
(oss) on X in the sense of 1.2.4, iff they satisfy (R1) and (R2). The one direction of
this follows immediately from Theorem 1.2.13. The other follows immediately from
the fact noted earlier that every concrete, and hence every abstract, operator space
satisfies (R1) and (R2).

1.2.15 (Quotient operator spaces) If Y ⊂ X is a closed linear subspace of an
operator space, then Ruan’s theorem allows one to check that X/Y is an operator
space with matrix norm on Mn(X/Y ) coming from the identification Mn(X/Y ) ∼=
Mn(X)/Mn(Y ), the latter space equipped with its quotient Banach space norm.
Explicitly, these matrix norms are given by the formula ‖[xij+̇Y ]‖n = inf{‖[xij +
yij ]‖n : yij ∈ Y }. Here xij ∈ X. Note that with this definition, the canonical
quotient map q : X → X/Y is a complete quotient map.

To check the (R1) condition, note that more generally if α ∈Mn,m, β ∈Mm,n, x =
[xij ] ∈Mm(X), then qn(αxβ) = αqn(x)β (an exercise in linear algebra), and so

‖αqn(x)β‖ = ‖qn(αxβ)‖ ≤ ‖αxβ‖n ≤ ‖α‖‖x‖m‖β‖.

Given ε > 0 we may choose x above so that ‖x‖ < ‖qn(x)‖+ ε, and then

‖αqn(x)β‖ ≤ ‖α‖‖x‖m‖β‖ < ‖α‖(‖qn(x)‖m + ε)‖β‖.

Letting ε→ 0 gives ‖αqn(x)β‖ ≤ ‖α‖‖qn(x)‖m‖β‖ as desired.
To prove (R2) let x be as in the last paragraph, and choose y ∈ Mk(X) with

‖y‖k < ‖qk(y)‖+ ε. Then qn+k(x⊕ y) = qn(x)⊕ qk(y), and so

‖qn(x)⊕ qk(y)‖n+k = ‖qn+k(x⊕ y)‖n+k ≤ ‖x⊕ y‖n+k = max{‖x‖, ‖y‖}

which is dominated by max{‖qn(x)‖, ‖qk(y)‖} + ε. Letting ε → 0 gives ‖qn(x) ⊕
qk(y)‖n+k ≤ max{‖qn(x)‖, ‖qk(y)‖}, which is ‘one half’ of the (R2) condition. The
other half follows from our slightly more general version of (R1) in the last paragraph
since, for example, if α = [In O] then

‖qn(x)‖n = ‖α(qn(x)⊕ qk(y))α∗‖ ≤ ‖qn(x)⊕ qk(y)‖.

1.2.16 (Factor theorem) If u : X → Z is completely bounded, and if Y is a closed
subspace of X contained in Ker(u), then the canonical map ũ : X/Y → Z induced
by u is also completely bounded, with ‖ũ‖cb = ‖u‖cb. If Y = Ker(u), then u is
a complete quotient map if and only if ũ is a completely isometric isomorphism.
Indeed this follows exactly as in the usual Banach space case (exercise).
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1.2.17 (The∞-direct sum) Let {Xλ : λ ∈ I} be a family of operator spaces, and we
write ⊕λXλ (or ⊕∞λ Xλ if more clarity is needed), for their∞-direct sum as Banach
spaces. If I = {1, . . . , n} then we usually write this sum as X1⊕∞ · · ·⊕∞Xn. Thus
a tuple (xλ) is in ⊕∞λ Xλ if and only if xλ ∈ Xλ for all λ, and supλ ‖xλ‖ <∞. Let
us write Pλ for the projection of ⊕∞λ Xλ onto Xλ. We assign ⊕∞λ Xλ an operator
space structure by defining ‖x‖n = supλ ‖xλ‖Mn(Xλ) if x ∈ Mn(⊕λXλ) and xλ =
(Pλ)n(x). Another way to say this, is that we are assigning Mn(⊕λXλ) the norm
making the canonical linear algebraic isomorphism Mn(⊕λXλ) ∼= ⊕λMn(Xλ) an
isometry. It is easy to check by Ruan’s theorem that this is an operator space
structure on ⊕∞λ Xλ. Or one can see this directly as follows. If Xλ ⊂ Aλ, where
Aλ is a C∗-algebra, then ⊕∞λ Xλ is isometrically embedded in the C∗-algebra direct
sum ⊕∞λ Aλ. The canonical operator space structure on the C∗-algebra ⊕∞λ Aλ is
given by the formula ‖x‖n = supλ ‖xλ‖Mn(Aλ), where xλ = (Pλ)n(x). This may be
seen, as in the end of 1.2.5, by proving that the latter formula is a C∗-algebra norm
on Mn(⊕∞λ Aλ), which in turn follows easily for example from the ∗-isomorphism
Mn(⊕∞λ Aλ) ∼= ⊕∞λ Mn(Aλ). Then ⊕∞λ Xλ inherits this operator space structure
from ⊕∞λ Aλ.

Another way to say the above, is that if Xλ ⊂ Aλ ⊂ B(Hλ) then ⊕λXλ may
be regarded as the subspace of B(⊕2

λHλ) consisting of the operators which take
(ζλ) ∈ ⊕2

λHλ to (xλζλ). It is a simple exercise to see that the norm of the latter
operator is supλ ‖xλ‖, with a similar formula for matrix norms.

By definition, the canonical inclusion and projection maps between ⊕λXλ and
its ‘λth summand’ are complete isometries and complete quotient maps respectively.
As we said above, if Xλ are C∗-algebras then this direct sum is the usual C∗-algebra
direct sum. If the Xλ are W ∗-algebras then this direct sum is just the W ∗-algebra
direct sum.

The∞-direct sum has the following universal property. If Z is an operator space
and uλ : Z → Xλ are completely contractive linear maps, then there is a canonical
complete contraction Z → ⊕λXλ taking z ∈ Z to the tuple (uλ(z)). We leave this
as an easy exercise.

If Xλ = X for all λ ∈ I, then we usually write `∞I (X) for ⊕λXλ.
One may define a ‘c0-direct sum’ of operator spaces to simply be the closure in

⊕∞λ Xλ of the set of tuples which are zero except in finitely many entries.

1.2.18 (Mapping spaces) If X,Y are operator spaces, then the space CB(X,Y )
of completely bounded linear maps from X to Y , is also an operator space, with
matrix norms determined via the canonical isomorphism between Mn(CB(X,Y ))
and CB(X,Mn(Y )). That is, if [uij ] ∈Mn(CB(X,Y )), then define

‖[uij ]‖n = sup
{
‖[uij(xkl)]‖nm : [xkl] ∈ Ball(Mm(X)), m ∈ N

}
. (1.4)

Here the matrix [uij(xkl)] is indexed on rows by i and k and on columns by j and
l. Then

Mn(CB(X,Y )) ∼= CB(X,Mn(Y )) isometrically. (1.5)

One may see that (1.4) defines an operator space structure on CB(X,Y ) by appeal-
ing to Ruan’s theorem 1.2.13. Alternatively, one may see it as follows. Consider
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the set I = ∪n Ball(Mn(X)), and for x ∈ Ball(Mm(X)) ⊂ I set nx = m. Con-
sider the operator space direct sum (see 1.2.17) ⊕∞x∈IMnx(Y ), which is an opera-
tor space. Then the map from CB(X,Y ) to ⊕∞x∈IMnx(Y ) taking u to the tuple
(unx(x))x ∈ ⊕∞x Mnx(Y ) is (almost tautologically) a complete isometry. For exam-
ple, note that

‖(unx(x))x∈I‖ = sup{‖unx(x)‖ : x ∈ I} = sup{‖un‖ : n ∈ N} = ‖u‖cb.

Thus CB(X,Y ) is an operator space.

1.2.19 (The dual of an operator space) The special case when Y = C in 1.2.18 is
particularly important. In this case, for any operator space X, we obtain by 1.2.18
an operator space structure on X∗ = CB(X,C). The latter space equals B(X,C)
isometrically by 1.2.7. We call X∗, viewed as an operator space in this way, the
operator space dual of X. This duality will be studied further in later sections. By
(1.5) we have

Mn(X∗) ∼= CB(X,Mn) isometrically. (1.6)

(Note that the map implementing this isomorphism is also exactly the canonical
map θ from Mn ⊗ X∗ to B(X,Mn), where θ(a ⊗ ϕ)(x) = ϕ(x)a, for a ∈ Mn, ϕ ∈
X∗, x ∈ X.)

1.2.20 (Minimal operator spaces) Let E be a Banach space, and consider the
canonical isometric inclusion of E in the commutative C∗-algebra C(Ball(E∗)).
Here E∗ is equipped with the w∗-topology. This inclusion induces, via 1.2.5, an
operator space structure on E, which is denoted by Min(E). We call Min(E) a
minimal operator space. By (1.2), the resulting matrix norms on E are given by

‖[xij ]‖n = sup
{
‖[ϕ(xij)]‖ : ϕ ∈ Ball(E∗)

}
(1.7)

for [xij ] ∈ Mn(E). Thus every Banach space may be canonically considered to be
an operator space. Since Min(E) ⊂ C(Ball(E∗)), we see from 1.2.7 that for any
bounded linear u from an operator space Y into E, we have

‖u : Y −→ Min(E)‖cb = ‖u : Y −→ E‖. (1.8)

From this last fact one easily sees that Min(E) is the smallest operator space struc-
ture on E. For if {||| · |||n} was an operator space structure on E, with ||| · |||1 = ‖·‖,
write X for the abstract operator space which is E with these matrix norms. Then
IE : Min(E)→ X is a linear isometry, and so by (1.8) we have ‖I−1

E ‖cb = ‖I−1
E ‖ = 1.

But this says precisely that ||| · |||n dominates the norm in (1.7).
Also, if Ω is any compact space and if i : E → C(Ω) is an isometry, then the

matrix norms inherited by E from the operator space structure of C(Ω), coincide
again with those in (1.7). That is, the norms in (1.7) equal ‖[i(xij)]‖n. This may
be seen by applying 1.2.7 to i and i−1 (the latter defined on the range of i). By
1.2.7 we have i completely contractive. But since Min(E) ⊂ C(Ball(E∗))) we have
by 1.2.7 again that i−1 is completely contractive. So i is a complete isometry, which
is the desired identity.
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This means that ‘minimal operator spaces’ are exactly the operator spaces com-
pletely isometrically isomorphic to a subspace of a C(K)-space. Note too that the
category of Banach spaces and bounded linear maps is ‘the same’ as the category
of minimal operator spaces and completely bounded linear maps.

1.2.21 (Maximal operator spaces) If E is a Banach space then Max(E) is the
largest operator space structure we can put on E. We define the matrix norms on
Max(E) by the following formula

‖[xij ]‖n = sup
{
‖[u(xij)]‖ : u ∈ Ball(B(E, Y )), all operator spaces Y

}
. (1.9)

This may be seen to be an operator space structure on E by using Ruan’s theorem.
However again a direct sum argument is more elementary: Define a map i : x 7→
(u(x))u from E into the operator space Z = ⊕∞u Yu, where the latter sum is indexed
by every u : E → Y as in (1.9), and writing such Y as Yu. We may assume that the
cardinality of Y is dominated by that of E so that there are no set theoretic issues.
Since there exists at least one such u which is an isometry (see e.g. 1.2.20), it is
evident that i is an isometry. Thus ‖ · ‖1 is the usual norm on E. Then the matrix
norms inherited by E from the operator space structure of Z, gives E an operator
space structure. However the latter coincides again with the one in (1.9). That is,
the norms in (1.9) equal ‖[i(xij)]‖n.

It is clear from this formula that Max(E) has the property that for any operator
space Y , and for any bounded linear u : E → Y , we have

‖u : Max(E) −→ Y ‖cb = ‖u : E −→ Y ‖. (1.10)

Indeed to prove this we may assume that u is a contraction, and then from (1.9) we
see that ‖[u(xij)]‖ is dominated by the norm in (1.9). That is, un is a contraction,
so that u is completely contractive, as a map from E with the matrix norms from
(1.9). This proves (1.10).

It is also clear that Max(E) is the largest operator space structure we can put
on E. For if {||| · |||n} was another operator space structure on E, with ||| · |||1 = ‖·‖,
write X for the abstract operator space which is E with these matrix norms. Then
IE : Max(E)→ X is a linear isometry, and so by (1.10) we have ‖IE‖cb = ‖IE‖ = 1.
But this says precisely that ||| · |||n is dominated by the norm in (1.9).

1.2.22 (Hilbert column and row spaces) If H is a Hilbert space then there are
two canonical operator space structures on H most commonly considered. The first
is the Hilbert column space Hc. Informally one should think of Hc as a ‘column in
B(H)’. Thus if H = `2n then Hc = Mn,1, thought of as the matrices in Mn which
are ‘zero except on the first column’. We write this operator space also as Cn, and
the ‘row’ version as Rn. Note that for such a matrix x the norm ‖x‖ = ‖x∗x‖ 1

2 is
precisely the `2n norm of the entries in x. So Cn ∼= `2n isometrically. However Cn is
not completely isometric to Rn, and they fail to even be completely isomorphic if
n is infinite (see the discussion after Proposition 1.2.25).

For a general Hilbert space H there are several simple ways of describing Hc

more precisely. For example, one may identify Hc with the concrete operator space
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B(C, H). If ζ ∈ H write Tζ : C → H for the operator taking 1 to ζ. It is easy to
see that T ∗ζ Tη is the operator on C taking 1 to 〈η, ζ〉. Thus if [ζij ] ∈ Mn(H) then
by the C∗-identity

‖[Tζij ]‖ = ‖[
n∑
k=1

T ∗ζkiTζkj ]‖
1
2 = ‖[

n∑
k=1

〈ζkj , ζki〉]‖
1
2 .

Another equivalent description of Hilbert column space is as follows: If η is a
fixed unit vector in H, then the set H ⊗ η of rank one operators ζ ⊗ η is a closed
subspace of B(H) which is isometric to H via the map ζ 7→ ζ ⊗ η. (By convention,
ζ ⊗ η maps ξ ∈ H to 〈ξ, η〉ζ.) Thus we may transfer the operator space structure
on H ⊗ η inherited from B(H) over to H. The resulting operator space structure
is independent of η and coincides with Hc. To see this, we will use the C∗-identity
in Mn(B(H)) applied to ‖[ζij ⊗ η]‖. Note that

[ζij ⊗ η]∗[ζij ⊗ η] = [η ⊗ ζji][ζij ⊗ η] = [

n∑
k=1

(η ⊗ ζki)(ζkj ⊗ η)].

However, (η⊗ζki)(ζkj⊗η) = 〈ζkj , ζki〉R, where R = η⊗η. It was left as an exercise
in 1.2.8 that ‖[zijR]‖ = ‖R‖‖[zij ]‖ for scalars zij , and so we conclude using the

C∗-identity that ‖[ζij ⊗ η]‖ = ‖[
∑n
k=1〈ζkj , ζki〉]‖

1
2 . That is,

‖[ζij ]‖Mn(Hc) =
∥∥∥[ n∑
k=1

〈ζkj , ζki〉
]∥∥∥ 1

2

, [ζij ] ∈Mn(H). (1.11)

This shows that this is the same operator space structure on H as the previous one.
If H = `2n and we take η = (1, 0, · · · , 0) then {ζ ⊗ η} is precisely the matrices in
Mn which are ‘zero except on the first column’.

If T ∈ B(H,K) then ‖T‖ = ‖T‖cb, where the latter is the norm taken in
CB(Hc,Kc). Indeed let [ζij ] ∈ Mn(Hc), and let α ∈ B(`2n, `

2
n(H)) correspond to

this matrix via the identity Mn(Hc) = Mn(B(C, H)) = B(`2n, `
2
n(H)). Similarly,

let β ∈ B(`2n, `
2
n(K)) corresponding to [Tζij ]. Then β = (I`2n ⊗ T ) ◦ α, and hence

‖β‖ ≤ ‖I`2n ⊗T‖‖α‖ ≤ ‖T‖‖α‖. This shows that ‖Tn‖ ≤ ‖T‖, and so ‖T‖cb ≤ ‖T‖.
More generally, we have

B(H,K) = CB(Hc,Kc) completely isometrically (1.12)

We will give a quick proof of this identity at the end of this section.
A subspace K of a Hilbert column space Hc is again a Hilbert column space,

as may be seen by considering (1.11). Similarly the quotient Hc/Kc is a Hilbert
column space completely isometric to (H 	K)c. This may be seen by considering
the canonical projection P from Hc onto (H 	K)c. Note P is applying completely
contractive by the fact at the start of the second last paragraph, and is therefore
clearly a complete quotient map. Now apply 1.2.16 to see that Hc/Ker(P ) =
Hc/Kc ∼= (H 	K)c completely isometrically.

We define Hilbert row space similarly. Recalling that H∗ ∼= H̄ is a Hilbert space
too, we identify Hr with the concrete operator space B(H̄,C). Analogues of the
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above results for Hc hold, except that there is a slight twist in the corresponding
version of (1.12). Namely, although B(H,K) = CB(Hr,Kr) isometrically, this
is not true completely isometrically. Instead, as we shall see, there is a canonical
completely isometric isomorphism B(H,K) ∼= CB(K̄r, H̄r). We write C and R for
`2 with its column and row operator space structures respectively.

We have

(Hc)∗ ∼= H̄r and (Hr)∗ ∼= H̄c (1.13)

completely isometrically using the operator space dual structure in 1.2.19. The
first relation is obtained by setting K = C in (1.12). The second relation follows
e.g. from the first if we replace H there by K = H̄, and take the operator space
dual, using the fact that Hilbert spaces are reflexive, and also the first result in
the next Section 1.3, which states that X ⊂ X∗∗ completely isometrically. Thus
Kc ∼= (Kc)∗∗ ∼= (Hr)∗ completely isometrically.

Just as in one of the exercises for Chapter 1, the map T 7→ T ∗ is a complete
isometry from CB(X,Y ) into CB(Y ∗, X∗) and this map is onto if X is reflexive.
Thus if H,K are Hilbert spaces then we have

B(H,K) ∼= CB(Hc,Kc) ∼= CB((Kc)∗, (Hc)∗) ∼= CB(K̄r, H̄r),

using (1.13).

1.2.23 (Matrix spaces) If X is an operator space, and I, J are sets, then we
write MI,J(X) for the set of I×J matrices whose finite submatrices have uniformly
bounded norm. We explain: By an ‘I×J matrix’ we mean a matrix x = [xi,j ]i∈I,j∈J ,
where xi,j ∈ X. For such a matrix x, and for a subset ∆ = C × D ⊂ I × J , we
write x∆ for the ‘submatrix’ [xi,j ]i∈C,j∈D. Sometimes we also write x∆ for the
same matrix viewed as an element of MI,J(X), and with all other entries zero. We
say the submatrix is finite if ∆ is finite. We define ‖x‖ to be the supremum of
the norms of its finite submatrices, and MI,J(X) consists of those matrices x with
‖x‖ <∞. Similarly there is an obvious way to define a norm on Mn(MI,J(X)) by
equating this space with MI,J(Mn(X)), and one has Mn(MI,J(X)) ∼= Mn.I,n.J(X),
for n ∈ N.

We write MI(X) = MI,I(X), CwI (X) = MI,1(X), and RwI (X) = M1,I(X). If
I = ℵ0 we simply denote these spaces by M(X), Cw(X) and Rw(X) respectively.
Also, Mfin

I,J(X) will denote the vector subspace of MI,J(X) consisting of ‘finitely
supported matrices’, that is, those matrices with only a finite number of nonzero
entries. We write KI,J(X) for the norm closure in MI,J(X) of Mfin

I,J(X). We set
KI(X) = KI,I(X), CI(X) = KI,1(X), and RI(X) = K1,I(X). Again we merely
write K(X), R(X) and C(X) for these spaces if I = ℵ0. If X = C then we write
CI(C) = CI . Similarly, RI = RI(C). We write KI,J for KI,J(C), and MI,J for
MI,J(C).

We leave the following assertions about matrix spaces as exercises, for the most
part. Throughout, I, J, I0, J0 are sets and X,Y are operator spaces.

(1) If X ⊂ Y (completely isometrically), then MI,J(X) ⊂ MI,J(Y ) completely
isometrically. Thus if X ⊂ B(H,K) then MI,J(X) ⊂ MI,J(B(H,K)). This
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is important, since this reduces most facts about MI,J(X) to facts about
MI,J(B(H,K)), which we shall see in (5) is a simple space to deal with.

(2) If u : X → Y is completely bounded, then so is the obvious amplification
uI,J : MI,J(X) → MI,J(Y ), and ‖uI,J‖cb = ‖u‖cb. Clearly uI,J also restricts
to a completely bounded map from KI,J(X) to KI,J(Y ). If u is a complete
isometry, then so is uI,J (see (1)). Thus the MI,J(·) and KI,J(·) constructions
are ‘injective’ in some sense.

(3) MI,J
∼= B(`2J , `

2
I) completely isometrically. Via this identification, KI,J =

S∞(`2J , `
2
I) completely isometrically. Thus for any Hilbert spaces K,H we

have that B(K,H) ∼= MI0,J0 completely isometrically, for some sets I0, J0.

(4) We have MI,J(MI0,J0) ∼= MI×I0,J×J0
∼= MI0,J0(MI,J) completely isometrically.

(5) Putting (3) and (4) together, it follows easily that for any sets I, J , we have
MI,J(B(K,H)) ∼= B(K(J), H(I)) completely isometrically.

(6) Fix i ∈ I, j ∈ J . The map which takes x ∈ X to the matrix in MI,J(X) which
is all zero except for an x in the i-j-entry, is a complete isometry. The map
MI,J(X)→ X which takes a matrix to its i-j-entry, is a complete contraction.
The map which takes x ∈ X to the matrix in MI(X) which is all zero except
for an x in all the entries on the ‘main diagonal’, is a complete isometry.

(7) If X is an operator space then so is MI,J(X). Indeed if X ⊂ B(H), then
by (1) and (5) we have MI,J(X) ⊂ MI,J(B(H)) ∼= B(H(J), H(I)) completely
isometrically. If X is complete then so is MI,J(X). To see this, we can
suppose that X is a closed subspace of B(H). Then MI,J(X) ⊂MI,J(B(H)) ∼=
B(H(J), H(I)), and the latter space is complete. Suppose that an ∈MI,J(X),
with an → a ∈MI,J(B(H)). Then by (6) the i-j-entry of an converges to the
i-j-entry of a, and so the latter is in X. Hence a ∈ MI,J(X). So MI,J(X) is
norm closed in MI,J(B(K,H)).

(8) We have MI,J(X) = CwI (RwJ (X)) = RwJ (CwI (X)) completely isometrically.
One way to see this is to first check this identity in the case X = B(H) using
(5) repeatedly, and then use this fact to do the general case.

(9) By a similar argument, MI,J(MI0,J0(X)) ∼= MI×I0,J×J0(X) for any operator
space X, generalizing (4).

(10) CwI (C) = CI = (`2I)
c (see 1.2.22 for this notation). Indeed, by (5) we have

CwI (C) = B(C, `2I) = (`2I)
c, and this must equal CI since ‘finitely supported

tuples’ are dense in `2I . Similarly, RI = RwI (C) = (`2I)
r.

(11) KI,J(X) is the set of x ∈ MI,J(X) such that the net (x∆) converges to x,
where the net is indexed by the finite subsets ∆ = C ×D of I × J , ordered by
inclusion.

(12) For any operator spaces X,Y we have CB(X,MI,J(Y )) ∼= MI,J(CB(X,Y ))
isometrically. We leave it as an exercise to write down the obvious isomorphism
here, and to check that this is a (complete) isometry.

1.2.24 (Infinite sums) Suppose that X,Y are subspaces of a C∗-algebra A ⊂
B(H). Let I be an infinite set. If x ∈ RwI (X) and y ∈ CI(Y ), then the ‘product’
xy =

∑
i xiyi, if x and y have ith entries xi and yi respectively, actually converges in

norm to an element of A, and we have ‖xy‖ ≤ ‖x‖‖y‖. This is clear if I is finite, in
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this case we can view x ∈ Rn(B(H)) = B(H(n), H) and similarly y ∈ B(H,H(n)),
and then clearly ‖xy‖ ≤ ‖x‖‖y‖. To see the general case, we use the following
notation. If z is an element of RwI (X) or CI(Y ), and if ∆ ⊂ I, write z∆ for z but
with all entries outside ∆ ‘switched to zero’. Since y ∈ CI(Y ), by 1.2.23 (11) given
ε > 0 there is a finite set ∆ ⊂ I, such that ‖y − y∆‖ = ‖y∆c‖ < ε. If ∆′ is a finite
subset of I not intersecting ∆ then∥∥∥∑

i∈∆′

xiyi

∥∥∥ = ‖x∆′y∆′‖ ≤ ‖x∆′‖‖y∆′‖ ≤ ‖x‖‖y∆′‖ < ‖x‖ε.

Hence the sum converges in norm as claimed. For any finite ∆ ⊂ I, a compu-
tation identical to the first part of the second last centered equation shows that
‖
∑
i∈∆ xiyi‖ ≤ ‖x‖‖y‖. Taking the limit over ∆, we have ‖xy‖ ≤ ‖x‖‖y‖.

Proposition 1.2.25. For any operator spaceX and set I, we have that CB(CI , X) ∼=
RwI (X) and CB(RI , X) ∼= CwI (X) completely isometrically.

Proof. We sketch the proof of just the first relation. Define L : RwI (X)→ CB(CI , X)
by L(x)(z) =

∑
i xizi, for x ∈ RwI (X), z ∈ CI . This map is well defined, by the

argument for 1.2.24 for example. It is also easy to check, by looking at the partial
sums of this series as in 1.2.24, that L is contractive. Alternatively, this can be seen
by viewing X ⊂ B(H), and L(x)(z) as the product (composition) TS of the oper-
ator Sz : H → H(I) : ζ 7→ [ziζ], and the operator Tx : H(I) → H : [ηi] →

∑
i xiηi.

It is easy to argue that

‖[L(x)(zij)]‖ = ‖[TxSzij ]‖ ≤ ‖Tx‖‖[Szij ]‖ = ‖x‖‖[zij ]‖,

so that L is a contraction.
Conversely, for u in CB(CI , X), let x be a 1 by I matrix whose ith entry is

u(ei), where (ei) is the canonical basis. If ∆ = {i1, i2, · · · , im} ⊂ I then

‖x∆‖ = ‖[u(ei1) u(ei2) · · · u(eim)]‖ ≤ ‖u‖cb‖[ei1 ei2 · · · eim ]‖ = ‖u‖cb,

since the last matrix after erasing rows and columns of zeros is an identity ma-
trix. Thus x ∈ RwI (X) and ‖x‖RwI (X) ≤ ‖u‖cb. It is easy to see that L(x)(z) =∑
i u(ei)zi = u(

∑
i eizi) = u(z) if z ∈ CI . Thus L(x) = u, and so L is a surjective

isometry. This together with (1.5) yields

Mm(CB(CI , X)) ∼= CB(CI ,Mm(X)) ∼= RwI (Mm(X)) ∼= Mm(RwI (X))

isometrically. From this one sees that L is a complete isometry.

We will use the last lemma to verify two facts that were mentioned earlier. First,
that CI is not completely isomorphic to RI if I is infinite. One way to see this is to
note that CB(CI , RI) ∼= RwI (RI) ∼= RI×I by Proposition 1.2.25, and (10) and (4)
of 1.2.23. This is saying that for an operator T : CI → RI , the ‘cb-norm’ equals
its Hilbert-Schmidt norm (that is, its norm in the Hilbert-Schmidt class S2(`2I).
Similarly if S : RI → CI . So if CI ∼= RI completely isomorphically, then there is
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an invertible operator between them which is in S2(`2I). Since S2(`2I) is known from
operator theory to be an ideal, this implies that the identity map (= TT−1) is in
S2(`2I), which is absurd if I is infinite.

Second, we show that B(H,K) ∼= CB(Hc,Kc) completely isometrically. Indeed,

CB(CI , CJ) ∼= RwI (CJ) = RwI (CwJ ) ∼= MJ,I
∼= B(`2I , `

2
J),

using Proposition 1.2.25, and 1.2.23 (10), (8), and (3).

Historical note: The results in Section 2.1 are almost all due to Arveson,
Effros, and Ruan [1, 17]. Hamana studied matrix spaces (see 1.2.23) in some of his
papers (see e.g. [20]), and they are studied in more detail by Effros, and Ruan in
[13, 14]. Maximal operator spaces were first considered by Blecher and Paulsen [8].
Preliminary forms of some of the results in 1.2.22 were noted in the latter paper;
and the fact that B(H,K) ∼= CB(Hc,Kc) isometrically is due to Wittstock [32]. In
the generality listed here, the main source for the results towards the end of 1.2.22
is [16], although Blecher independently discovered a couple of these [3].

Exercises.

(1) If T ∈ B(K,H), and if [zij ] ∈ Mn show that ‖[zijT ]‖ = ‖T‖‖[zij ]‖. Deduce
that C has a unique operator space structure (up to complete isometry).

(2) If X ⊂ B(H,K), and if S : K → K ′ and T : H ′ → H are operators between
Hilbert spaces, prove that the map x 7→ SxT is completely bounded with ‘cb-
norm’ dominated by ‖S‖‖T‖.

(3) If K is a closed subspace of a Hilbert space H, prove that the map x 7→ PKx|K
is completely contractive from B(H) to B(K).

(4) Prove that if S : Mn(Y )→Mn(Z) is a linear map, where Y,Z are vector spaces,
then S = un for a linear u : Y → Z iff S(αxβ) = αS(x)β for all x ∈ Mn(Y )
and α, β ∈Mn.

(5) (R. R. Smith) If u : X →Mn satisfies ‖un‖ ≤ 1, use linear algebra to show that
‖um‖ ≤ 1 for all m ≥ n, so that u is completely contractive. [Hint: if m ≥ n

and ζ, η ∈ Cmn, then we can write ζ =
∑n
k=1 ζk ⊗

→
ek, where ζk ∈ Cm. Since

Span{ζk : k = 1, · · · , n} has dimension ≤ n, there is an isometry β ∈Mm,n and

vectors ζ̃k ∈ Cn with βζ̃k = ζk. Similarly, there is an isometry α ∈ Mm,n with
αη̃k = ηk. Use this to find an upper bound for the number |〈um(x)ζ, η〉|.]

(6) Prove that (R1) and (R2) together are equivalent to requiring that: (R1)′

‖αxβ‖n ≤ ‖α‖‖x‖m‖β‖, for all n,m ∈ N and all α ∈ Mn,m, β ∈ Mm,n, and
x ∈ Mm(X), and (R2)′ ‖x ⊕ y‖n+m ≤ max{‖x‖n, ‖y‖m} for x ∈ Mn(X), y ∈
Mm(X). Prove also that (R1)′ and (R2)′ actually imply that ‖ · ‖n is a norm.

(7) Suppose that ui : X → B(Ki, Hi) are completely contractive, and that K =
⊕iKi and H = ⊕iHi (Hilbert space sum). Define u : X → B(K,H) by
u(x) = (ui(x)), where the latter denotes the operator (ζi) 7→ (ui(x)ζi) on K.
Show that ‖ui‖cb ≤ ‖u‖cb ≤ 1.

(8) Prove that if in Ruan’s theorem X is also separable, then one may take the
Hilbert space there to be `2.



1.3. DUALITY OF OPERATOR SPACES 23

(9) If X,Y are (possibly incomplete) operator spaces, and if θ : X → Y is a linear
isomorphism such that the map ϕ 7→ ϕ ◦ θ is a well defined complete isometry
from Y ∗ onto X∗, then θ is completely isometric.

(10) Prove the facts stated in 1.2.23.

1.3 Duality of operator spaces

An operator space Y is said to be a dual operator space if Y is completely isomet-
rically isomorphic to the operator space dual (see 1.2.19) X∗ of an operator space
X. We also say that X is an operator space predual of Y , and sometimes we write
X as Y∗. If X,Y are dual operator spaces then we write w∗CB(X,Y ) for the space
of w∗-continuous completely bounded maps from X to Y .

Unless otherwise indicated, in what follows the symbol X∗ denotes the dual
space together with its dual operator space structure as defined in 1.2.19. Of course
X∗∗ is considered as the dual operator space of X∗.

Proposition 1.3.1. If X is an operator space then X ⊂ X∗∗ completely isometri-
cally via the canonical map iX .

Proof. We can suppose that X is a subspace of B(H), for a Hilbert space H. Fix
n ∈ N and [xij ] ∈Mn(X). We first show that ‖[iX(xij)]‖n ≤ ‖[xij ]‖n. By definition,
the norm ‖[iX(xij)]‖n in Mn((X∗)∗) equals

sup
{
‖[iX(xij)(fkl)]‖nm : [fkl] ∈ Ball(Mm(X∗)), m ∈ N

}
= sup

{
‖[fkl(xij)]‖nm : [fkl] ∈ Ball(Mm(X∗)), m ∈ N

}
≤ ‖[xij ]‖n,

the last line by definition of [fkl] ∈ Ball(Mm(X∗)).
Since ‖[iX(xij)]‖n equals the supremum above, and sinceMm(X∗) ∼= CB(X,Mm),

to see that iX is completely isometric, it suffices to prove the Claim: for a given
n ∈ N, ε > 0, and [xkl] ∈ Mn(X), there exists an integer m and a completely con-
tractive u : X → Mm such that ‖[u(xkl)]‖ ≥ ‖[xkl]‖ − ε. In fact this Claim follows
immediately (with ε = 0 and m = n) from Corollary 1.2.12.

Remark. Because of its independent interest, we will give another alternative
proof of the Claim in the last proof. Let [xij ] ∈ Mn(X) ⊂ Mn(B(H)) ∼= B(H(n)).
Thus [xij ] may be viewed as an operator on H(n). The norm of any operator
T ∈ B(K), for any Hilbert space K, is given by the formula ‖T‖ = sup{|〈Ty, z〉| :
y, z ∈ Ball(K)}. Thus in our case,

‖[xij ]‖n = sup{|〈[xij ]y, z〉| : y, z ∈ Ball(H(n))}.

So, if ε > 0 is given, there exists y, z ∈ Ball(H(n)) such that |〈[xij ]y, z〉| > ‖[xij ]‖n−
ε. If y = (ζk) and z = (ηk), with ζk, ηk ∈ H, then 〈[xij ]y, z〉 =

∑
i,j〈xijζj , ηi〉, and

so ∣∣∣∑
i,j

〈xijζj , ηi〉
∣∣∣ ≥ ‖[xij ]‖ − ε.
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Let K = Span {ζ1, . . . , ζn, η1, . . . , ηn} in H. This is finite dimensional, and so
there is an isometric ∗-isomorphism π : B(K) → Mm, where m = dim(K). Then
π is completely contractive by Proposition 1.2.6. Let PK be the projection from H
onto K. Let T : B(H) → B(K) be the function T (x) = PKx|K . By an exercise at
the end of the section, T is completely contractive. Let u = π ◦ T , which will be
completely contractive too. Now 〈[T (xij)]y, z〉 =

∑
i,j〈T (xij)ζj , ηi〉, and so

‖[T (xij)]‖n ≥
∣∣∣∑
i,j

〈T (xij)ζj , ηi〉
∣∣∣ =

∣∣∣∑
i,j

〈PKxijζj , ηi〉
∣∣∣ =

∣∣∣∑
i,j

〈xijζj , ηi〉
∣∣∣,

the last step since ηi ∈ K. Thus,

‖[u(xij)]‖n = ‖[π(T (xij))]‖n = ‖[T (xij)]‖n ≥
∣∣∣∑
i,j

〈xijζj , ηi〉
∣∣∣ ≥ ‖[xij ]‖ − ε,

using the fact at the end of the last paragraph. This proves the Claim.

1.3.2 From 1.3.1 we have for any [xij ] ∈Mn(X) that

‖[xij ]‖n = sup{‖[ϕkl(xij)]‖ : m ∈ N, [ϕkl] ∈ Ball(Mm(X∗))} (1.14)

There is a canonical map θ : Mn(X) → CB(X∗,Mn), namely θ([xij ])(ϕ) =
[ϕ(xij)], and (1.14) says that θ is an isometry. Note that if [xij ] ∈ Mn(X), and
if (ϕt) is a net in X∗ converging weak* to ϕ ∈ X∗, then ϕt(xij) → ϕ(xij), and
so [ϕt(xij)] → [ϕ(xij)] in norm in Mn, and hence also weak*. Thus the range of
θ is inside w∗CB(X∗,Mn). On the other hand, if u ∈ w∗CB(X∗,Mn), then u
corresponds to a matrix [ηij ] ∈ Mn(X∗∗). If (ϕt) is a net in X∗ converging weak*
to ϕ ∈ X∗, then u(ϕt) = [ηij(ϕt)] → u(ϕ) = [ηij(ϕ)] in Mn, and so ηij(ϕt) →
ηij(ϕ) for each i, j. Thus ηij is weak* continuous and so ηij = iX(xij) for some
xij ∈ X. Clearly θ([xij ]) = u. In other words, θ is an isometry from Mn(X) onto
w∗CB(X∗,Mn):

Mn(X) ∼= w∗CB(X∗,Mn) ⊂ CB(X∗,Mn). (1.15)

Another consequence of 1.3.1, is that if X is an operator space which as a Banach
space is reflexive, then X ∼= X∗∗ completely isometrically.

1.3.3 (The adjoint map) The ‘adjoint’ or ‘dual’ u∗ of a completely bounded map
u : X → Y between operator spaces is completely bounded from Y ∗ to X∗, with
‖u∗‖cb = ‖u‖cb. Indeed if [uij ] ∈Mn(CB(X,Y )) then u∗ij : Y ∗ → X∗ and

‖[u∗ij ]‖n = sup{‖[u∗ij(ϕkl)]‖ : [ϕkl] ∈ Ball(Mm(Y ∗)),m ∈ N}.

However

‖[u∗ij(ϕkl)]‖ = sup{‖[u∗ij(ϕkl)(xrs)]‖ : [xrs] ∈ Ball(Mp(X)), p ∈ N},
= sup{‖[ϕkl(uij(xrs))]‖ : [xrs] ∈ Ball(Mp(X)), p ∈ N},
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and it follows by combining the last two centered equations, and using (1.14), that

‖[u∗ij ]‖n = sup{‖[uij(xrs)]‖ : [xrs] ∈ Ball(Mp(X)), p ∈ N}
= ‖[uij ]‖n.

Thus ∗ : CB(X,Y )→ CB(Y ∗, X∗) is a complete isometry.
Direct computations from the definitions also show that if u is a complete quo-

tient map then u∗ is a complete isometry (exercise). It is slightly harder to see
that if u is completely isometric then u∗ is a complete quotient map. This requires
Wittstock’s extension theorem, which we will prove later using elementary prop-
erties of the ‘Haagerup tensor product’. The crux of Wittstock’s result is that if
X ⊂ Y then any complete contraction w : X → Mn has a completely contractive
extension û : Y → Mn. To see that u∗ is a complete quotient map if u : X → Y is
completely isometric, let [ϕij ] ∈ Ball(Mn(X∗)). By (1.6) we may regard [ϕij ] as a
complete contraction g : X → Mn. By Wittstock’s extension theorem there exists
a complete contraction w : Y → Mn with w|u(X) = g ◦ u−1 on u(X). By (1.6) we
may regard w as a matrix [ψij ] ∈ Ball(Mn(Y ∗)). We claim that [u∗(ψij)] = [ϕij ].
Indeed, if x ∈ X then

[u∗(ψij)(x)] = [ψij(u(x))] = w(u(x)) = g(u−1(u(x)) = g(x) = [ϕij(x)].

Thus u∗ is a complete quotient map. Conversely, if u∗ is a complete quotient map
then u∗∗ is a complete isometry, so that u is a complete isometry (using 1.3.1).
Thus u is a complete isometry if and only if u∗∗ is a complete isometry.

1.3.4 (Duality of subspaces and quotients) The operator space versions of the
usual Banach duality of subspaces and quotients follow easily from 1.3.3. If X is a
subspace of Y , then we have X∗ ∼= Y ∗/X⊥ and (Y/X)∗ ∼= X⊥. Indeed the dual of
the inclusion map i : X ↪→ Y will be a complete quotient map i∗ : Y ∗ → X∗, which
induces a complete isometry X∗ ∼= Y ∗/Ker(i∗) = Y ∗/X⊥. Similarly, the dual
of the canonical quotient map q : Y → Y/X is the canonical complete isometry
q∗ : (Y/X)∗ → Y ∗ which we know from the Banach space case has range X⊥.

The predual versions go through too with the same proofs as in the Banach
space case in a functional analysis course: if X is a w∗-closed subspace of a dual
operator space Y , then (Y∗/X⊥)∗ ∼= (X⊥)⊥ = X as dual operator spaces. Also,
(X⊥)∗ ∼= Y/(X⊥)⊥ = Y/X completely isometrically. These use the facts in the last
paragraph, and the Banach space fact that (X⊥)⊥ = X.

1.3.5 (Good and bad preduals) If X is an operator space which has a predual
Banach space Z, then there is only one way to give Z an operator space structure
with any hope that Z∗ ∼= X completely isometrically. Namely, view Z ⊂ X∗ and
give Z the operator space structure inherited from X∗. That is, define

‖[zij ]‖n = sup{‖[〈xpq, zij〉]‖ : [xpq] ∈ Ball(Mm(X)),m ∈ N}, (1.16)

where 〈·, ·〉 is the pairing between X and Z. Unfortunately, even then Z∗ may fail
to be completely isometric to X. We shall see an example of this later. Thus there
may be ‘good’ and ‘bad’ Banach space preduals of an operator space X (the bad
ones having no operator space structure whose operator space dual is X).
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1.3.6 (The trace class operator space) If H is a Hilbert space then B(H) is a
dual Banach space, and like any von Neumann algebra its predual is unique (this is
Sakai’s theorem). By operator theory, the predual Banach space is the trace class
S1(H). Fortunately, this (unique) predual Banach space S1(H) is ‘good’ in the sense
of 1.3.5. More precisely, let us equip its predual S1(H) with the operator space
structure it inherits from B(H)∗ via the canonical isometric inclusion S1(H) ↪→
B(H)∗. Then we claim that B(H) ∼= S1(H)∗ completely isometrically. Indeed the
canonical map ρ : B(H)→ S1(H)∗ is completely contractive by definition. Indeed
if X,Z are as in 1.3.5, then by definition we equip Z with the the operator space
structure making the canonical map θ : Z → X∗ a complete isometry. Then the
map X → Z∗ taking x ∈ X to θ∗(x̂) is a complete contraction, and this is the
canonical map from X into Z∗. To see that ρ is completely isometric, we use the
second proof of 1.3.1, given in the Remark after that result. This shows that for any
n ∈ N, ε > 0, and [xkl] ∈ Mn(B(H)), we can find an integer m and a completely
contractive u : B(H)→ Mm such that ‖[u(xkl)]‖ ≥ ‖[xkl]‖ − ε. We recall that u is
the composition of maps π and T there. Since Mm and B(K) are finite dimensional,
π is w∗-continuous. If xt → x weak* in B(H), and if ζ, η ∈ K then

〈T (xt)ζ, η〉 = 〈xtζ, η〉 → 〈xζ, η〉 = 〈T (x)ζ, η〉,

so that T is w∗-continuous. Hence u is w∗-continuous. By the argument in 1.3.2, u
corresponds to a matrix [zij ] ∈Mm(S1(H)), and by (1.16) the norm of this matrix
equals the ‘cb-norm’ of u, which is ≤ 1. Finally, we have

‖[xkl]‖ − ε ≤ ‖[u(xkl)]‖ = ‖[〈xkl, zij〉]‖ ≤ ‖[ρ(xkl)]‖n.

Since ε > 0 was arbitrary, we have proved the desired reverse inequality. Thus ρ is
a complete isometry.

Similarly, B(K,H) is the dual operator space of the space S1(H,K) of trace
class operators, the latter regarded as a subspace of B(K,H)∗. Henceforth, when
we write S1(H,K) we will mean the operator space predual of B(K,H) described
above. Similarly, we will henceforth also view S1

n = M∗n as an operator space.

Lemma 1.3.7. Any w∗-closed subspace X of B(H) is a dual operator space. In-
deed, if Y = S1(H)/X⊥ is equipped with its quotient operator space structure
inherited from S1(H), then X ∼= Y ∗ completely isometrically.

Proof. This follows from 1.3.4 and 1.3.6.

In particular this shows that any von Neumann algebra equipped with its ‘natu-
ral’ operator space structure (see 1.2.5) is a dual operator space. So they also have
‘good’ preduals.

The converse of 1.3.7 is true too, as we see next, so that ‘dual operator spaces’,
and the w∗-closed subspaces of some B(H), are essentially the same thing.

Lemma 1.3.8. Any dual operator space is completely isometrically isomorphic,
via a homeomorphism for the w∗-topologies, to a w∗-closed subspace of B(H), for
some Hilbert space H.
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Proof. Suppose that W is a dual operator space, with predual X. Let Y = C, and
recall from 1.2.18 the construction of a complete isometry

W = CB(X,Y ) −→ ⊕∞x∈I Mnx(Y ) = ⊕x∈I Mnx ,

namely the map J taking w ∈ W to the tuple ([〈w, xij〉])x in ⊕xMnx . Since the
maps w 7→ 〈w, xij〉 are w∗-continuous for any fixed x ∈ I, and since ⊕fin

x S1
nx is

dense in the Banach space predual ⊕1
x S

1
nx of ⊕xMnx , it is easy to see that J is

w∗-continuous too. We recall a basic convergence principle from functional analysis:
If D is a set whose span is dense in a normed space E, then a bounded net ϕt

w∗−→ ϕ
in E∗ if and only if ϕt(x) → ϕ(x) for all x ∈ D. Thus to show that J is w∗-
continuous, it suffices to show that if a ∈ I is fixed, and if z ∈ S1

n where n = na,
and if εa : S1

na → ⊕
1
x S

1
nx is the canonical inclusion map, and if ϕt → ϕ weak* in

X∗, then 〈J(ϕt), εa(z)〉 → 〈J(ϕ), εa(z)〉. However

〈J(ϕt), εa(z)〉 =

n∑
i,j

ϕt(aij)zij →
n∑
i,j

ϕ(aij)zij = 〈J(ϕ), εa(z)〉.

So J is w∗-continuous. We will use a consequence of the Krein-Smulian theorem,
namely, that a linear w*-continuous isometry u : E → F between dual Banach
spaces has w*-closed range, and u is a w*-w*-homeomorphism onto Ran(u). Hence
W is completely isometrically and w∗-homeomorphically isomorphic to a w∗-closed
subspace of the W ∗-algebra ⊕xMnx . If the latter is regarded as a von Neumann sub-
algebra of B(H) say, then W is completely isometrically and w∗-homeomorphically
isomorphic to a w∗-closed subspace of B(H).

1.3.9 (W ∗-continuous extensions) If X and Y are two operator spaces and if
u : X → Y ∗ is completely bounded, then its (unique) w∗-continuous linear extension
ũ : X∗∗ → Y ∗ is completely bounded, with ‖ũ‖cb = ‖u‖cb. Indeed recall that this
w∗-continuous extension is ũ = i∗Y ◦ u∗∗; and clearly

‖ũ‖cb = ‖i∗Y ◦ u∗∗‖cb ≤ ‖i∗Y ‖cb ‖u∗∗‖cb = ‖u‖cb,

using the first paragraph in 1.3.3, whereas ‖ũ‖cb ≥ ‖u‖cb since ũ extends u. Note

that since ũ is w∗-continuous, we have ũ(X∗∗) ⊂ u(X)
w∗

. The above also shows
that

CB(X,Y ∗) = w∗CB(X∗∗, Y ∗) (1.17)

isometrically via the mapping u 7→ ũ. Indeed note that if g ∈ w∗CB(X∗∗, Y ∗) then
g = g̃|X , since both of these maps are w∗-continuous and they agree on the w∗-dense
subset X.

By 1.3.6, the last paragraph applies in particular to B(H) valued maps.

1.3.10 (The second dual) Let X be an operator space, and fix n ∈ N. We wish to
compare the spaces Mn(X∗∗) (equipped with its ‘operator space dual’ matrix norms
as in 1.2.19), and Mn(X)∗∗. First note that they can be canonically identified as
topological vector spaces, as may Mn(X∗) and Mn(X)∗. Indeed note that Mn(X)
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is a direct sum of n2 copies of X, and so we can apply the principles in Exercise
(3) at the end of this section. Applying these Banach space principles, we see that
we have bicontinuous isomorphisms Mn(X) ∼= X ⊕∞ · · · ⊕∞ X and Mn(X∗∗) ∼=
X∗∗ ⊕∞ · · · ⊕∞ X∗∗. Hence we have

Mn(X)∗∗ ∼= (X∗ ⊕1 · · · ⊕1 X∗)∗ ∼= X∗∗ ⊕∞ · · · ⊕∞ X∗∗ ∼= Mn(X∗∗).

If η ∈Mn(X)∗∗, let [ηij ] be the corresponding matrix in Mn(X∗∗), via the isomor-
phisms in the last centered equation. We will prove in 1.3.12 below that the map
η → [ηij ] is an isometry. As a first easy step, let us check that it is a contraction.
If η ∈ Ball(Mn(X)∗∗), then by Goldstine’s lemma in functional analysis, there is a
net (xs)s in Ball(Mn(X)) such that xs → η in the w∗-topology of Mn(X)∗∗. This
means that ϕ(xs) → η(ϕ) for any ϕ ∈ Mn(X)∗. Since Mn(X)∗ ∼= Mn(X∗) and
Mn(X)∗∗ ∼= Mn(X∗∗) bicontinuously, this is equivalent to

n∑
i,j=1

ϕi,j(x
s
i,j)→

n∑
i,j=1

ηi,j(ϕi,j), ϕi,j ∈ X∗,

which in turn is equivalent to ϕ(xsi,j) → ηi,j(ϕ) for all i, j = 1, · · · , n and ϕ ∈ X∗.
Let [ϕpq] ∈ Ball(Mm(X∗)), for some m ≥ 1. We deduce that

‖[〈ηij , ϕpq〉]‖ = lim
s
‖[〈ϕpq, xsij〉]‖ ≤ 1,

by (1.4) or (1.14). Thus ‖[〈ηij , ϕpq〉]‖ ≤ 1. By (1.4) again, we deduce that
‖[ηij ]‖Mn(X∗∗) ≤ 1, which proves the result.

Note too that the map η → [ηij ] above restricts to the identity map on Mn(X),
by the last part of the aforementioned Exercise (3) at the end of the section.

1.3.11 (The second dual of a C∗-algebra) If A is a C∗-algebra, then there are at
least three canonical norms one could put on Mn(A∗∗). Fortunately, they are all the
same, as we now show. The first two are the ones discussed in 1.3.10. The third is
the one from 1.2.5, arising from the fact that the second dual A∗∗ of any C∗-algebra
is a C∗-algebra, and hence has a canonical operator space structure. To see that
these three are the same, we will need to state some notation. To avoid confusion,
we state that whenever we write Mn(A∗∗) below, we are equipping this space with
its ‘operator space dual’ matrix norms (see 1.2.19); thus Mn(A∗∗) ∼= CB(A∗,Mn)
isometrically. Let πu : A → B(Hu) denote the universal representation of A, and
we write A†† for the von Neumann algebra πu(A)′′. The claim will follow if we can
prove for any fixed n ≥ 1 that

Mn(A)∗∗ ∼= Mn(A∗∗) ∼= Mn(A††) isometrically (1.18)

via the canonical maps. The first of these maps is the contraction from Mn(A)∗∗ to
Mn(A∗∗) discussed in 1.3.10. The second map in (1.18) is (π̃u)n, which is a contrac-
tion since according to 1.3.9, the mapping π̃u is a complete contraction. To establish
(1.18), we need only prove that the resulting contraction ρ : Mn(A)∗∗ −→Mn(A††)
is isometric. It is clearly one-to-one. Of course Mn(A)∗∗ is also a C∗-algebra.
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Claim: ρ is w∗-continuous. Regarding ρ as valued in B(H
(n)
u ), we have 〈 ρ(η) ζ, ξ〉 =∑

i,j〈π̃u(ηij)ζj , ξi〉, for ζ = [ζi], ξ = [ξi] ∈ H(n)
u , and η = [ηij ] as in 1.3.10. If ηs → η

weak* in Mn(A)∗∗ then the argument in 1.3.10 shows also that ηsi,j → ηi,j weak*
in A∗∗, and so 〈π̃u(ηsij)ζj , ξi〉 → 〈π̃u(ηij)ζj , ξi〉. Hence 〈 ρ(ηs) ζ, ξ〉 → 〈 ρ(η) ζ, ξ〉,
which implies that ρ is w∗-continuous. Thus ρ is the unique w∗-continuous exten-
sion of (πu)n to Mn(A)∗∗, which is a ∗-homomorphism. Since it is one-to-one it is
isometric.

The last result has many consequences. For example, we can use it to see
that S∞(H)∗ = S1(H) completely isometrically. Indeed, since S∞(H)∗∗ = B(H)
completely isometrically, S∞(H)∗ must be the unique operator space predual S1(H)
of B(H) (see 1.3.6). Also we obtain:

Theorem 1.3.12. If X is an operator space then Mn(X)∗∗ ∼= Mn(X∗∗) isometri-
cally for all n ∈ N (via an isomorphism extending the identity map on Mn(X)).

Proof. Choose a C∗-algebra A with X ⊂ A completely isometrically. Then X∗∗ ⊂
A∗∗ completely isometrically by 1.3.3, hence we have both Mn(X)∗∗ ⊂ Mn(A)∗∗,
andMn(X∗∗) ⊂Mn(A∗∗), isometrically. Under the identifications betweenMn(A)∗∗

and Mn(A∗∗) and between Mn(X)∗∗ and Mn(X∗∗) discussed above, these two em-
beddings are easily seen to be the same. That is, the diagram below commutes:

Mn(A)∗∗ −→ Mn(A∗∗)x x
Mn(X)∗∗ −→ Mn(X∗∗)

Hence the isometry Mn(A∗∗) = Mn(A)∗∗ provided by 1.3.11, implies that we also
have Mn(X∗∗) = Mn(X)∗∗ isometrically.

1.3.13 (Duality of Min and Max) We will prove later in 3.1.10 that for any Banach
space E, we have

Min(E)∗ = Max(E∗) and Max(E)∗ = Min(E∗).

1.3.14 (The 1-direct sum) For a family {Xλ : λ ∈ I} of operator spaces, we give
⊕1
λXλ its canonical ‘predual operator space structure’ (see 1.3.5), as the predual

of the operator space ⊕∞λ X∗λ. It is easy to argue directly from the definitions that
the canonical inclusion and projection maps ελ and πλ between ⊕1

λXλ and its ‘λth
summand’ are complete isometries and complete quotient maps respectively. Or, to
see that ελ : Xλ → ⊕1

λXλ is a complete isometry, consider the following sequence
of canonical maps:

Xλ −→ ⊕1
λXλ ⊂ (⊕∞λ X∗λ)∗,

and let u be the composition of all these maps. On the other hand, the dual of
the canonical projection map ⊕∞λ X∗λ → X∗λ (which is a complete quotient map),
is a complete isometry j : X∗∗λ → (⊕∞λ X∗λ)∗. Moreover, the range of u falls within
j(X∗∗λ ), and j−1 ◦ u is the complete isometry from Xλ into its second dual. This
implies that the first of these maps in the sequence, ελ, is a complete isometry.
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Next we observe that ⊕1
λ Xλ is a ‘good predual’ of ⊕∞λ X∗λ, in the sense of 1.3.5.

That is,
(⊕1

λ Xλ)∗ ∼= ⊕∞λ X∗λ as dual operator spaces. (1.19)

Indeed, it is easy to see (if necessary by an argument early in 1.3.6), that the
canonical map θ : ⊕∞λ X∗λ → (⊕1

λ Xλ)∗ is a complete contraction. On the other
hand, an element in Ball(Mn((⊕1

λ Xλ)∗)) may be regarded as a complete contraction
from ⊕1

λXλ into Mn. Composing this map with each ελ, we get a tuple in the ball
of ⊕∞λ CB(Xλ,Mn). Since CB(Xλ,Mn) ∼= Mn(X∗λ), we actually obtain an element
in the ball of Mn(⊕∞λ X∗λ) ∼= ⊕∞λ Mn(X∗λ). It is easy to see from all this that θ is
a complete isometry.

Corollary 1.3.15. Any operator space X is a complete quotient of a 1-sum of
spaces of the form S1

n = M∗n.

Proof. The map J in the proof of 1.3.8 is a weak* continuous complete isometry.
Thus by Exercise (5) below, J = q∗ for a complete quotient map q from a 1-sum of
spaces of the form S1

n = M∗n, onto X.

1.3.16 We end this section with an example of an operator space which is a dual
Banach space, but has no ‘good’ operator space predual in the sense of 1.3.5. Let
B = B(H) with its canonical matrix norms, and let K be the compact operators
on H. Then Q = B/K is the well known Calkin algebra, which is a C∗-algebra and
hence has a canonical operator space structure. The only fact we will need about
the Calkin algebra is that it is not commutative. Let X = B(H) but with matrix
norms

|||[xij ]|||n = max{‖[xij ]‖Mn(B), ‖[q(xji)]‖Mn(Q)}, [xij ] ∈Mn(X),

where q : B → Q is the canonical quotient map. One can easily check that X
is an operator space, for example by appealing to Ruan’s theorem. As a Banach
space X is just B, since q is a contraction (so that |||x|||1 = ‖x‖B). Thus X has a
unique Banach space predual S1(H), the trace class. We will show that this is a
‘bad predual’.

Notice that ||| · |||n restricted to the copy of Mn(K) is just the usual norm, since
q annihilates K. Thus if Y = S1(H) with its canonical ‘predual matrix norms’ from
1.3.5, that is, the matrix norms coming from its duality with (X, {||| · |||n}), then
for [yij ] ∈Mn(Y ) we have

‖[yij ]‖Mn(Y ) = sup{‖[< yij , xkl >]‖ : [xkl] ∈ Ball(Mm(X)),m ∈ N}
≥ sup{‖[< yij , xkl >]‖ : [xkl] ∈ Ball(Mm(K)),m ∈ N}
= ‖[yij ]‖Mn(K∗) = ‖[yi,j ]‖Mn(S1(H)),

where the last norm is the usual operator space structure of S1(H) (see 1.3.6).
Thus, if [xij ] ∈Mn(X), then

‖[xij ]‖Mn(Y ∗) = sup{‖[< xij , ykl >]‖ : [ykl] ∈ Ball(Mm(Y )),m ∈ N}
≤ sup{‖[< xij , ykl >]‖ : [ykl] ∈ Ball(Mm(S1(H))),m ∈ N}
= ‖[xij ]‖Mn(B),
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by the fact in 1.3.6 that S1(H)∗ = B completely isometrically. Hence if Y ∗ = X
completely isometrically, then |||[xij ]|||n ≤ ‖[xij ]‖Mn(B). The reverse inequality fol-
lows from the definition of |||[xij ]|||n, and so |||[xij ]|||n = ‖[xij ]‖Mn(B). There-
fore, ‖[q(xji)]‖Mn(Q) ≤ ‖[xij ]‖Mn(B) for all [xij ] ∈ Mn(X). If [zij ] ∈ Mn(K), then
‖[q(xji)]‖Mn(Q) = ‖[q(xji + zji)]‖Mn(Q) ≤ ‖[xij + zij ]‖Mn(B). Taking the infimum
over such zij ∈ K, we get ‖[q(xji)]‖Mn(Q) ≤ ‖[q(xij)]‖Mn(Q). Symmetry implies that
this inequality is in fact an equality. But we claim that the only unital C*-algebras A
with ‖[aji]‖n = ‖[aij ]‖n, for all n ∈ N and [aij ] ∈Mn(A), are the commutative ones,
and the Calkin algebra is not commutative! Indeed if A is any unital C*-algebra,
and if A◦ is A with the reversed multiplication, then A◦ is a unital C*-algebra,
and its canonical matrix norm are given by ‖[aij ]‖Mn(A◦) = ‖[aji]‖Mn(A) (we leave
this as an exercise). Thus if the identity in the claim holds, then the identity map
A→ A◦ is a complete isometry. By Corollary 2.1.7, it is a homomorphism, so that
A is commutative.

Historical note: The results in Section 2.2 are due to Blecher (see [2], which
was written close to the date of [8, 15], although it appeared much later), with the
following main exceptions. The fact that X ⊂ X∗∗ completely isometrically was
independently noticed in [8, 15]. Effros and Ruan had noticed 1.3.8 via a different
route [14]. Item 1.3.16 is a simplification by Blecher and Magajna [5] of examples
of Effros-Ozawa-Ruan, and Peters-Wittstock. Le Merdy was the first to find an
example of a ‘bad predual’ in the sense of 1.3.5.

Exercises.

(1) As in the Exercise 1 at the end of Chapter 1, show that the map T 7→ T ∗ is a
complete isometry from CB(X,Y ) into CB(Y ∗, X∗), and show that this map
is onto if X and Y are reflexive.

(2) Show that if u is a complete quotient map then u∗ is a complete isometry.

(3) Show that if F is any Banach space, and if E = F ⊕· · ·⊕F is a finite direct sum
of n copies of F , equipped with any norm such that the n canonical inclusions of
F into E are isometries, then E ∼= F⊕1 · · ·⊕1F ∼= F⊕∞ · · ·⊕∞F bicontinuously.
Also, if Z = F ∗ ⊕ · · · ⊕ F ∗, equipped with any norm such that the n canonical
inclusions of F ∗ into Z are isometries, show that Z ∼= E∗ bicontinuously, via
the map θ(ϕ1, · · · , ϕn)(x1, · · · , xn) =

∑n
k=1 ϕk(xk), for ϕk ∈ F ∗, xk ∈ F . Show

that a similar statement holds for W = F ∗∗⊕· · ·⊕F ∗∗ equipped with any norm
such that the n canonical inclusions of F ∗∗ into W are isometries. Moreover,
show that the resulting isomorphism E∗∗ ∼= W ‘restricts’ on E to the ‘identity
map’.

(4) Show that the 1-sum has the following universal property: If Z is an operator
space and if uλ : Xλ → Z are completely contractive linear maps, then there is
a canonical complete contraction u : ⊕1

λ Xλ → Z such that u ◦ ελ = uλ.

(5) Show that if u : X∗ → Y ∗ is a weak* continuous isometry (resp. complete
isometry), where X and Y are Banach spaces (resp. complete operator spaces),
then u = q∗ for a 1-quotient map (resp. complete quotient map) q : Y → X.
[Hint: By Krein-Smulian, u is a weak* homeomorphism and its range N is
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weak* closed. Thus we can assume X∗ = N,X = Y/N⊥, and u is the inclusion
N → Y ∗, in which case we can take q : Y → Y/N⊥ to be the canonical quotient
map.]

(6) If A is any unital C*-algebra, and if A◦ is A with the reversed multiplication,
show that A is a unital C*-algebra, and its canonical matrix norms are given
by ‖[aij ]‖Mn(A◦)) = ‖[aji]‖Mn(A)).



Chapter 2

Addendum to Lecture 2/3
(Operator spaces)

2.1 Operator systems

2.1.1 (Unital operator spaces) A unital operator space is a subspace S of a unital
C∗-algebra A, which contains the identity of A. There are important in studying
noncommutative function spaces (we recall in the study of classical abstract function
spaces (spaces of functions on a topological space) one often assumes the space
‘contains constants’. We will not say much about these spaces–just giving their
abstract characterization (without proof) due to Blecher and Neal:

Theorem 2.1.2. If X is an operator space and u ∈ X with ‖u‖ = 1 then (X,u) is
a unital operator space iff

max{‖un + ikx‖ : k = 0, 1, 2, 3} ≥
√

1 + ‖x‖, n ∈ N, x ∈Mn(X).

This is also equivalent to

‖[ un x ]‖ =

∥∥∥∥[ un
x

]∥∥∥∥ , n ∈ N, x ∈Mn(X), ‖x‖ = 1.

Here un is the diagonal matrix u⊗ In in Mn(X) with u in each diagonal entry.
Indeed in the first result one only needs x of ‘small norm’, where ‘small’ can differ
for each n.

2.1.3 (Operator systems) An operator system is a subspace S of a unital C∗-
algebra A, which contains the identity of A, and which is selfadjoint, that is, x∗ ∈ S
if and only if x ∈ S. There is an abstract characterization of these due to Choi and
Effros. A subsystem of an operator system S is a selfadjoint linear subspace of S
containing the ‘identity’ 1 of S. If S is an operator system, a subsystem of a C∗-
algebra A, then S has a distinguished ‘positive cone’ S+ = {x ∈ S : x ≥ 0 in A}.
We also write Ssa for the real vector space of selfadjoint elements x (i.e. those

33
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satisfying x = x∗) in S. Then S has an associated ordering ≤, namely we say that
x ≤ y if x, y are selfadjoint and y−x ∈ S+. Note that if x ∈ S then x+x∗

2 and x−x∗
2i

are selfadjoint, and so any x ∈ S is of the form x = h + ik for h, k ∈ Ssa. Also, if
h ∈ Ssa then ‖h‖1 + h and ‖h‖1− h are positive. Thus Ssa = S+ − S+.

A linear map u : S → S ′ between operator systems is called ∗-linear if u(x∗) =
u(x)∗ for all x ∈ S. Some authors say that such a map is selfadjoint. We say that
u is positive if u(S+) ⊂ S ′+. By facts at the end of the last paragraph, any x ∈ S
may be written as x = x1 − x2 + i(x3 − x4), and from this it is easy to see that a
positive map u : S → S ′ is ∗-linear. Indeed,

u(x∗) = u(x1 − x2 − i(x3 − x4)) = u(x1)− u(x2)− i(u(x3)− u(x4)),

whereas

u(x)∗ = (u(x1)− u(x2) + i(u(x3)− u(x4)))∗ = u(x1)− u(x2)− i(u(x3)− u(x4)).

The operator system Mn(S), which is a subsystem of Mn(A), has a ‘positive cone’
too, and thus it makes sense to talk about completely positive maps between operator
systems. These are the maps u such that un = IMn ⊗ u : Mn(S) → Mn(S ′) is
positive for all n ∈ N. Indeed the morphisms in the category of operator systems
are often taken to be the unital completely positive maps. Any ∗-homomorphism π
between C∗-algebras is clearly positive, and applying this fact to πn shows that π
is completely positive. Completely positive maps are discussed in very many places
in the literature (see e.g. [10, 23]), and we shall be brief here.

Suppose that S is a subsystem of a unital C∗-algebra. By the Hahn–Banach
theorem, the set of states of S (that is, the set of ϕ ∈ S∗ with ϕ(1) = ‖ϕ‖ = 1) is
just the set of restrictions of states on the containing C∗-algebra to S. Using this
fact, we have that Ssa (resp. S+) is exactly the set of elements x ∈ S such that
ϕ(x) ∈ R (resp. ϕ(x) ≥ 0) for all states ϕ of S (by the C∗-algebra case of these
results). From this it is clear that if u : S1 → S2 is a contractive unital linear map
between operator systems, then u is a positive map (for if x ∈ S1+, and if ϕ is a
state on S2 then ϕ ◦ u is a state of S1, so that ϕ(u(x)) ≥ 0; and so u(x) ≥ 0).
Applying this principle to un, we see that a completely contractive unital linear
map between operator systems is completely positive.

Clearly an isomorphism between operator systems which is unital and completely
positive, and has completely positive inverse, preserves all the ‘order’. Such a map
is called a complete order isomorphism. The range of a completely positive unital
map between operator systems is clearly also an operator system; we say that such
a map is a complete order injection if it is a complete order isomorphism onto its
range.

The following simple fact relates the norm to the matrix order, and is an el-
ementary exercise using the definition of a positive operator. Namely, if x is an
element of a unital C∗-algebra or operator system A, or if x ∈ B(K,H), then[

1 x
x∗ 1

]
≥ 0 ⇐⇒ ‖x‖ ≤ 1. (2.1)

Here ‘≥ 0’ means ‘positive in M2(A)’ (or ‘positive in B(H ⊕K)’).
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2.1.4 It is easy to see from (2.1) that a completely positive unital map u between
operator systems is completely contractive. (For example, to see that u is contrac-
tive, take ‖x‖ ≤ 1, and apply u2 to the associated positive matrix in (2.1). This is
positive, so that using (2.1) again we see that ‖u(x)‖ ≤ 1.) Putting this together
with some facts from 2.1.3 we see that a unital map between operator systems is
completely positive if and only if it is completely contractive; and in this case the
map is ∗-linear. If, further, u is one-to-one, then by applying the above to u and
u−1 one sees immediately that a unital map between operator systems is a complete
order injection if and only if it is a complete isometry.

Theorem 2.1.5. (Stinespring) Let A be a unital C∗-algebra. A linear map u : A→
B(H) is completely positive if and only if there is a Hilbert space K, a unital
∗-homomorphism π : A → B(K), and a bounded linear V : H → K such that
u(a) = V ∗π(a)V for all a ∈ A. This can be accomplished with ‖u‖cb = ‖V ‖2. Also,
this equals ‖u‖. If u is unital then we may take V to be an isometry; in this case
we may view H ⊂ K, and we have u(·) = PHπ(·)|H .

Proof. The usual proof of this may be found in many places (e.g. [1, 10, 23]), and it
is very similar to the proof of the ‘GNS construction’ from C∗-algebra theory. Thus
we just give a sketch. Given a completely positive u, the idea to construct π, as in
the GNS construction proof, is to find an inner product defined on a simple space
containing H on which A has a natural algebraic representation. In this case, the
space is A ⊗H, and we define the representation of A by π(a)(b ⊗ ζ) = ab ⊗ ζ for
a, b ∈ A, ζ ∈ H. We define the inner product on A⊗H by

〈a⊗ η, b⊗ ζ〉 = 〈T (b∗a)η, ζ〉 , a, b ∈ A, η, ζ ∈ H.

The rest can be left as an exercise, following the model of the GNS construction.

Proposition 2.1.6. (A Kadison–Schwarz inequality) If u : A→ B is a unital com-
pletely positive (or equivalently unital completely contractive) linear map between
unital C∗-algebras, then u(a)∗u(a) ≤ u(a∗a), for all a ∈ A.

Proof. By 2.1.5 we have u = V ∗π(·)V , with ‖V ‖ ≤ 1 and π a ∗-homomorphism.
Thus u(a)∗u(a) = V ∗π(a)∗V V ∗π(a)V ≤ V ∗π(a)∗π(a)V = u(a∗a).

Corollary 2.1.7. Let u : A → B be a completely isometric unital surjection be-
tween unital C∗-algebras. Then u is a ∗-isomorphism.

Proof. By 2.1.6 applied to both u and u−1 we have u(x)∗u(x) ≤ u(x∗x), and
u−1(u(x)∗u(x)) ≥ u−1(u(x))∗u−1(u(x)) = x∗x, for all x ∈ A. Applying u to the
last inequality gives u(x)∗u(x) ≥ u(x∗x). Hence u(x)∗u(x) = u(x∗x). Now use the

polarization identity (Φ(x, y) =
∑3
k=0 i

kΦ(x, x) for any sesquiliear map Φ(x, y)), to
conclude that u(x)∗u(y) = u(x∗y) for x, y ∈ A. Setting y = 1 gives u(x)∗ = u(x∗),
and so u(x∗y) = u(x∗)u(y). So u is a ∗-isomorphism.

Proposition 2.1.8. Let u : A→ B be as in 2.1.6. Suppose that c ∈ A, and that c
satisfies u(c)∗u(c) = u(c∗c). Then u(ac) = u(a)u(c) for all a ∈ A.
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Proof. Suppose that B ⊂ B(H). We write u = V ∗π(·)V as in Stinespring’s theorem,
with V ∗V = IH . Let P = V V ∗ be the projection onto V (H). By hypothesis
V ∗π(c)∗Pπ(c)V = V ∗π(c)∗π(c)V . For ζ ∈ H, set η = π(c)V ζ. Then ‖Pη‖2 =
〈V ∗π(c)∗Pπ(c)V ζ, ζ〉 = ‖η‖2. Thus Pη = η, and V V ∗π(c)V = π(c)V . Therefore
u(a)u(c) = V ∗π(a)V V ∗π(c)V = V ∗π(a)π(c)V = u(ac).

2.1.9 (Completely positive bimodule maps) An immediate consequence of 2.1.8:
Suppose that u : A → B is as in 2.1.6, and that there is a C∗-subalgebra C of A
with 1A ∈ C, such that π = u|C is a ∗-homomorphism. Then

u(ac) = u(a)π(c) and u(ca) = π(c)u(a) (a ∈ A, c ∈ C).

We recall that a map Φ is idempotent if Φ ◦ Φ = Φ.

Theorem 2.1.10. (Choi and Effros) Suppose that A is a unital C∗-algebra, and
that Φ: A→ A is a unital, completely positive (or equivalently by 2.1.4, completely
contractive), idempotent map. Then we may conclude:

(1) R = Ran(Φ) is a C∗-algebra with respect to the original norm, involution, and
vector space structure, but new product r1 ◦Φ r2 = Φ(r1r2).

(2) Φ(ar) = Φ(Φ(a)r) and Φ(ra) = Φ(rΦ(a)), for r ∈ R and a ∈ A.

(3) If B is the C∗-subalgebra of A generated by the set R, and if R is given the
product ◦Φ, then Φ|B is a ∗-homomorphism from B onto R.

Proof. (2) By linearity and the fact that a positive map is ∗-linear (see 2.1.3), we
may assume that a, r are selfadjoint. Set

d = d∗ =

[
0 r
r∗ a

]
.

Then Φ2(d2) ≥ (Φ2(d))2 by the Kadison–Schwarz inequality 2.1.6, so that[
Φ(r2) Φ(ra)
Φ(ar) ∗

]
≥
[

r2 rΦ(a)
Φ(a)r ∗

]
.

Here ∗ is used for a term we do not care about. Applying Φ2 gives[
Φ(r2) Φ(ra)
Φ(ar) ∗

]
≥
[

Φ(r2) Φ(rΦ(a))
Φ(Φ(a)r) ∗

]
.

Thus [
0 Φ(ra)− Φ(rΦ(a))

Φ(ar)− Φ(Φ(a)r) ∗

]
≥ 0,

which implies that Φ(ra)− Φ(rΦ(a)) = 0 and Φ(ar)− Φ(Φ(a)r) = 0.
(1) By (2) we have for r1, r2, r3 ∈ R that

(r1 ◦Φ r2) ◦Φ r3 = Φ(Φ(r1r2)r3) = Φ(r1r2r3).

Similarly, r1 ◦Φ (r2 ◦Φ r3) = Φ(r1r2r3), which shows that the multiplication is
associative. It is easy to check that R (with original norm, involution, and vector
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space structure, but new multiplication) satisfies the conditions necessary to be a
C∗-algebra. For example:

(r1 ◦Φ r2)∗ = Φ(r1r2)∗ = Φ(r∗2r
∗
1) = r∗2 ◦Φ r∗1 .

We check the C∗-identity using the Kadison–Schwarz inequality 2.1.6:

‖r∗ ◦Φ r‖ = ‖Φ(r∗r)‖ ≥ ‖Φ(r)∗Φ(r)‖ = ‖r∗r‖ = ‖r‖2,

and conversely,
‖r‖2 = ‖r∗r‖ ≥ ‖Φ(r∗r)‖ = ‖r∗ ◦Φ r‖.

(3) This will follow if we can prove that Φ(r1r2 · · · rn) = r1 ◦Φ r2 · · · ◦Φ rn, for
ri ∈ R. This follows in turn by induction on n. Supposing that it is true for n = k,
we see that r1 ◦Φ r2 · · · ◦Φ rk+1 equals

Φ((r1 ◦Φ r2 · · · ◦Φ rk)rk+1) = Φ(Φ(r1r2 · · · rk)rk+1) = Φ(r1r2 · · · rkrk+1),

using (2) in the last equality.

2.1.11 (The Paulsen system) If X is a subspace of B(H), we define the Paulsen
system to be the operator system

S(X) =

[
CIH X
X? CIH

]
=

{[
λ x
y∗ µ

]
: x, y ∈ X, λ, µ ∈ C

}
in M2(B(H)), where the entries λ and µ in the last matrix stand for λIH and µIH
respectively. The following important lemma shows that as an operator system
(i.e. up to complete order isomorphism) S(X) only depends on the operator space
structure of X, and not on its representation on H.

Lemma 2.1.12. (Paulsen) Suppose that for i = 1, 2, we are given Hilbert spaces
Hi,Ki, and linear subspaces Xi ⊂ B(Ki, Hi). Suppose that u : X1 → X2 is a linear
map. Let Si be the following operator system inside B(Hi ⊕Ki):

Si =

[
CIHi Xi

X?
i CIKi

]
.

If u is contractive (resp. completely contractive, completely isometric), then

Θ :

[
λ x
y∗ µ

]
7→
[

λ u(x)
u(y)∗ µ

]
is positive (resp. completely positive and completely contractive, a complete order
injection) as a map from S1 to S2.

Proof. Suppose that z is a positive element of S1. Thus

z =

[
a x
x∗ b

]
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where a and b are positive. Since z ≥ 0 if and only if z + ε1 ≥ 0 for all ε > 0, we
may assume that a and b are invertible. Then[

a−
1
2 0

0 b−
1
2

] [
a x
x∗ b

] [
a−

1
2 0

0 b−
1
2

]
=

[
1 a−

1
2xb−

1
2

b−
1
2x∗a−

1
2 1

]
≥ 0.

Hence by (2.1), we have that ‖a− 1
2xb−

1
2 ‖ ≤ 1. Applying u we obtain that

‖a− 1
2u(x)b−

1
2 ‖ ≤ 1. Reversing the argument above now shows that Θ(z) ≥ 0. So

Θ is positive, and a similar argument shows that it is completely positive if u is
completely contractive. By 2.1.4 we have that Θ is completely contractive in that
case. If in addition u is a complete isometry, then applying the above to u and u−1

we obtain the final assertion.

Historical notes: This section is a slight variant of [4, Section 1.3]; historical
attributions are given there.



Chapter 3

Lecture 3

3.1 Operator space tensor products

Recall that a map T : E × F → Z between vector spaces is called bilinear if T (x, ·)
is linear for each fixed x ∈ E, and T (·, y) is linear for each fixed y ∈ F . If E and F
are vector spaces, we recall that the (algebraic) tensor product is a pair (E ⊗F,⊗)
consisting of a vector space E ⊗ F , and a bilinear map ⊗ : E × F → E ⊗ F (where
we write x⊗y for ⊗ applied to the pair (x, y) ∈ E×F ), with the universal property
in the following result:

Proposition 3.1.1. If E and F are vector spaces then there exists a vector space
E ⊗F , and a bilinear map ⊗ : E ×F → E ⊗F whose range spans E ⊗F , with the
following property:

For every vector space Z, and every bilinear T : E×F → Z, there exists a linear
map T̃ : E ⊗ F → Z such that T̃ (x⊗ y) = T (x, y) for all x ∈ E, y ∈ F .

Moreover, this vector space is essentially unique; that is, if V is another vector
space, and ψ : E × F → V is a bilinear map, with the above property, then there
is a vector space isomorphism θ : E ⊗ F → V such that θ(x ⊗ y) = ψ(x, y) for all
x ∈ E, y ∈ F .

Proof. Existence: There are several ways to show that there exists a space with
this property. We assume that the reader has seen one such method in an algebra
course.

Uniqueness: If (V, ψ) is another pair with the above property, then since E ⊗F
has the above property there exists a linear map ψ̃ : E⊗F → V such that ψ̃(x⊗y) =
ψ(x, y) for all x ∈ E, y ∈ F . Similarly, since V has the above property, applying
the property to the bilinear map T = ⊗, there exists a linear map T̃ : V → E ⊗ F
such that T̃ (ψ(x, y)) = x⊗ y for all x ∈ E, y ∈ F . It follows that

ψ̃(T̃ (ψ(x, y))) = ψ̃(x⊗ y) = ψ(x, y).

That is ψ̃ ◦ T̃ =Id on the range of ψ. Since the range of ψ spans V , and since ψ̃ ◦ T̃
is linear, we deduce that ψ̃ ◦ T̃ =Id on V . A similar argument shows that T̃ ◦ ψ̃ =

39
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Id on E ⊗ F . So ψ̃ is an isomorphism from E ⊗ F → V , and we already saw that
ψ̃(x⊗ y) = ψ(x, y) for all x ∈ E, y ∈ F .

Thus the algebraic tensor product ‘linearizes bilinear maps’.
A special case of this of interest is if ui : Ei → Fi are linear maps for i = 1, 2.

The map E1 × E2 → F1 ⊗ F2 defined by (x1, x2) 7→ u1(x1) ⊗ u2(x2), is bilinear.
Linearizing this bilinear map by 3.1.1, we obtain a linear map E1 ⊗E2 → F1 ⊗ F2.
This map is written as u1 ⊗ u2 and has the defining property that

(u1 ⊗ u2)(x1 ⊗ x2) = u1(x1)⊗ u2(x2), x1 ∈ E1, x2 ∈ E2.

3.1.2 (The injective tensor product) Suppose that E,F are normed vector spaces.
If (xk)nk=1 and (yk)nk=1 are finite families in E and F respectively, then one may
define for z =

∑n
k=1 xk ⊗ yk in the algebraic tensor product E ⊗ F , the quantity∥∥∥∑

k

xk ⊗ yk
∥∥∥
∨

= sup
{∣∣∣∑

k

ϕ(xk)ψ(yk)
∣∣∣ : ϕ ∈ Ball(E∗), ψ ∈ Ball(F ∗)

}
.

This is a norm on E ⊗ F . To see this notice that it is fairly obviously a seminorm
(exercise). To see that this is a norm, we rewrite z. Choose an Auerbach basis
(wk)mk=1 for the space W = Span({xk : k = 1, · · · , n}) (look this up on Wiki if
you havent seen this before). Thus we have linear functionals ϕj ∈ Ball(W ∗) with
ϕj(wi) = δij . By the Hahn-Banach theorem these extend to continuous ϕ̃j ∈ E∗.
We can rewrite each xk in terms of this basis, and this allows us to write z =∑m
k=1 wk ⊗ y′k say. If ‖z‖∨ = 0, then for every ϕ ∈ Ball(E∗), ψ ∈ Ball(F ∗) we

have
∑
k ϕ(wk)ψ(y′k) = 0. Thus ψ

(∑
k ϕ(wk)y′k

)
= 0. By a corollary to the Hahn-

Banach theorem, we have
∑
k ϕ(wk)y′k = 0. Setting ϕ = ϕ̃j shows that y′j = 0 for

all j, and so z = 0.
The completion of E⊗F in this norm is called the injective tensor product, and

is written as E⊗̌F .

3.1.3 (Hilbert tensor product) We recall from operator theory that if H1, H2 are
Hilbert spaces then there is at most one inner product on H1 ⊗H2 satisfying

〈ζ1 ⊗ ζ2, η1 ⊗ η2〉 = 〈ζ1, η1〉 〈ζ2, η2〉, ζ1, η1 ∈ H1, ζ2, η2 ∈ H2. (3.1)

. Then the completion in the associated norm is a Hilbert space. The latter is the
Hilbert space tensor product, and is written as H1 ⊗2 H2 or H1 ⊗H2. Note that we
have a unitary equivalence

L2(X)⊗2 L2(Y ) ∼= L2(X × Y )

where we are using the product measure on X × Y . For ζ ∈ H1, η ∈ H2 we have

‖ζ ⊗ η‖2 = 〈ζ ⊗ η, ζ ⊗ η〉 = 〈ζ, ζ〉 〈η, η〉 = ‖ζ‖2‖η‖2,

so that ‖ζ ⊗ η‖ = ‖ζ‖‖η‖. It is easy now to prove that if Tk : Hk → Kk are
contractions between Hilbert spaces, then there is an induced contraction T1 ⊗ T2 :
H1 ⊗H2 → K1 ⊗K2.
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3.1.4 (Minimal tensor product) Let X and Y be operator spaces, and let X ⊗
Y denote their algebraic tensor product. We recall from above that any u =∑n
k=1 xk ⊗ yk ∈ X ⊗ Y can be associated with a map ũ : Y ∗ → X defined by

ũ(ψ) =
∑
k xk ψ(yk), for ψ ∈ Y ∗. If u =

∑n
k=1 xk ⊗ ψk ∈ X ⊗ Y ∗ then u can

be associated with a map û : Y → X defined by ũ(y) =
∑
k xk ψk(y), for y ∈ Y .

Both ũ and û are automatically completely bounded by 1.2.7, since they are linear
combinations of scalar functionals multiplied by fixed operators. Thus the above
correspondences between tensor products and finite rank mappings yield embed-
dings X⊗Y ↪→ CB(Y ∗, X) and X⊗Y ∗ ↪→ CB(Y,X). The minimal tensor product
X⊗minY may then be defined to be (the completion of) X⊗Y in the matrix norms
inherited from the operator space structure on CB(Y ∗, X) described in 1.2.18. That
is,

X ⊗min Y ↪→ CB(Y ∗, X) completely isometrically. (3.2)

Explicitly, if u =
∑n
k=1 xk ⊗ yk ∈ X ⊗ Y , then the norm of u in X ⊗min Y equals

sup
∥∥∥[∑

k

xk ψij(yk)
]∥∥∥
Mm(X)

, (3.3)

the supremum taken over all [ψij ] in the ball of Mm(Y ∗), and all m ∈ N. Applying
(1.14) to (3.3), we see that ‖u‖min equals the more symmetric form

sup
∥∥∥[ϕrs(∑

k

xk ψij(yk)
)]∥∥∥

Mms

= sup
∥∥∥[∑

k

ϕrs(xk)ψij(yk)
]∥∥∥
Mms

, (3.4)

the supremum taken over [ϕrs] and [ψij ] in the ball of Ms(X
∗) and Mm(Y ∗) re-

spectively, and all m, s ∈ N. A similar formula holds in Mn(X ⊗min Y ):

‖[wrs]‖Mn(X⊗minY ) = sup
{
‖[(ϕkl ⊗ ψij)(wrs)]‖

}
(3.5)

for [wrs] ∈Mn(X ⊗ Y ), where the supremum is taken over all [ϕrs] and [ψij ] in the
ball of Ms(X

∗) and Mm(Y ∗) respectively, and all m, s ∈ N, and where ϕkl ⊗ ψij
denotes the obvious functional on X ⊗ Y formed from ϕkl and ψij .

• We see from (3.5) that ⊗min is commutative, that is

X ⊗min Y = Y ⊗min X

as operator spaces. The underlying reason for this is because in the formulae
above we have ϕrs(x)ψij(y) = ψij(y)ϕrs(x).

• It is also easy to see from (3.5) that ⊗min is functorial. That is, if Xi and Yi are
operator spaces for i = 1, 2, and if ui : Xi → Yi are completely bounded, then the
map x⊗ y 7→ u1(x)⊗ u2(y) on X1 ⊗X2 has a unique continuous extension to a
map u1 ⊗ u2 : X1 ⊗min X2 → Y1 ⊗min Y2, with ‖u1 ⊗ u2‖cb ≤ ‖u1‖cb‖u2‖cb. One
way to see this is to note that if [ϕrs] and [ψij ] are in the ball of Ms(Y

∗
1 ) and

Mm(Y ∗2 ) respectively, for m, s ∈ N, then 1
‖u1‖cb [ϕrs ◦ u1] and 1

‖u2‖cb [ψij ◦ u2] are

in the ball of Ms(X
∗
1 ) and Mm(X∗2 ) respectively. Hence by (3.5) we have

1

‖u1‖cb‖u2‖cb
‖[(ϕkl ⊗ ψij)((u1 ⊗ u2)wrs)]‖ ≤ ‖[wrs]‖Mn(X1⊗minX2),
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for [wrs] ∈Mn(X1⊗X2), and taking the supremum over [ϕrs] and [ψij ], by (3.5)
again we have

1

‖u1‖cb‖u2‖cb
‖[(u1 ⊗ u2)wrs]‖Mn(Y1⊗minY2) ≤ ‖[wrs]‖Mn(X1⊗minX2).

Thus ‖u1 ⊗ u2‖cb ≤ ‖u1‖cb‖u2‖cb. (As an exercise, the reader could check that
‖u1 ⊗ u2‖cb = ‖u1‖cb‖u2‖cb, but we shall not need this.)

• If, further, the ui are completely isometric, then so is u1 ⊗ u2. This latter fact
is called the injectivity of the tensor product. To prove it, since u1 ⊗ u2 =
(u1 ⊗ I) ◦ (I ⊗ u2), we may by symmetry reduce the argument to the case that
Y2 = X2, and u2 = IX2

. Then it is easy to see that we can suppose that X1 ⊂ Y1

and that u1 is this inclusion map. In this case, consider the commutative diagram

CB(X∗2 , X1) −→ CB(X∗2 , Y1)x x
X1 ⊗min X2

u1⊗I−→ Y1 ⊗min X2

where the vertical arrows are complete isometries by definition of ⊗min, and the
top arrow is a complete isometry (since a map into a subspace of an operator
space clearly has the same norm as when it is viewed as a map into the bigger
space). Hence the bottom arrow is a complete isometry too, which is what we
need.

• For any operator spaces X,Y , we have

X ⊗min Y ∗ ↪→ CB(Y,X) completely isometrically, (3.6)

via the map ∧ : u→ û mentioned at the start of 3.1.4. We first prove this in the
case that X = B(H). Consider the sequence of maps

B(H) ⊗min Y ∗
∧−→ CB(Y,B(H)) ∼= w∗CB(Y ∗∗, B(H)) ⊂ CB(Y ∗∗, B(H)),

where the ‘∼=’ is from (1.17). The composition of these maps is the complete
isometry u 7→ ũ implementing (3.2). Since the last few maps in the sequence are
isometries so is the first one.
For a general operator space X ⊂ B(H) we have a commutative diagram

B(H) ⊗min Y ∗
∧−→ CB(Y,B(H))x x

X ⊗min Y ∗
∧−→ CB(Y,X)

where the left vertical arrow is a complete isometry by the injectivity of ⊗min,
and right one is obviously a complete isometry as we observed earlier. By the last
paragraph, the top arrow is an isometry, and so the bottom arrow is an isometry
too. We leave the proof that it is a complete isometry to the interested reader.
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3.1.5 (Properties of ⊗̌) Simpler versions of all the computations above give the
analogous properties for ⊗̌. For example, X ⊗̌Y ∗ ↪→ B(Y,X) isometrically, for
Banach spaces X and Y .

3.1.6 (The spatial tensor product and ⊗min) Suppose that H1, H2 are Hilbert
spaces, and consider the canonical map π : B(H1) ⊗ B(H2) → B(H1 ⊗2 H2). This
is the map taking a rank one tensor S ⊗ T in B(H1) ⊗ B(H2) to the map S ⊗ T
on H1 ⊗2 H2 taking ζ ⊗ η to S(ζ)⊗ T (η). We claim that π actually is a complete
isometry when B(H1)⊗B(H2) is given its norm as a subspace of B(H1)⊗minB(H2).
To see this, we choose a set I such that H1 = `2I , so that we both have MI

∼= B(H1)

∗-isomorphically, and also H1 ⊗2 H2
∼= H

(I)
2 as Hilbert spaces. By (3.6) and 1.3.6,

B(H1)⊗minB(H2) ↪→ CB(S1(H2),MI). However, by 1.3.6 and 1.2.23 (5) and (12),
we have

CB(S1(H2),MI) ∼= MI(S
1(H2)∗) ∼= MI(B(H2)) ∼= B(H

(I)
2 ) ∼= B(H1 ⊗2 H2),

isometrically. A similar argument proves the complete isometry, and proves the
claim.

Thus if X and Y are subspaces of B(H1) and B(H2) respectively, then by the
injectivity of this tensor product, we have that X⊗minY is completely isometrically
isomorphic to the closure in B(H1 ⊗2 H2) of the span of the operators x ⊗ y on
H1 ⊗2 H2, for x ∈ X, y ∈ Y . Thus the minimal tensor product of X ⊗ Y may
alternatively be defined to be this subspace of B(H1 ⊗2 H2).

The above implies that the minimal tensor product of C∗-algebras coincides with
the tensor product of the same name used in C∗-algebra theory, or with the so-called
spatial tensor product. We recall that if A and B are C∗-subalgebras of B(H1) and
B(H2) respectively, then A ⊗ B may be identified (as above) with a subspace of
B(H1 ⊗2 H2), which is easy to see is actually a ∗-subalgebra. The closure of this,
which is a C∗-algebra, is called the spatial tensor product of A and B, and is written
as A⊗min B. If A and B are also commutative, then so is A⊗min B, since it is the
closure of a commutative ∗-subalgebra.

From the last paragraph it is clear that for any operator space X,

Mn ⊗min X ∼= Mn(X) (3.7)

completely isometrically, since both can be completely isometrically identified with
the same subspace ofB(`2n⊗H) ∼= B(H(n)), ifX ⊂ B(H). Similarly, Mmn⊗minX ∼=
Mmn(X).

3.1.7 (Uncompleted tensor products) For what follows, it is convenient to state
separately a simple property of tensor product norms. If E and F are incomplete
spaces, and α is a tensor norm on Ē ⊗ F̄ , then it is usual to write Ē ⊗α F̄ for the
completion of Ē ⊗ F̄ with respect to α. We will always deal with so-called ‘cross
norms’; that is, α(x ⊗ y) = ‖x‖‖y‖ for x ∈ E, y ∈ F . Let us write E ⊗α F for the
(possibly incomplete) subspace E⊗F of Ē⊗ F̄ , equipped with the norm α. Claim:
Ē ⊗α F̄ is the closure (and also the completion) of E ⊗α F . To see this, we need to
show that any u ∈ Ē⊗α F̄ may be approximated in the norm topology by elements
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in E ⊗ F . However, such u may first be approximated in norm by a finite sum of
elementary tensors x⊗ y, with x ∈ Ē and y ∈ F̄ . Then we can approximate x⊗ y
in norm by x′ ⊗ y′, with x′ ∈ E and y′ ∈ F . Hence u is approximable by elements
in E ⊗α F .

3.1.8 (Further properties of ⊗min) For any set I we have

KI ⊗min X ∼= KI(X). (3.8)

To see this, first note that if X ⊂ B(H), then by the injectivity of ⊗min we have
KI ⊗min X ⊂ MI ⊗min B(H). By 3.1.6, the latter space can be identified with
a subspace of B(`2I ⊗ H) ∼= B(H(I)) ∼= MI(B(H)) (see 1.2.23 (5)). On the other

hand, KI(X) is the closure of Mfin
I (X) in MI(B(H)). We can express this in the

commutative diagram

B(`2I ⊗2 H) −→ MI(B(H))x x
MI ⊗min B(H) MI(X)x x
Mfin
I ⊗min X −→ Mfin

I (X).

The complete isometry in the top row, restricts to a complete isometry in the bottom
row. Taking completions, and using 3.1.7, gives (completely isometrically)

KI ⊗min X = Mfin
I ⊗min X ∼= Mfin

I (X) = KI(X).

There is a ‘rectangular variant’ of (3.8): for any sets I, J we have

KI,J ⊗min X ∼= KI,J(X). (3.9)

To see this, suppose that I has a bigger cardinality than J (the contrary case is
almost identical). Then we may regard KI,J ⊂ KI and KI,J(X) ⊂ KI(X). By the
injectivity of ⊗min we have a commutative diagram

KI ⊗min X −→ KI(X)x x
KI,J ⊗min X −→ KI,J(X).

The complete isometry in the top row coming from (3.8), restricts to a complete
isometry in the bottom row, proving (3.9).

Similarly, it follows from the second last paragraph, and from the fact that
B((H1 ⊗2 H2)⊗2 H3) ∼= B(H1 ⊗2 (H2 ⊗2 H3)), that ⊗min is associative. That is,

(X1 ⊗min X2)⊗min X3 = X1 ⊗min (X2 ⊗min X3). (3.10)
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To see this clearly, suppose thatXi ⊂ B(Hi), and consider the commutative diagram

B((H1 ⊗2 H2)⊗2 H3) −→ B(H1 ⊗2 (H2 ⊗2 H3))x x
B(H1 ⊗2 H2)⊗min B(H3) B(H1)⊗min B(H2 ⊗2 H3)x x

(X1 ⊗min X2)⊗min X3 −→ X1 ⊗min (X2 ⊗min X3).

The vertical arrows are complete isometries by 3.1.6 and the ‘injectivity’ of ⊗min.
The ∗-isomorphism in the top row, which is a complete isometry, restricts to a
complete isometry in the bottom row. Taking completions, and using 3.1.7, gives
(completely isometrically)

(X1 ⊗min X2)⊗min X3 = (X1 ⊗min X2)⊗min X3
∼= X1 ⊗min (X2 ⊗min X3),

which equals X1⊗min (X2⊗minX3). This proves the associativity. Accordingly, the
space in (3.10) will be merely denoted by X1⊗minX2⊗minX3, and the proof above
shows that it can be identified with a subspace of B(H1 ⊗2 H2 ⊗2 H3). Similarly,
one may consider the N -fold minimal tensor product X1 ⊗min · · · ⊗min XN of any
N -tuple of operator spaces.

Proposition 3.1.9. Let E,F be Banach spaces and let X be an operator space.

(1) Min(E)⊗min X = E⊗̌X as Banach spaces.

(2) Min(E)⊗min Min(F ) = Min(E⊗̌F ) as operator spaces.

Proof. We have isometric embeddings Min(E) ⊗min X ⊂ CB(X∗,Min(E)) and
E⊗̌X ⊂ B(X∗, E) by (3.2) and the Banach space variant of (3.2). However
CB(X∗,Min(E)) = B(X∗, E) by (1.8). Thus both spaces in (1) coincide isometri-
cally with the same subspace of B(X∗, E), which proves (1). The isometry in (2) fol-
lows from (1). Thus the complete isometry in (2) will follow if Min(E)⊗min Min(F )
is a minimal operator space. To see this, suppose that E ⊂ C(K1) and F ⊂ C(K2)
isometrically. Then Min(E) ⊂ C(K1) and Min(F ) ⊂ C(K2) completely isometri-
cally. So by the ‘injectivity’ of ⊗min, we have that Min(E)⊗min Min(F ) is contained
inside C(K1) ⊗min C(K2) completely isometrically. However, we observed in 3.1.6
that the minimal tensor product of commutative C∗-algebras is a commutative
C∗-algebra, and hence is a C(K)-space, and is a ‘minimal operator space’.

3.1.10 (Duality of Min and Max) We take the time to prove an item stated earlier,
namely: For any Banach space E, we have

Min(E)∗ = Max(E∗) and Max(E)∗ = Min(E∗), (3.11)

completely isometrically. To see this, note that an element in Mn(Max(E)∗) may
be regarded as a map in CB(Max(E),Mn) by (1.6). By (1.10) this is exactly the
same as a map in B(E,Mn).

On the other hand, Mn(Min(E∗)) ∼= Mn⊗̌E∗ ∼= B(E,Mn) by Proposition
3.1.9 and ??. That is, an element in Mn(Min(E∗)) may be regarded as a map
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in B(E,Mn). These identifications preserve the norm, so that Mn(Max(E)∗) =
Mn(Min(E∗)). That is, Max(E)∗ = Min(E∗). Therefore also Max(E∗)∗ = Min(E∗∗).
However we claim that Min(E∗∗) = Min(E)∗∗. This claim may be seen by first prov-
ing it in the case that E = C(K), for compact K. The claim follows in this case
from 1.3.11, since the second dual of a commutative C∗-algebra is a commutative
C∗-algebra, and hence is a minimal operator space. Next we use the fact that ‘min-
imal operator spaces’ are completely isometric to subspaces of unital commutative
C∗-algebras, and the fact that the second dual of a complete isometry is a com-
plete isometry (see 1.3.3). Thus if Min(E) ⊂ C(K) completely isometrically, then
dualizing this embedding we get a commuting diagram

C(K)∗∗ −→ Min(C(K))∗∗x x
Min(E∗∗) −→ Min(E)∗∗

where all arrows except possibly the bottom one are complete isometries. Hence
the bottom one is a complete isometry, proving the claim.

Finally, Max(E∗) and Min(E)∗ are two operator space structures on E∗ with
the same operator space dual, and therefore they are completely isometric, by 1.3.1.

3.1.11 (Haagerup tensor product) Before we define this tensor product, we intro-
duce an intimately related class of bilinear maps. Suppose that X, Y , and W are
operator spaces, and that u : X × Y → W is a bilinear map. For n, p ∈ N, define a
bilinear map Mn,p(X)×Mp,n(Y )→Mn(W ) by

(x, y) 7−→
[ p∑
k=1

u(xik, ykj)
]
i,j
,

where x = [xij ] ∈Mn,p(X) and y = [yij ] ∈Mp,n(Y ). If p = n we write this map as
un. If the norms of these bilinear maps are uniformly bounded over p, n ∈ N, then
we say that u is completely bounded, and write the supremum of these norms as
‖u‖cb. Sometimes this is called completely bounded in the sense of Christensen and
Sinclair. It is easy to see (by adding rows and columns of zeroes to make p = n)
that ‖u‖cb = supn ‖un‖. (Indeed, if [xij ] ∈ Mn,p(X) and [yij ] ∈ Mp,n(Y ), and if
m = max{n, p}, then∥∥∥[ p∑

k=1

u(xik, ykj)
]∥∥∥
n

= ‖um([x′ij ], [y
′
ij ])‖m ≤ ‖um‖‖[xij ]‖‖[yij ]‖,

where [x′ij ] and [y′ij ] are m × m matrices obtained from [xij ] and [yij ] by adding
rows or columns of zeros.)

We say that u is completely contractive if ‖u‖cb ≤ 1. Completely bounded
multilinear maps of three variables have a similar definition (involving the expression
[
∑
k,l u(xik, ykl, zlj)]), and similarly for four or more variables. We remark that if

v : X → B(H) and w : Y → B(H) are completely bounded linear maps, then it is
easy to see that the bilinear map (x, y) 7→ v(x)w(y) is completely bounded in the
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sense above, and has completely bounded norm dominated by ‖v‖cb‖w‖cb. Indeed,
note that∥∥∥[ n∑

k=1

v(xik)w(ykj)
]∥∥∥
n
≤ ‖[v(xij)]‖n‖[w(yij)]‖n ≤ ‖v‖cb‖w‖cb‖[xij ]‖n‖[yij ]‖n,

if [xij ] ∈Mn(X) and [yij ] ∈Mn(Y ), since Mn(B(H)) is a Banach algebra.
Let X,Y be operator spaces. For n ∈ N and z ∈Mn(X ⊗ Y ) we define

‖z‖h = inf{‖x‖‖y‖}, (3.12)

where the infimum is taken over all p ∈ N, and all ways to write z = x � y, where
x ∈ Mn,p(X), y ∈ Mp,n(Y ). Here x � y denotes the formal matrix product of x
and y using the ⊗ sign as multiplication: namely x � y = [

∑p
k=1 xik ⊗ ykj ]. To

make sense of this, we first note that any z ∈ Mn(X ⊗ Y ) can be written as such
a x � y. To see this we observe that this is clearly true if z has only one nonzero
entry. For example, if this entry were the 1-2 entry, and if z12 =

∑p
k=1 xk⊗yk, then

z = x� y where x ∈Mnp(X) has first row consisting of the xk and zeros elsewhere,
and y ∈Mpn(Y ) has second column consisting of the yk and zeros elsewhere. Next
note that

x� y + x′ � y′ = [x : x′]�
[
y
y′

]
,

for matrices x, x′, y, y′ of appropriate sizes. Similarly for a sum of any (finite)
number of terms of the form x � y. Thus by writing z ∈ Mn(X ⊗ Y ) as a sum of
n2 matrices, each of which has only one nonzero entry, and using the facts above,
we do indeed have z = x� y as desired.

It is clear that ‖λz‖h = |λ|‖z‖h if λ ∈ C. Next note that the last centered
equation actually shows that ‖z + z′‖h ≤ ‖z‖h + ‖z′‖h for z, z′ ∈Mn(X ⊗ Y ). For
suppose that z = x � y and z′ = x′ � y′, with ‖x‖‖y‖ < ‖z‖h + ε and ‖x′‖‖y′‖ <
‖z′‖h + ε. By the trick of writing x � y = tx � 1

t y with t =
√
‖y‖/‖x‖, we can

assume that ‖y‖ = ‖x‖. Similarly, assume that ‖y′‖ = ‖x′‖. Then

‖z + z′‖h ≤ ‖[x : x′]‖
∥∥∥ [ y

y′

] ∥∥∥ ≤√‖x‖2 + ‖x′‖2
√
‖y‖2 + ‖y′‖2,

the last ≤ following from the C∗-identity used four times. For example,

‖[x : x′]‖2 = ‖xx∗ + x′x′∗‖ ≤ ‖xx∗‖+ ‖x′x′∗‖ = ‖x‖2 + ‖x′‖2.

Thus
‖z + z′‖h ≤ ‖x‖‖y‖+ ‖x′‖‖y′‖ ≤ ‖z‖h + ‖z′‖h + 2ε.

Now let ε→ 0, to see that ‖ · ‖h is a seminorm.
Suppose that u : X × Y →W is a bilinear map which is completely contractive

in the sense above. Let ũ : X ⊗ Y → W be the canonically associated linear map.
For z ∈Mn(X ⊗ Y ), if z = x� y as above, then

‖ũn(z)‖n =
∥∥∥[ p∑
k=1

u(xik, ykj)
]
≤ ‖x‖‖y‖.
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Taking the infimum over x, y with z = x� y, we see by the definition of ‖ · ‖h that

‖ũn(z)‖ ≤ ‖z‖h, (3.13)

where the latter quantity is as defined in (3.12). If ϕ and ψ are contractive function-
als on X and Y respectively, then using 1.2.7 and the fact at the end of the second
paragraph of 3.1.11, we see that the bilinear map (x, y) 7→ ϕ(x)ψ(y) is completely
contractive. Thus from (3.13) we see that∣∣∣ p∑

k=1

ϕ(xk)ψ(yk)
∣∣∣ ≤ ‖z‖h , z =

p∑
k=1

xk ⊗ yk.

By the definition of the Banach space injective tensor norm of z (see 3.2.2 in the
C∗-course), we deduce that the latter norm of an element z ∈ X ⊗ Y is dominated
by ‖z‖h. Hence indeed ‖ · ‖h is a norm.

Proposition 3.1.12. If X and Y are operator spaces, then the completion X⊗h Y
of X ⊗ Y with respect to ‖ · ‖h is an operator space.

Proof. We use Ruan’s theorem, in the form of Exercise (6) to Section 2.1. To see
(R1)’, suppose that α ∈Mm,n, β ∈Mn,m, z ∈Mn(X ⊗ Y ) with z = x� y as above.
Then αzβ = (αx)� (yβ), and so

‖αzβ‖h ≤ ‖αx‖‖yβ‖ ≤ ‖α‖‖x‖‖y‖‖β‖.

Taking the infimum over x, y with z = x� y, we see by definition of ‖ · ‖h that

‖αzβ‖h ≤ ‖α‖‖β‖‖z‖h.

For (R2)’, let z′ = x′ � y′ ∈Mp(X ⊗ Y ), then z ⊕ z′ = (x⊕ x′)� (y ⊕ y′), and

‖z ⊕ z′‖h ≤ ‖x⊕ x′‖‖y ⊕ y′‖ = max{‖x‖, ‖x′‖}max{‖y‖, ‖y′‖}.

As in the proof that ‖ · ‖h is a norm, we can assume that ‖x‖ = ‖y‖ and ‖x′‖ =
‖y′‖. Then ‖z ⊕ z′‖h ≤ max{‖x‖‖y‖, ‖x′‖‖y′‖}, and taking the infimum over such
x, x′, y, y′ gives (R2)’. Note that (R1)’ and (R2)’ pass to the completion of X ⊗ Y .
So X ⊗h Y is an operator space.

This operator space X ⊗h Y is called the Haagerup tensor product. Note that
the canonical bilinear map ⊗ : X × Y → X ⊗h Y is completely contractive in the
sense above.

Using (3.13) we see that if u : X × Y → W is a bilinear map with associated
linear map ũ : X ⊗ Y → W , then u is completely bounded if and only if ũ extends
to a completely bounded linear map on X ⊗h Y . Moreover we have

‖u‖cb =
∥∥ũ : X ⊗h Y −→W

∥∥
cb

in that case. The above property means that the Haagerup tensor product linearizes
completely bounded bilinear maps. A moments thought shows that this is a universal
property. That is, suppose that (W,µ) is a pair consisting of an operator space W ,
and a completely contractive bilinear map µ : X × Y → W , such that the span of
the range of µ is dense in W , and which possesses the following property:
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Given any operator space Z and given any completely bounded bilinear map
u : X × Y → Z, then there exists a linear completely bounded ũ : W → Z such
that ũ(µ(x, y)) = u(x, y) for all x ∈ X, y ∈ Y , and such that ‖ũ‖cb ≤ ‖u‖cb.

Then X ⊗h Y ∼= W via a complete isometry v satisfying v ◦ ⊗ = µ.
We leave it to the reader to check the above assertions as an exercise.

3.1.13 (More properties of the Haagerup tensor product)

• Since X ⊗h Y is an (uncompleted) operator space, there is a canonical norm
on Mm,n(X ⊗h Y ), via viewing this space as a subspace of Mr(X ⊗h Y ), for
r = max{m,n}. It is easy to see that for z ∈Mm,n(X⊗h Y ), this canonical norm
is still given by the formula (3.12), however with x ∈ Mm,p(X), y ∈ Mp,n(Y )
there. There is a canonical linear isomorphism between Cm(X) ⊗ Rn(Y ) and
Mm,n(X ⊗ Y ), taking [xi] ⊗ [yi] → [xi ⊗ yj ](i,j). Using the definition (3.12)
it is a very easy exercise to show that this isomorphism is actually an isometry
Cm(X)⊗hRn(Y ) ∼= Mm,n(X⊗hY ). Passing to the completion, we have Cm(X)⊗h

Rn(Y ) ∼= Mm,n(X ⊗h Y ) isometrically.

• This tensor product is functorial. That is, if ui : Xi → Yi are completely bounded
maps between operator spaces, then u1⊗u2 : X1⊗hX2 → Y1⊗h Y2 is completely
bounded, and ‖u1⊗u2‖cb ≤ ‖u1‖cb ‖u2‖cb. Indeed, if z = x� y ∈Mn(X1⊗X2),
then (u1 ⊗ u2)n(z) = (u1)n(x)� (u2)n(y), and so

‖(u1 ⊗ u2)n(z)‖h ≤ ‖(u1)n(x)‖‖(u2)n(y)‖ ≤ ‖u1‖cb ‖u2‖cb‖x‖‖y‖.

Taking the infimum over such x, y with z = x� y gives

‖(u1 ⊗ u2)n(z)‖h ≤ ‖u1‖cb ‖u2‖cb‖z‖h.

Thus u1 ⊗ u2 is continuous on X1 ⊗h X2, and extends uniquely to u1 ⊗ u2 :
X1 ⊗h X2 → Y1 ⊗h Y2 satisfying ‖u1 ⊗ u2‖cb ≤ ‖u1‖cb ‖u2‖cb.

• The Haagerup tensor product is projective, that is, if u1 and u2 in the last item
are complete quotient maps, then so is u1 ⊗ u2. To see this, note that by the
functoriality, the map u1 ⊗ u2 is a complete contraction. Let z ∈ Mn(Y1 ⊗ Y2),
with ‖z‖h < 1. By definition, we may write z = y1 � y2, where y1 ∈ Mn,p(Y1),
y2 ∈Mp,n(Y2) both have norm < 1. Then y1 = (u1)n,p(x1) and y2 = (u2)p,n(x2)
for x1 ∈ Mn,p(X1), x2 ∈ Mp,n(X2), both of norm < 1. Let w = x1 � x2 ∈
Mn(X1⊗hX2), this matrix has norm < 1, and (u1⊗u2)n(w) = z. By an obvious
density argument, this shows that u1 ⊗ u2 above is a complete quotient map.

• The Haagerup tensor product is not commutative. That is, in general X ⊗h Y
and Y ⊗h X are not isometric. We shall see some examples of this later.

• The Haagerup tensor product is associative. That is,

(X1 ⊗h X2)⊗h X3
∼= X1 ⊗h (X2 ⊗h X3)

completely isometrically. To see this, we first show it for the uncompleted Haagerup
tensor product, where there is an obvious algebraic linear isomorphism ρ : (X1⊗
X2)⊗X3 → X1 ⊗ (X2 ⊗X3). If z ∈ Mn((X1 ⊗h X2)⊗X3) with ‖z‖h < 1 then
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z = u�w, where u ∈Mn,p(X1⊗hX2) and w ∈Mp,n(X3), both of norm < 1. By
the first few lines in 3.1.13, we have u = x�y for some x ∈Mn,k(X), y ∈Mk,p(Y ),
both of norm < 1. But then ρn(z) = x� (y � z), and hence it is easy to see that
‖ρn(z)‖h < 1. So ρ is a complete contraction, and similarly ρ−1 is a complete
contraction. So ρ is a complete isometry. Taking the completion, just as in the
proof of the associativity of ⊗min, gives the associativity of ⊗h. Accordingly, the
three-fold tensor product in the last displayed equation will be merely denoted
by X1⊗hX2⊗hX3. The induced norms on Mn(X1⊗X2⊗X3) may be described
by the ‘3-variable’ version of (3.12). From this one may see that X1⊗hX2⊗hX3

has the universal property of ‘linearizing’ completely bounded trilinear maps (see
discussion at the end of 3.1.11). Similar assertions clearly hold for the N -fold
Haagerup tensor product X1 ⊗h · · · ⊗h XN of any N -tuple of operator spaces.

• There are convenient norm expressions for ‖ · ‖h. Suppose that A and B are
C∗-algebras. If X and Y are subspaces of A and B respectively, and if z ∈ X⊗Y ,
then to say that z = x � y, is simply to say that z =

∑p
k=1 ak ⊗ bk, where ak

is the kth entry in the ‘row matrix’ x, and bk is the kth entry in the ‘column
matrix’ y. By the C∗-identity,

‖x‖2 = ‖xx∗‖ =
∥∥∥ p∑
k=1

aka
∗
k

∥∥∥.
Similarly, ‖y‖2 =

∥∥∥∑p
k=1 b

∗
kbk

∥∥∥. Thus by the definition in 3.1.11 we have

‖z‖h = inf
∥∥∥ p∑
k=1

aka
∗
k

∥∥∥ 1
2
∥∥∥ p∑
k=1

b∗kbk

∥∥∥ 1
2

(3.14)

where the infimum is taken over all ways to write z =
∑p
k=1 ak ⊗ bk in X ⊗ Y .

The following shows that the last formula extends to the completed Haagerup
tensor product X ⊗h Y , replacing p by ∞ in (3.14).

Proposition 3.1.14.

(1) If z ∈ X ⊗h Y with ‖z‖h < 1 then we may write z as a norm convergent sum∑∞
k=1 ak ⊗ bk in X ⊗h Y , with ‖

∑∞
k=1 aka

∗
k‖ < 1 and ‖

∑∞
k=1 b

∗
kbk‖ < 1, and

where the last two sums converge in norm. That is, [a1 a2 · · · ] ∈ R(X) and
[b1 b2 · · · ]t ∈ C(Y ).

(2) If x = [a1 a2 · · · ] ∈ R(X) and y = [b1 b2 · · · ]t ∈ Cw(Y ), that is if
∑∞
k=1 aka

∗
k

converges in norm and if the partial sums of
∑∞
k=1 b

∗
kbk are uniformly bounded

in norm, then
∑∞
k=1 ak⊗bk converges in norm inX⊗hY . Similarly if x ∈ Rw(X)

and y ∈ C(Y ).

Proof. (1) If z is as stated, choose w1 ∈ X⊗Y with ‖z−w1‖h < ε
2 and ‖w1‖h < 1.

By (3.14) we may write w1 =
∑n1

k=1 xk ⊗ yk with
∑
k xkx

∗
k ≤ 1 and

∑
k y
∗
kyk ≤ 1.

Repeating this argument, we may choose w2 ∈ X ⊗ Y with ‖z − w1 − w2‖h < ε
22 ,

and ‖w2‖h < ε
2 . By (3.14) we write w2 =

∑n2

k=n1+1 xk ⊗ yk with
∑
k xkx

∗
k ≤ ε

2
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and
∑
k y
∗
kyk ≤ ε

2 . Continuing so, we obtain for every m ∈ N a finite rank tensor
wm =

∑nm
k=nm−1+1 xk⊗yk with ‖z−w1−. . .−wm‖ < ε

2m ,
∑nm
k=nm−1+1 xkx

∗
k ≤ ε

2m−1 ,

and
∑nm
k=nm−1+1 y

∗
kyk ≤ ε

2m−1 . Now it is clear that the partial sums of
∑∞
k=1 xkx

∗
k

and
∑∞
k=1 y

∗
kyk are Cauchy. For example, for any j > i ≥ nm−1 + 1 we have

‖
j∑
k=i

xkx
∗
k‖ ≤ ‖

∞∑
k=nm−1+1

xkx
∗
k‖ ≤

∞∑
k=m−1

ε

2k
=

ε

2m
→ 0

with m. Hence
∑∞
k=1 xkx

∗
k and

∑∞
k=1 y

∗
kyk converge in norm to elements with

norm ≤ 1 + ε. Also, the partial sums of
∑∞
k=1 xk ⊗ yk are Cauchy, so that that

sum converges in norm (see (2) below). Since a subsequence of these partial sums
converges to z, by the first displayed equation in the proof, we have z =

∑∞
k=1 xk⊗yk

as desired.
(2) To see that the partial sums of

∑∞
k=1 ak ⊗ bk are Cauchy, note that from

(3.14) we have ‖
∑m
k=n ak ⊗ bk‖h ≤ ‖

∑m
k=n aka

∗
k‖

1
2 ‖
∑m
k=n b

∗
kbk‖

1
2 . Now use the

fact that the partial sums of
∑∞
k=1 aka

∗
k are Cauchy.

The Haagerup tensor product is injective (Theorem 3.1.15 below). In order to
establish this, we will need a simple linear algebraic fact about tensors z ∈ E ⊗ F .
Suppose that X is a closed subspace of E, with z ∈ X ⊗ F ⊂ E ⊗ F , and suppose
also that z =

∑n
k=1 xk ⊗ yk, with {yk} a linearly independent subset of F . Then

we claim that xk ∈ X for all k = 1, · · · , n. To prove this, choose by the Hahn-
Banach theorem functionals ϕk ∈ F ∗ with ϕk(yi) = δi,k, Kronecker’s delta. Then
(IE ⊗ ϕk)(z) = xk. However, since z ∈ X ⊗ Y we must have (IE ⊗ ϕk)(z) ∈ X. So
xk ∈ X.

Theorem 3.1.15. If ui : Xi → Yi are completely isometric maps between operator
spaces, then u1 ⊗ u2 : X1 ⊗h X2 → Y1 ⊗h Y2 is a complete isometry.

Proof. We may assume that Xi ⊂ Yi, and ui is the inclusion. By a two-step
argument, as in the proof of the injectivity of ⊗min, we can assume that X2 = Y2,
and u2 is the identity map. Also, it is enough to prove the result for the uncompleted
tensor products. Of course u1 ⊗ u2 is a complete contraction, by the functoriality
of ⊗h. To prove that u1⊗u2 is an isometry, it suffices to show that if z ∈ X1⊗X2,
and that if z viewed as an element of Y1 ⊗ Y2 has Haagerup norm < 1, then
z ∈ Ball(X1⊗hX2). Thus suppose that z ∈ X1⊗X2, with z = x�y =

∑n
k=1 xk⊗yk,

where x = [xk] ∈ Rn(Y1), y = [yk] ∈ Cn(X2), with ‖x‖‖y‖ < 1. If {bk} ⊂ {yk} is
a basis for Span{yk}, and if b = [bk] ∈ Cm(X2), then there is a matrix β of scalars
with y = βb. One can in fact choose β so that its first few rows form a copy of the
identity matrix. Let β = uα be a polar decomposition of β, where α = (β∗β)

1
2 , and

u is an isometry. In fact, it is a simple linear algebraic exercise to see that β∗β ≥ I,
so that α is invertible. Then z = x� y = xu� αb, and

‖xu‖‖αb‖ ≤ ‖x‖‖u∗uαb‖ = ‖x‖‖u∗y‖ < 1.

Since α is invertible, the entries of αb are linearly independent. By the fact above
the theorem, xu ∈ Rm(X1). Thus indeed z ∈ Ball(X1 ⊗h X2).
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Finally, to see that u1 ⊗ I is a complete isometry, we note that by the last
paragraph we have that Cn(X1) ⊗h Rn(X2) ⊂ Cn(Y1) ⊗h Rn(X2) isometrically.
By the last part of the first ‘bullet’ in 3.1.13, we conclude that Mn(X1 ⊗h X2) ⊂
Mn(Y1 ⊗h X2) isometrically. That is, (u1 ⊗ I)n is an isometry, so that u1 ⊗ I is a
complete isometry.

3.1.16 (Operator space projective tensor product) As with the Haagerup tensor
product, it is convenient to first define an intimately related class of bilinear maps.
Suppose that X, Y , and W are operator spaces and that u : X × Y → W is a
bilinear map. We say that u is jointly completely bounded if there exists a constant
K ≥ 0 such that

‖[u(xij , ykl)](i,k),(j,l)‖ ≤ K‖[xij ]‖‖[ykl]‖
for all m,n and [xij ] ∈ Mn(X), and [ykl] ∈ Mm(Y ). Here, as usual, the matrix
is indexed on rows by i and k, and on columns by j and l. The least such K
is written as ‖u‖jcb. We say that u is jointly completely contractive if ‖u‖jcb ≤
1. Jointly completely bounded multilinear maps of three or more variables are
defined similarly. Any completely contractive (in the sense of 3.1.11) bilinear map
u is jointly completely contractive. This is immediate from the simple relation
[u(xij , ykl)] = unm([xij ] ⊗ Im, In ⊗ [ykl]), where umn is as defined at the start of
3.1.11. Indeed, for [xij ] ∈Mn(X), and [ykl] ∈Mm(Y ) we have

‖[u(xij , ykl)]‖ = ‖unm([xij ]⊗Im, In⊗[ykl])‖ ≤ ‖[xij ]⊗Im‖‖In⊗[ykl]‖ = ‖[xij ]‖‖[ykl]‖.

Conceptually, perhaps the simplest way to define the operator space projective

tensor product X
_
⊗ Y of two operator spaces X and Y , is to identify it (completely

isometrically) with a subspace of CB(X,Y ∗)∗, via the map θ that takes x⊗y to the
functional T 7→ T (x)(y) on CB(X,Y ∗). This gives X⊗Y an (incomplete) operator
space structure, and the completion is an operator space completely isometric to
a subspace of CB(X,Y ∗)∗. One then can immediately verify results like (3.16),
(3.17), and (3.18) below. This was the approach taken in [8], and the reader might
like to try these as an exercise. However this approach does not yield the following
explicit ‘internal formula’ for the tensor norm: For z ∈ Mn(X ⊗ Y ) and n ∈ N,
define

‖z‖_ = inf{‖α‖‖x‖‖y‖‖β‖}, (3.15)

the infimum taken over p, q ∈ N, and all ways to write z = α(x ⊗ y)β, where
α ∈ Mn,pq, x ∈ Mp(X), y ∈ Mq(Y ), and β ∈ Mpq,n. Here we wrote x ⊗ y for the
‘tensor product of matrices’, namely x⊗y = [xij⊗ykl](i,k),(j,l), indexed on rows by i
and k, and on columns by j and l. Suppose that z ∈Mn(X ⊗Y ), and that we have
a jointly completely contractive bilinear map u : X × Y →W . Let ũ : X ⊗ Y →W
be the associated linear map. Write z = α(x⊗ y)β as above. A simple calculation
shows that

‖ũn(z)‖ = ‖α[u(xij , ykl)]β‖ ≤ ‖α‖‖[u(xij , ykl)]‖‖β‖ ≤ ‖α‖‖[xij ]‖‖[ykl]‖‖β‖.

Taking the infimum over such ways to write z, we see from the definitions that

‖ũn(z)‖ ≤ ‖z‖_ . (3.16)
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From the observation at the end of the first paragraph of 3.1.16, it follows that this
is also true if u is completely contractive. Taking u = ⊗ : X × Y → X ⊗h Y , in
which case ũ is the identity map, we deduce from (3.16) that ‖z‖h ≤ ‖z‖_.

We leave it as an exercise similar to the analogous statement for the Haagerup
tensor product (or see [17]), that the quantities in (3.15) define an operator space
structure on X ⊗ Y (to see that these are norms as opposed to seminorms, use the
fact at the end of the last paragraph). Thus the completion of X⊗Y with respect to
these matrix norms is an operator space, which we call the operator space projective

tensor product, and write as X
_
⊗ Y .

By (3.16) we see that if u : X × Y →W is a bilinear map with associated linear
map ũ : X⊗Y →W , and if u is jointly completely contractive, then ũ is completely
contractive with respect to ‖ · ‖_, and extends further to a complete contraction

ũ : X
_
⊗ Y → W . Conversely, if v : X

_
⊗ Y → W is completely contractive,

and if u : X × Y → W is the associated bilinear map, then u is jointly completely
contractive. To see this, note that if [xij ] ∈ Ball(Mn(X)), [ykl] ∈ Ball(Mm(Y )),

then [xij ⊗ ykl] ∈ Ball(Mmn(X
_
⊗ Y )) (take α = β = Imn in (3.15)). Thus

‖[u(xij , ykl)]‖ = ‖vmn([xij ⊗ ykl])‖ ≤ 1.

Writing JCB(X,Y ;W ) for the space of jointly completely bounded maps, we have

shown that JCB(X,Y ;W ) ∼= CB(X
_
⊗ Y,W ) isometrically, via the canonical map.

In other words, the operator space projective tensor product linearizes jointly com-
pletely bounded bilinear maps. As for the Haagerup tensor product this is a universal

property, and characterizes X
_
⊗ Y uniquely up to complete isometry.

If u : X × Y → W is bilinear and jointly completely bounded, write u# for the
map from X to the set of functions from Y to W defined by

u#(x)(y) = u(x, y), x ∈ X, y ∈ Y.

Then u# ∈ CB(X,CB(Y,W )): indeed,

‖u#‖cb = sup{‖[u#(xij)]‖ : [xij ] ∈ Ball(Mn(X)), n ∈ N}
= sup{‖[u#(xij)(ykl)]‖ : [xij ] ∈ Ball(Mn(X)), [ykl] ∈ Ball(Mm(Y ))}
= sup{‖[u(xij , ykl)]‖ : [xij ] ∈ Ball(Mn(X)), [ykl] ∈ Ball(Mm(Y ))}
= ‖u‖jcb.

Conversely, if v ∈ CB(X,CB(Y,W )) and if u(x, y) = v(x)(y), then reversing
the last argument shows that u is jointly completely bounded. Indeed, we have

shown that CB(X,CB(Y,W )) ∼= JCB(X,Y ;W ) ∼= CB(X
_
⊗ Y,W ) isometri-

cally via the canonical map. In fact this is a complete isometry, as may be seen
by the common trick of replacing W by Mn(W ) in the isometric identity, thus

CB(X
_
⊗ Y,Mn(W )) ∼= CB(X,CB(Y,Mn(W )). Using (1.5) we then have a string

of isometries

Mn(CB(X
_
⊗ Y,W )) ∼= CB(X

_
⊗ Y,Mn(W )) ∼= CB(X,CB(Y,Mn(W )))

∼= CB(X,Mn(CB(Y,W ))) ∼= Mn(CB(X,CB(Y,W ))).
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The isometry which is the composition of all these isometries is easily seen to

just be the nth amplification of the map CB(X
_
⊗ Y,W ) → CB(X,CB(Y,W ))

above, and hence the latter is a complete isometry. A similar argument works for
CB(Y,CB(X,W )), and thus we have

CB(X
_
⊗ Y,W ) ∼= CB(X,CB(Y,W )) ∼= CB(Y,CB(X,W )) (3.17)

completely isometrically. In particular,

(X
_
⊗ Y )∗ ∼= CB(X,Y ∗) ∼= CB(Y,X∗) completely isometrically. (3.18)

Corollary 3.1.17. For any operator spaces X,Y , the space CB(X,Y ∗) is a dual

operator space, with predual X
_
⊗ Y .

We now list a sequence of properties of the operator space projective tensor prod-

uct. We leave it as an exercise, copying the analoguous proofs in 3.1.13, that
_
⊗ is

functorial, and projective. We use these words in the sense that we have used them

for the other two tensor products. We show next that
_
⊗ is commutative, that is,

X
_
⊗ Y ∼= Y

_
⊗ X completely isometrically. To see this we will use Exercise (9) to

Section 2.1. Indeed if θ : X ⊗ Y → Y ⊗X, then it is easy to check that the map

ϕ 7→ ϕ◦ θ on (Y
_
⊗ X)∗ is exactly the composition of the complete isometries in the

sequence

(Y
_
⊗ X)∗ ∼= CB(X,Y ∗) ∼= (X

_
⊗ Y )∗

provided by (3.18).

To show that
_
⊗ is associative, that is, (X

_
⊗ Y )

_
⊗ Z ∼= X

_
⊗ (Y

_
⊗ Z) completely

isometrically, two methods come to mind. First, one could show that each of these
two spaces has the universal property of linearizing jointly completely bounded
trilinear maps, and hence they must be the same. A second method is to mimic the
proof just given for commutativity, since these spaces have the same duals:

((X
_
⊗ Y )

_
⊗ Z)∗ ∼= CB(X

_
⊗ Y,Z∗) ∼= CB(X,CB(Y,Z∗)),

and
(X

_
⊗ (Y

_
⊗ Z))∗ ∼= CB(X, (Y

_
⊗ Z)∗) ∼= CB(X,CB(Y,Z∗)),

using (3.17) several times.

3.1.18 (Properties of ⊗̂) The Banach space projective tensor product X⊗̂Y can

be defined just as we defined
_
⊗, but in the Banach category. Thus identify X⊗̂Y

(isometrically) with a subspace of B(X,Y ∗)∗, via the map θ that takes x ⊗ y to
the functional T 7→ T (x)(y) on B(X,Y ∗). This gives X ⊗ Y an (incomplete)
operator space structure, and the completion is X⊗̂Y . It is the ‘linearizer’ of
bounded bilinear functions f : X×Y → Z. Simpler versions of all the computations
above give the analogous properties for ⊗̂ (which are well known). For example,
(X ⊗̂Y )∗ ∼= B(Y,X∗) ∼= B(X,Y ∗) isometrically, for Banach spaces X and Y .
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Proposition 3.1.19. Let E,F be Banach spaces and let Y be an operator space.

(1) Max(E)
_
⊗ Y = E⊗̂Y isometrically.

(2) Max(E⊗̂F ) = Max(E)
_
⊗ Max(F ) completely isometrically.

Proof. The first item follows as in the proof of the commutativity of
_
⊗ above, by

computing the duals of these two tensor products, using (3.18), (1.10), and the
Banach variant of (3.18):

(Max(E)
_
⊗ Y )∗ ∼= CB(Max(E), Y ∗) = B(E, Y ∗) ∼= (E⊗̂Y )∗.

Then (2) follows from (1) if we can show that Max(E)
_
⊗ Max(F ) is a maximal oper-

ator space, or equivalently that any contractive map on it is completely contractive.
To do this, observe that

B(Max(E)
_
⊗ Max(F ),W ) = B(E⊗̂F,W ) = B(E,B(F,W )),

isometrically for any operator space W , using (1). The latter space equals

CB(Max(E), CB(Max(F ),W )) = CB(Max(E)
_
⊗ Max(F ),W )

by (1.10) and (3.17). Thus Max(E)
_
⊗ Max(F ) is ‘maximal’.

Proposition 3.1.20. (Comparison of tensor norms) If X and Y are operator
spaces then the various tensor norms on X ⊗ Y are ordered as follows:

‖ · ‖∨ ≤ ‖ · ‖min ≤ ‖ · ‖h ≤ ‖ · ‖_ ≤ ‖ · ‖∧.

Indeed the ‘identity’ is a complete contraction X
_
⊗ Y → X ⊗h Y → X ⊗min Y .

Proof. The first inequality follows easily for example from (3.5) and the definition
of ⊗̌ in the C∗-course. The fact that ‖ · ‖_ ≤ ‖ · ‖∧ follows from the universal

property of ⊗̂ in the C∗-course. Indeed, since the bilinear map ⊗ : X×Y → X
_
⊗ Y

is jointly completely contractive, and hence contractive, it induces a contraction

X ⊗∧ Y → X
_
⊗ Y . We saw in 3.1.16 the complete contraction X

_
⊗ Y → X ⊗h Y .

For the remaining relation, consider unital C∗-algebras A and B containing X
and Y respectively, and the following commutative diagram of uncompleted tensor
products

A⊗h B −→ A⊗min Bx x
X ⊗h Y −→ X ⊗min Y,

where the horizontal arrows are the identity map, and the vertical arrows are com-
plete isometries by the injectivity of these tensor norms. Thus the bottom arrow
will be a complete contraction if the top one is. Now A ⊗min B is a C∗-algebra as
observed in 3.1.6. Moreover the maps

π : A→ A⊗min B : a→ a⊗ 1 , ρ : B → A⊗min B : b→ 1⊗ b
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are (completely contractive) ∗-homomorphisms. The bilinear map (a, b) 7→ π(a)ρ(b) =
a ⊗ b from A × B to A ⊗min B is therefore completely contractive in the sense of
3.1.11. By the universal property of ⊗h, this bilinear map induces a linear complete
contraction from A ⊗h B to A ⊗min B. But the latter map is clearly the identity
map, which proves the desired relation.

Proposition 3.1.21. If X,Y are operator spaces, if H,K are Hilbert spaces, and
if m,n ∈ N, then we have the following complete isometries:

(1) Hr ⊗h X = Hr
_
⊗X, and X ⊗h Hc = X

_
⊗ Hc.

(2) Hc ⊗h X = Hc ⊗min X, and X ⊗h Hr = X ⊗min H
r.

(3) Cn(X) ∼= Cn ⊗h X = Cn ⊗min X, and Rn(X) ∼= X ⊗h Rn = X ⊗min Rn.

(4) (H̄r
_
⊗ X

_
⊗ Kc)∗ = (H̄r ⊗h X ⊗h Kc)∗ ∼= CB(X,B(K,H)).

(5) S∞(K,H) ∼= Hc ⊗min K̄
r and S∞(K,H)⊗min X ∼= Hc ⊗h X ⊗h K̄r.

(6) Mm,n(X) ∼= Cm ⊗h X ⊗h Rn.

(7) Mm,n(X ⊗h Y ) ∼= Cm(X)⊗h Rn(Y ).

(8) Hc
_
⊗ Kc = Hc ⊗h Kc = Hc ⊗min K

c = (H ⊗2 K)c, and similarly for row
Hilbert spaces.

(9) S1(K,H) ∼= K̄r
_
⊗ Hc.

(10) CB(S1(`2I , `
2
J), X) ∼= MI,J(X), if I, J are sets.

Proof. We will prove (1) last, although we use it to prove some of the others. To
prove (3), note that by (3.9) we have Cn ⊗min X ∼= Cn(X). By the last proposition
there is a complete contraction Cn ⊗h X → Cn ⊗min X ∼= Cn(X). The inverse of

the latter map is the map u : Cn(X)→ Cn⊗hX defined by u(
→
x) =

∑n
k=1

→
ek ⊗ xk,

where
→
x = [xk] ∈ Cn(X). By definition of the Haagerup tensor norm, namely

(3.12), we have ∥∥∥ n∑
k=1

→
ek ⊗ xk

∥∥∥
h
≤ ‖In‖‖

→
x‖ = ‖→x‖.

Thus u is a contraction, and a similar argument at the matrix level shows that it is
a complete contraction. Thus Cn ⊗h X ∼= Cn(X). A similar argument proves the
other relation in (3).

It suffices to prove (2) for the uncompleted tensor products: Hc⊗hX = Hc⊗min

X. Let us examine the norm on both sides. If z =
∑m
k=1 ζk ⊗ xk ∈ Hc ⊗ X, let

K = Span({ζk}) ⊂ Hc. By the injectivity of ⊗h (resp. ⊗min) the norm ‖z‖h (resp.
‖z‖min) is the same whether computed in K⊗X or in Hc⊗X. Thus we can assume
that H is finite dimensional. A similar argument lets us make this same assumption
if z ∈ Mn(Hc ⊗ X). Now K is a Hilbert column space, and is isometrically, and
hence completely isometrically by (1.12), isomorphic to Cn for some n ∈ N. By (3),
we have

K ⊗h X ∼= Cn ⊗h X ∼= Cn ⊗min X ∼= K ⊗min X.

It is clear from the above discussion that we now have proved (2).
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The first equality in (4) is clear from (1), and the rest is clear from the complete
isometries

(H̄r
_
⊗ X

_
⊗ Kc)∗ ∼= CB(X

_
⊗ Kc, Hc) ∼= CB(X,CB(Kc, Hc)),

which equals CB(X,B(K,H)). Here we have used (3.18), (3.17), (1.13), and (1.12).
For the first equality in (5), note that the canonical map X ⊗ Y → B(Y ∗, X)

has range which is precisely the set of finite rank operators. Thus the canonical
complete isometry

Hc ⊗min K̄
r → CB((K̄r)∗, Hc) ∼= CB(Kc, Hc) = B(K,H)

has range that is the closure of the set of finite rank operators (we have used (3.2),
(1.13), and (1.12) here). But this closure in B(K,H) is S∞(K,H). For the second
equality, note that S∞(K,H) ⊗min X = Hc ⊗min X ⊗min K̄

r by commutativity of
⊗min and the first part of (5), and so the second part of (5) follows from (2).

Item (6) follows from (5) and (3.9), and (7) follows from (6) by (3) and the
associativity of the Haagerup tensor product:

Cm(X)⊗h Rn(Y ) ∼= Cm ⊗h (X ⊗h Y )⊗h Rn ∼= Mm,n(X ⊗h Y ).

The middle equality in (8) follows from (2), and the first equality from (1). Writing
Hc = CJ and K̄r = RI for sets I, J , we have H ⊗2 K = `2(I × J), so that
(H ⊗2 K)c = CI×J . Then the last equality in (8) may be seen from (3.9):

Hc ⊗min K
c = CI ⊗min CJ = CI(CJ) = CI×J .

To see (9) note that (K̄r
_
⊗ Hc)∗ ∼= CB(Hc,Kc) = B(H,K) (as in the proof of (4),

for example). Thus K̄r
_
⊗ Hc is the unique predual S1(K,H) of B(H,K). Lastly,

for (10), CB(S1(`2I , `
2
J), X) is completely isometric to

CB(RI
_
⊗ CJ , X) ∼= CB(CJ , CB(RI , X)) ∼= RwJ (CwI (X)) ∼= MI,J(X),

using (9), (3.17), 1.2.25 twice, and 1.2.23 (8).
Finally, for (1), there is a direct proof in [17], for example, but we give an

indirect one. We prove that X ⊗h Hc = X
_
⊗ Hc completely isometrically, the

other relation being similar. Clearly it suffices, by Proposition 3.1.20, to show

that I : X ⊗h Hc → X
_
⊗ Hc is completely contractive. This will follow if we can

show that any jointly completely contractive map u : X×Hc → B(L) is completely
contractive (in the sense of 3.1.11). For if the latter statement was true, take u = ⊗ :

X×Hc → X
_
⊗ Hc, this is jointly completely contractive, so completely contractive,

and thus linearizes to a completely contractive linear map I : X ⊗hHc → X
_
⊗ Hc.

We may assume that H = `2J for some set J . Let v : X → RwJ (B(L)) =
B(L(J), L) be the linear map defined by v(x) = (u(x, ei))i∈J for any x ∈ X. As in
the proof of (10), there is a sequence of isometries

CB(X
_
⊗ CJ , B(L)) = CB(X,CB(CJ , B(L))) = CB(X,RwJ (B(L)))
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provided by (3.17) and Proposition 1.2.25, and it is easy to check that the compo-

sition of these maps takes u (viewed as an element of CB(X
_
⊗ CJ , B(L))) to v.

Thus ‖v‖cb = ‖u‖jcb ≤ 1. Then we define a map w : CJ → CJ(B(L)) ⊂ B(L,L(J))
by w(ζ) = (ζjIL) for ζ = (ζj) ∈ `2J . It is clear that ‖w‖cb = 1. Also, we have a
factorization

u(x, ζ) =
∑
j

u(x, ei)ζiIL = u(x,
∑
j

eiζi) = v(x)w(ζ), x ∈ X, ζ = (ζi) ∈ H = `2J .

But any such product of two completely contractive linear maps, is clearly a com-
pletely contractive bilinear map in the sense of 3.1.11) (this is also the easy part of
the later result Theorem 3.2.6). Thus u is completely contractive.

Historical notes: This section is an expansion of [4, Section 1.5]; historical
attributions are given there. The proof given here of the injectivity of the Haagerup
tensor product is from [8]; the original source is [24].

Exercises.

(1) Show that the following map ρ : Rn ⊗h X∗ ⊗h Cn → Mn(X)∗ is a surjective
complete isometry:

ρ(
→
r ⊗ϕ⊗→c )([xij ]) =

→
r [ϕ(xij)]

→
c ,

→
r ∈ Rn,

→
c ∈ Cn, ϕ ∈ X∗, [xij ] ∈Mn(X).

[Hint: Show that ρ is a complete contraction, and that ρ∗ is the composition
of the canonical complete isometries (Rn ⊗h X∗ ⊗h Cn)∗ ∼= CB(X∗,Mn) ∼=
Mn(X∗∗) ∼= Mn(X)∗∗.]

3.2 Properties of completely bounded maps

We recall that the Fourier algebras A(G) and B(G) are completely contractive Ba-
nach algebras. We recall that a completely contractive Banach algebra is a Banach
algebra and an operator space for which the multiplication map yields a complete

contraction A
_
⊗ A→ A. Equivalently,

‖[aijbkl]‖ ≤ ‖[aij ]‖ ‖[bkl]‖.

For such algebras the usual version of left and right multipliers are not relevant:
one needs them also to be completely bounded.

Similarly, the operator space versions of Banach modules and bimodules are
important. These satisfy similar norm conditions. Note however that it is very
important which tensor product you use. If one uses the Haagerup tensor product
one gets a completely different class, which is just as important. Note that a
unital Banach algebra and an operator space for which the multiplication map
yields a complete contraction A⊗h A→ A, are exactly (up to completely isometric
isomorphism) the operator algebras–the closed subalgebras of operators on a Hilbert
space. This is the Blecher-Ruan-Sinclair theorem.
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Theorem 3.2.1. (The Wittstock Hahn-Banach extension theorem) If X is a
closed subspace of an operator space Y , if H,K are Hilbert spaces, and if u :
X → B(K,H) is completely contractive, then there exists a completely contractive
û : Y → B(K,H) with û|X = u.

Proof. We identify K ∼= `2J and H ∼= `2I , for sets I, J , so that B(K,H) ∼= MI,J .
Now CB(X,MI,J) ∼= (RI ⊗h X ⊗h CJ)∗ isometrically, via the map that takes v ∈
CB(X,MI,J) to the functional taking r⊗x⊗ c to rv(x)c, for r ∈ RI , c ∈ CJ , x ∈ X
(see 3.1.21 (4)). Thus u corresponds to a contractive functional ϕ in the latter space.
By the injectivity of ⊗h, we have RI ⊗h X ⊗h CJ ⊂ RI ⊗h Y ⊗h CJ . By the usual
Hahn-Banach theorem, ϕ extends to a contractive functional ϕ̂ ∈ (RI⊗hY ⊗hCJ)∗,
and by the above, this corresponds to a complete contraction û : Y → MI,J . We
have

rû(x)c = ϕ̂(r ⊗ x⊗ c) = ϕ(r ⊗ x⊗ c) = ru(x)c, r ∈ RI , c ∈ CJ , x ∈ X.

Thus, û(x) = u(x) for x ∈ X.

3.2.2 (Injective spaces) An operator space Z is said to be injective if for any
completely bounded linear map u : X → Z and for any operator space Y containing
X as a closed subspace, there exists a completely bounded extension û : Y → Z such
that û|X = u and ‖û‖cb = ‖u‖cb. A similar definition exists for Banach spaces. Thus
an operator space (resp. Banach space) is injective if and only if it is an ‘injective
object’ in the category of operator (resp. Banach) spaces and completely contractive
(resp. contractive) linear maps.

We remark that one version of the Hahn–Banach theorem may be formulated
as the statement that C is injective (as a Banach space). It follows from Theorem
3.2.1 that:

Theorem 3.2.3. If H and K are Hilbert spaces then B(K,H) is an injective
operator space.

Corollary 3.2.4. An operator space is injective if and only if it is linearly com-
pletely isometric to the range of a completely contractive idempotent map on B(H),
for some Hilbert space H.

Proof. (⇒) SupposingX ⊂ B(H), extend IX to a complete contraction P : B(H)→
X. Clearly P ◦ P = P .
(⇐) Follows from 3.2.3 and an obvious diagram chase (we leave the details as an
exercise).

Theorem 3.2.5. (Representation of completely bounded maps) Suppose that
X is a subspace of a C∗-algebra B, that H and K are Hilbert spaces, and that
u : X → B(K,H) is a completely bounded linear map. Then there exists a Hilbert
space L, a ∗-representation π : B → B(L) (which may be taken to be unital if B is
unital), and bounded operators S : L→ H and T : K → L, such that u(x) = Sπ(x)T
for all x ∈ X. Moreover this can be done with ‖S‖‖T‖ = ‖u‖cb.

Conversely, any linear map u of the form u = Sπ(·)T as above, is completely
bounded with ‖u‖cb ≤ ‖S‖‖T‖.
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Proof. We may suppose that u is completely contractive. In the notation of Lemma
2.1.12, u is a ‘corner’ of a completely positive unital map Θ defined from a subsystem
of M2(B) into B(H ⊕ K). By the extension theorem of Wittstock 3.2.1, one can
extend Θ to a unital completely positive map M2(B)→ B(H⊕K). This in turn, by
Stinespring’s theorem, equals V ∗π(·)V , for a unital representation π of M2(B) on
another Hilbert space. It is quite easy algebra to see that any unital representation
of M2(B) on a Hilbert space E gives rise to a unitary operator U from that Hilbert
space onto L⊕ L, for a subspace L of E, and a unital representation π of B on L,
such that the first representation equals [aij ] 7→ U∗[π(aij)]U , for [aij ] ∈M2(B). In
our case, we obtain[

0 u(x)
0 0

]
= Θ

([
0 x
0 0

])
= V ∗U∗

[
0 π(x)
0 0

]
UV = W ′π(x)W,

where W = [0 I]UV , with a similar formula defining W ′. Pre- and post-multiplying
by the projection from H ⊕H onto H, and the inclusion from H into H ⊕H, gives
u = Sπ(·)T , for appropriate contractions S, T .

The last assertion we leave as an easy exercise using Proposition 1.2.6, and
Exercise (2) of Section 2.1.

The following important result states that any completely bounded bilinear map
may be factorized as a product of two completely bounded linear maps. It is due to
Christensen and Sinclair (the C∗-algebra case), and Paulsen and Smith (the general
case. Note that their injectivity of the Haagerup tensor product (Theorem 3.1.15)
immediately reduces the general case to the C∗-algebra case, as we shall see).

Theorem 3.2.6. Suppose that X and Y are operator spaces, and that u : X×Y →
B(K,H) is a bilinear map.

(1) u is completely contractive (as a bilinear map) if and only if there is a Hilbert
space L, and there are completely contractive linear maps v : X → B(L,H) and
w : Y → B(K,L), with u(x, y) = v(x)w(y) for all x ∈ X and y ∈ Y .

(2) If X and Y are subspaces of unital C∗-algebras A and B respectively, and if
the conditions in (1) hold, then there exist Hilbert spaces K1 and K2, unital
∗-representations π : A → B(K1) and ρ : B → B(K2), and contractions T ∈
B(K,K2), S ∈ B(K2,K1) and R ∈ B(K1, H), such that

u(x, y) = Rπ(x)Sρ(y)T, x ∈ X, y ∈ Y.

There are half a dozen or more proofs of this result in the literature, which we
describe some of. First, note that the second part of this result follows immediately
from the first part and 3.2.5. Second, note that one may assume that X and Y are
C∗-algebras. To see this, suppose that X and Y are subspaces of C∗-algebras A and
B respectively. If ũ : X ⊗h Y → B(K,H) is the associated linear map, then since
X ⊗h Y ⊂ A ⊗h B, by Wittstock’s extension theorem 3.2.1 we can extend ũ to a
completely contractive linear map on A⊗h B. This yields a completely contractive
bilinear map on A × B. If the C∗-algebra case holds, then this gives the desired
result for A and B, and by restriction, for X and Y .
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The next observation (used in some proofs), is that one may replace the ‘target
space’ B(K,H) by C, by the same trick used in the proof of Theorem 3.2.1. Indeed,
as in that proof we have

CB(X ⊗h Y,B(K,H)) ∼= (RI ⊗h (X ⊗h Y )⊗h CJ)∗ ∼= (X ′ ⊗h Y ′)∗,

where X ′ = RI ⊗hX and Y ′ = Y ⊗hCJ . If the result were true in the scalar valued
case (and by the last paragraph we may assume that X ′, Y ′ are C∗-algebras), then
we see that u corresponds to a product v(x)w(y), for complete contractions w : Y ⊗h
CJ → B(C, L) = Lc, and v : RI ⊗h X → B(L,C) = L̄r. Using Proposition 3.1.21
(1), (3.18), and (1.12) and the matching ‘row space’ formula found a few paragraphs
below that reference, w induces a complete contraction w′ : Y → CB(CJ , L

c) ∼=
B(H,L), and v induces a complete contraction v′ : X → CB(RI , L̄

r) ∼= B(L,H).
It is easy to check that u(x, y) = v′(x)w′(y), which proves the result.

At this point, proofs of Theorem 3.2.6 that use the route of the last paragraph
now have to characterize elements of (A ⊗h B)∗. Two different approaches to this
may be found in [17, Section 9.4] and [9]. The former uses a geometric Hahn-
Banach separation argument similar to the proof of Lemma 1.2.10 (appearing first
in unpublished work of Haagerup [19]). The latter crucially uses a very useful notion
due to Roger Smith called strong independence of vectors in a Hilbert space [30].
Other proofs may be found in [23, 27, 29], and of course the original papers.

3.2.7 (Completely bounded bilinear functionals) If we have a completely contrac-
tive bilinear u : X × Y → C, by Theorem 3.2.6 we may write u(x, y) = v(x)w(y).
Here H is a Hilbert space, and w : Y → B(C, H) = Hc and v : X → B(H,C) = H̄r

are completely contractive linear maps. Regarding these as mapping into H and H̄
respectively, we have

u(x, y) = 〈w(y), v(x)〉H , x ∈ X, y ∈ Y.

Or, if H = `2I , then we may regard w, v as complete contractions Y → CI and
v : X → RI respectively, and then u(x, y) = v(x)w(y), where the multiplication
occurring here is simply multiplying a row matrix by a column matrix.

This can be rewritten in another important way. Note that v∗ : B(H,C)∗ → X∗

is a complete contraction, and hence so is s = v∗ ◦ θ, where θ : Hc → B(H,C)∗ is
the canonical complete isometry (see (1.13)). Also,

s(w(y))(x) = θ(w(y))(v(x)) = v(x)w(y) = u(x, y) = ũ(y)(x),

where ũ : Y → X∗ is the canonical linear map associated with u. Thus ũ = s ◦w is
a ‘factorization’ of ũ ‘through’ Hc:

Y −→ Hc −→ X∗ .

The steps here are reversible, that is, if u : X×Y → C and if ũ = s◦w, where H is a
Hilbert space, and w : Y → Hc and s : Hc → X∗ are completely contractive linear
maps, then u is a completely contractive bilinear functional. That is, u corresponds
in the usual way to an element of Ball((X ⊗h Y )∗). This is a characterization of
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Ball((X ⊗h Y )∗), or, if you like, of (X ⊗h Y )∗. Summarizing, such functionals are
‘nothing but’ the maps X → Y ∗ which ‘factor completely contractively through’
Hc.

3.2.8 (Further remarks on Theorem 3.2.6) An analoguous result to (1) of Theorem
3.2.6 holds for multilinear completely bounded maps. Thus if X1, . . . , Xm are opera-
tor spaces and if vj : Xj → B(Hj , Hj−1) are completely contractive linear maps then
the N -linear mapping taking (x1, . . . , xm) ∈ X1 × · · · ×Xm to v1(x1) · · · vm(xm) ∈
B(Hm, H0) is easily seen to be completely contractive in the sense of 3.1.11. Con-
versely, any completely contractive m-linear map u : X1×X2×. . .×Xm → B(K,H)
has this form. The proof of this latter assertion proceeds by induction on m. As-
sume that it is true for k = 2 and k = m − 1. We have an associated completely
bounded linear map defined on X1⊗hX2⊗h . . .⊗hXm

∼= X1⊗h (X2⊗h . . .⊗hXm)
(the latter by a fact from the discussion on associativity in 3.1.13). By the k = 2
case, this map may be factorized as: x1⊗ (x2⊗· · ·⊗xm) 7→ v1(x1)w(x2⊗· · ·⊗xm).
By the k = m − 1 case, w(x2 ⊗ · · · ⊗ xm) = v2(x2) · · · vm(xm). Thus u is of the
required form.

Likewise, (2) of Theorem 3.2.6 has an analogous formulation for multilinear
maps, which follows immediately from (1) and Theorem 3.2.5.

Historical notes: The proof of Wittstock’s Theorem 3.2.1 given here is the
modification from [8] of a proof due to Effros. Theorem 3.2.5 was first proved by
Haagerup in unpublished work [18] from 1980. There are some interesting historical
anecdotes in this handwritten manuscript concerning this result, and related topics.
The first published proof was the simple one that Paulsen found [22], and this is
the one given here.

3.3 Duality and tensor products of dual spaces

3.3.1 (Mapping spaces as duals) If Y is a dual operator space then we saw in
Corollary 3.1.17 that so is CB(X,Y ), for any operator space X. Indeed by (3.18) an

explicit predual for CB(X,Y ) is X
_
⊗ Y∗. From this, together with the density of the

finite rank tensors in X
_
⊗ Y∗, and the general Banach space convergence principle

in the proof of Lemma 1.3.8, it follows that a bounded net (ut)t in CB(X,Y )
converges in the w∗-topology to a u ∈ CB(X,Y ) if and only if ut(x)(z)→ u(x)(z)
for all x ∈ X, z ∈ Y∗. That is, if and only if ut(x) converges in the w∗-topology to
u(x) in Y for all x ∈ X. Next, suppose that Y = B(K,H) for Hilbert spaces H,K.
Since the latter net is bounded, it follows from the fact that the weak* topology
coincides with the WOT on bounded sets in B(K,H), that the above equivalent
conditions are also equivalent to

〈ut(x)ζ, η〉 → 〈u(x)ζ, η〉 for all x ∈ X, ζ ∈ K, η ∈ H. (3.19)

It is easy to see that the latter condition is equivalent to the same condition, but
with η, ζ arbitrary elements of a orthonormal basis for H and for K.
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3.3.2 (Dual matrix spaces) If X is a dual operator space then so is Mn(X). Indeed
by (3.18) and (1.6) we have

(S1
n

_
⊗ X∗)

∗ ∼= CB(X∗,Mn) ∼= Mn(X).

More generally the same proof, but substituting 1.2.23 (12) for (1.6), shows that for

sets I, J , MI,J(X) is a dual operator space with operator space predual S1(`2I , `
2
J)

_
⊗

X∗, and also MI,J(X) ∼= CB(X∗,MI,J). Alternatively, note that by (3.18) and
3.1.21 (10), we have

(S1(`2I , `
2
J)

_
⊗ X∗)

∗ ∼= CB(S1(`2I , `
2
J), X) ∼= MI,J(X).

If I, J are sets, and if I0 and J0 are finite subsets of I and J respectively, write
∆ = I0 × J0. The set Λ of such ∆ is a directed set under the usual ordering. For
such ∆, and for x ∈ MI,J(X), we write x∆ for the matrix x, but with entries xij
switched to zero if (i, j) /∈ ∆. Then (x∆)∆ is a net indexed by ∆ ∈ Λ, which we
call the net of finite submatrices of x.

Corollary 3.3.3. (Effros and Ruan) Let X be a dual operator space, and let I, J
be sets.

(1) If (xt)t is a bounded net in MI,J(X), then xt → x ∈MI,J(X) in the w∗-topology
in MI,J(X), if and only if each entry in xt converges in the w∗-topology in X
to the corresponding entry in x.

(2) If Y is a dual operator space, and if u : X → Y is a w∗-continuous com-
pletely bounded map, then the amplification uI,J : MI,J(X) → MI,J(Y ) is
w∗-continuous.

(3) Mfin
I,J(X) is w∗-dense in MI,J(X). Indeed if I, J are sets, and x ∈ MI,J(X),

then the net of finite submatrices of x converges to x in the w∗-topology.

Proof. As we said in (3.3.2), MI,J(X) = CB(X∗,MI,J) = CB(X∗, B(`2J , `
2
I)). By

(3.19) and the remark after it, it follows that a bounded net xs → x ∈ MI,J(X) ∼=
CB(X∗, B(`2J , `

2
I)) if and only if

〈[xsi,j(ϕ)]ej , ei〉 = xsi,j(ϕ)→ 〈[xi,j(ϕ)]ej , ei〉 = xi,j(ϕ), ϕ ∈ X∗,

that is, if and only if xsi,j → xi,j weak*, for all i ∈ I, j ∈ J . This is (1).
Items (2) and (3) follow immediately from (1). For example, if u : X → Y is

w∗-continuous, and if we have a bounded net xs → x ∈MI,J(X), then by (1) each
entry of xs converges weak* to the corresponding entry of x. Also, (uI,J(xs)) is
a bounded net in MI,J(X), and it converges to uI,J(x) by (1) again, since each
entry of uI,J(xs) converges weak* to the corresponding entry of uI,J(x). Thus uI,J
is w∗-continuous as a consequence of the Krein-Smulian theorem (namely, a linear
bounded map u : E → F between dual Banach spaces is w*-continuous if and only
if whenever xt → x is a bounded net converging in the w*-topology in E, then
u(xt)→ u(x) in the w*-topology).
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Note that in 3.3.3 (2), if u is also a complete isometry then by the consequence
of the Krein-Smulian theorem stated in the proof of Lemma 1.3.8 above, we see
that uI,J is a w∗-homeomorphism onto its range, which is w∗-closed. As a corollary
we see that for a w∗-closed subspace X ⊂ B(K,H), one may define MI,J(X) to be

the w∗-closure of Mfin
I,J(X) in MI,J(B(K,H)) = B(K(J), H(I)). Indeed, taking u

to be the embedding X → B(K,H), we see that MI,J(X) is w∗-homeomorphically
completely isometric to a w∗-closed subspace of MI,J(B(K,H)). Applying (3) of

the last result we deduce the statement about Mfin
I,J(X).

We turn next to a characterization of dual operator spaces:

Theorem 3.3.4. Let X be an operator space with a given weak* topology (coming
from a predual Banach space). The following are equivalent:

(i) X with its given weak* topology is a dual operator space.

(ii) Mn(X) is a dual Banach space, and the n2 canonical inclusion maps from X
into Mn(X) are w∗-continuous, for all n ≥ 2.

(iii) Whenever (xs)s is a net in Ball(Mn(X)), x ∈ Mn(X), and the i-j entry of xs

converges in the weak* topology to the i-j entry of x for all i, j = 1, . . . , n,
then x ∈ Ball(Mn(X)).

Proof. Write εij : X →Mn(X) for the ‘i-j inclusion map’.
(i) ⇒ (ii) If xt → x weak* in X then by Theorem 3.3.3 (i) we have εij(xt) →

εij(x) weak*. So εij is w∗-continuous.
(ii) ⇒ (iii) If xs, x are as in (iii), with xsij → xij weak* for all i, j, then by (ii)

we have εij(x
s
ij)→ εij(xij) weak*, so that

xs =

n∑
i,j=1

εij(x
s
ij)→

n∑
i,j=1

εij(xij) = x

weak* in Mn(X). If xs ∈ Ball(Mn(X)), then since the latter ball is weak* closed,
it follows that x ∈ Ball(Mn(X)).

(iii) ⇒ (i) We may suppose that the predual Banach space W ⊂ X∗. We will
always regard W as an operator space by giving it the inherited matrix norms from
X∗. We will use Exercise (1) of Section 2.4, namely that the following canonical
map ρ : Rn ⊗h X∗ ⊗h Cn →Mn(X)∗ is a surjective complete isometry:

ρ(
→
r ⊗ ϕ⊗→c )([xij ]) =

→
r [ϕ(xij)]

→
c ,

→
r ∈ Rn,

→
c ∈ Cn, ϕ ∈ X∗, [xij ] ∈Mn(X).

Alternatively, this fact can be proved from the later result (3.21), since using that
result and 3.1.21 (6), we have Rn ⊗h X∗ ⊗h Cn ∼= (Cn ⊗h X ⊗h Rn)∗ ∼= Mn(X)∗.
Note that

ρ(
→
ek ⊗ ϕ⊗

→
el)([xij ]) = ϕ(xkl), ϕ ∈ X∗, [xij ] ∈Mn(X), k, l ∈ {1, . . . , n}.

Since ⊗h is injective we deduce that Rn⊗hW ⊗hCn ⊂ Rn⊗hX∗⊗hCn ∼= Mn(X)∗

isometrically. Define θ : Mn(X) → (Rn ⊗h W ⊗h Cn)∗ by θ(x)(u) = ρ(u)(x), for
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x ∈Mn(X), u ∈ Rn⊗hW ⊗hCn. Note that θ(x)(
→
ek⊗w⊗

→
el) = w(xkl), for w ∈W ,

by the last centered equation. From this it is clear that θ is one-to-one, and it is
easy to see that it is onto. Note that θ(Ball(Mn(X))) is w∗-closed by hypothesis,
for if θ(xs) → θ(x) weak* in (Rn ⊗h W ⊗h Cn)∗, with ‖xs‖ ≤ 1, then by the last
line, w(xskl) → w(xkl) for all w ∈ W, and k, l. That is, xskl → xkl weak*, so that
‖x‖ ≤ 1 by (iii).

If u ∈ Rn ⊗hW ⊗h Cn then ‖u‖ = ‖ρ(u)‖, which equals

sup{‖ρ(u)(x)‖ : x ∈ Ball(Mn(X))} = sup{‖θ(x)(u)‖ : x ∈ Ball(Mn(X))}.

Thus the pre-polar θ(Ball(Mn(X)))◦ equals the unit ball of Rn ⊗h W ⊗h Cn.
Therefore by the bipolar theorem, θ(Ball(Mn(X))) = Ball((Rn ⊗h W ⊗h Cn)∗).
That is, θ is an isometry. The composition of θ with the canonical isometries
(Rn ⊗hW ⊗h Cn)∗ ∼= CB(W,Mn) = Mn(W ∗) from 3.1.21 (4) and (1.6), is the nth
amplification of the isometry X → W ∗. Since this holds for any n ≥ 1, the latter
map is a complete isometry. Thus W ∗ = X completely isometrically.

3.3.5 (Normal spatial tensor product) If X and Y are dual operator spaces, with
operator space preduals X∗ and Y∗, then CB(Y∗, X) is the dual operator space of

X∗
_
⊗ Y∗ by 3.3.1. As in (3.6), we regard X ⊗min Y ↪→ CB(Y∗, X), and we define

the normal minimal tensor product X ⊗Y to be the w∗-closure of X ⊗ Y (or of
X ⊗min Y ) in CB(Y∗, X). Equivalently, if X and Y are w∗-closed subspaces of
B(H) and B(K) respectively, then we may define X ⊗Y to be the w∗-closure in
B(H⊗2K) of the copy of X⊗Y . This is sometimes referred to as the normal spatial
tensor product. If M and N are W ∗-algebras, then M ⊗N as described above is
clearly a von Neumann algebra; and indeed M ⊗N is just the usual von Neumann
algebra tensor product. In particular, B(H)⊗B(K) = B(H⊗2K), since the former
contains as a weak* dense subset K(H)⊗min K(K) (or even the tensor product of
the finite rank operators). To see that these two definitions of X ⊗Y are the same
(up to w∗-homeomorphic complete isometry), we use the following argument. Since
X and Y are w∗-closed subspaces of B(H) and B(K) respectively, we know by 1.3.7
that X∗ and Y∗ are quotients of S1(H) and S1(K) respectively. By the ‘projectivity’

property of
_
⊗, we obtain a complete quotient map Q : S1(H)

_
⊗ S1(K)→ X∗

_
⊗ Y∗.

Using the identification (3.18) we see that Q∗ may be viewed as a w∗-continuous
completely isometric embedding

CB(Y∗, X) ↪→ CB(S1(K), B(H)) ∼= B(H ⊗2 K),

the last relation from the first paragraph of 3.1.6. Via the canonical identification
of X ⊗ Y with a subset of CB(Y∗, X), it is easy to argue that the w∗-closure of
X⊗Y in B(H⊗2K) may be identified with the w∗-closure of X⊗Y in CB(Y∗, X).

In general, CB(Y∗, X) (or equivalently, (X∗
_
⊗ Y∗)

∗) is not equal to X ⊗Y ;
nonetheless they do coincide in many cases of interest. In fact, we have

Theorem 3.3.6. (Blecher, Ruan) For any dual operator spaces X and Y we have

(X∗
_
⊗ Y∗)

∗ ∼= CB(Y∗, X) ∼= X ⊗F Y,

where the latter is the normal Fubini product of X and Y .
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The normal Fubini product is defined in terms of ‘slice maps’, and thus the
question of whether X ⊗Y = CB(Y∗, X) holds, is related to slice map properties.

Corollary 3.3.7. (Effros-Ruan von Neumann tensor product formula) If M and

N are von Neumann algebras then the operator space predual of M⊗N is M∗
_
⊗ N∗.

Thus
M⊗N ∼= (M∗

_
⊗ N∗)

∗ ∼= CB(N∗,M).

Proof. (Sketch) By Theorem 3.3.6 this is equivalent to showing that M⊗N =
M ⊗FN . The latter is defined in terms of ‘slice maps’, and the crux of the proof is
applying Tomiyama’s slice map theorem for von Neumann algebras, which in turn
is a consequence of the deep fact (M⊗N)′ = M ′⊗N ′.

3.3.8 (Application to Fourier algebras) The last theorem has a very important
influential application to the Fourier algebra A(G), of a compact group G say,
that was an early triumph of operator space theory. Quoting from Nico Spronk’s
course: “Let us recall the happy fact that A(G)∗ = V N(G). Now we have a unitary
equivalence L2(G)⊗2L2(K) ∼= L2(G×K) which intertwines λG×λH ∼= λG×H , and
hence gives us a spatial equivalence

V N(G)⊗̄V N(K) ∼= V N(G×K).

Hence the Effros-Ruan tensor product formula gives us (completely isometrically)

A(G)
_
⊗ A(K) ∼= A(G×K).

We discuss two more examples of when X ⊗Y = CB(Y∗, X) holds. We have
X ⊗Y = CB(Y∗, X) holds when X = B(H,K). Indeed, for any dual operator
space Y and sets I, J ,

MI,J ⊗ Y ∼= MI,J(Y ) (3.20)

as dual operator spaces. This follows by the remark after 3.3.3, and an argument
similar to the one used for (3.8). Also, MI,J(Y ) ∼= CB(Y∗,MI,J) by 1.2.23 (12)
(setting one of the spaces there equal to C). Thus MI,J ⊗Y ∼= CB(Y∗,MI,J). Note
that taking J singleton, and Y = K̄r, gives Hc⊗ K̄r ∼= B(K,H).

Finally the relation also holds when one of X or Y is a commutative von Neu-
mann algebra. We omit the simple proof (see e.g. [4, Chapter 1]).

We leave it as an exercise that the normal spatial tensor product is ‘associative’,
and ‘functorial’ for w∗-continuous completely bounded maps.

3.3.9 (W ∗-continuous extensions of bilinear maps) Let X,Y be operator spaces,
let W be a dual operator space, and let u : X×Y →W be a completely contractive
bilinear map. We claim that there is a unique separately w∗-continuous extension
ũ : X∗∗×Y ∗∗ →W of u, and this extension is completely contractive too. To prove
this, we may assume by Lemma 1.3.8 that W is a w∗-closed subspace of some B(H).
By the Theorem 3.2.6, there exists a Hilbert space L and two completely contractive
maps v : X → B(L,H) and w : Y → B(H,L) such that u(x, y) = v(x)w(y) for all
x ∈ X, y ∈ Y . By 1.3.9, v and w have w∗-continuous completely contractive
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extensions ṽ : X∗∗ → B(L,H) and w̃ : Y ∗∗ → B(H,L). Define ũ : X∗∗ × Y ∗∗ →
B(H) by setting ũ(η, ν) = ṽ(η)w̃(ν), for η ∈ X∗∗, ν ∈ Y ∗∗. Then the easy part of
Theorem 3.2.6 ensures that ũ is completely contractive, and it clearly is separately
w∗-continuous, and extends u. Note that for any separately w∗-continuous extension
ũ : X∗∗ × Y ∗∗ → B(H) of u, we must have

ũ(η, ν) = lim
s

lim
t
u(xt, ys), ifxt → η, ys → ν,

where all the limits here are in the weak* topology. From this we see that ũ(η, ν) ∈
W , and also the uniqueness of the extension.

3.3.10 (Self-duality of ⊗h) Let X and Y be operator spaces. Then

X∗ ⊗h Y ∗ ↪→ (X ⊗h Y )∗ completely isometrically (3.21)

via the canonical map J (that is, J(ϕ⊗ ψ)(x⊗ y) = ϕ(x)ψ(y)). To prove this, we
first assume that X and Y are finite-dimensional. In this case, J is a surjection, by
linear algebra. An element U in the ball of Mn((X ⊗h Y )∗) corresponds by (1.6)
to a complete contraction u : X ⊗h Y → Mn. By 3.2.6 (1), there exist a Hilbert
space L and two complete contractions v : X → B(L,Cn) and w : Y → B(Cn, L)
such that u(x ⊗ y) = v(x)w(y) for any x ∈ X and y ∈ Y . We may assume that L
is finite dimensional, by replacing L by its finite dimensional subspace [w(Y )Cn],
and restricting v(x) to that subspace. Thus we may assume that v : X → Mn,p

and w : Y → Mp,n, for an integer p ≥ 1. We let ϕ = [ϕij ] ∈ Mn,p(X
∗) and

ψ = [ψij ] ∈ Mp,n(Y ∗) be the two matrices corresponding to v and w respectively
(by a variant of (1.6), these have norm ≤ 1. Then

u(x⊗ y) = v(x)w(y) = [ϕij(x)][ψij(y)] =
[∑
k

ϕik(x)ψkj(y)
]
, x ∈ X, y ∈ Y.

If z = ϕ � ψ then it is easy to see that Jn(z) = U , and ‖z‖h ≤ ‖ϕ‖‖ψ‖ =
‖v‖cb‖w‖cb ≤ 1. The converse inequality ‖U‖cb ≤ ‖z‖h may be obtained by revers-
ing the arguments.

In the general case, fix [uij ] ∈ Mn(X∗ ⊗ Y ∗). Write each uij ∈ X∗ ⊗ Y ∗ in the
form

∑m
k=1 ϕk⊗ψk, for functionals ϕk ∈ X∗, ψk ∈ Y ∗. Let W (resp. Z) be the span

of all these (finite number of) functionals in X∗ (resp. Y ∗), over all i and j too. Then
W ∼= (X/W⊥)∗ and Z ∼= (Y/Z⊥)∗ isometrically. The canonical maps X → X/W⊥
and Y → Y/Z⊥ induce a complete quotient map X ⊗h Y → (X/W⊥) ⊗h (Y/Z⊥),
by the projectivity of ⊗h (see the third bullet in 3.1.13). By 1.3.3, the last map
dualizes to give a weak* continuous complete isometry ((X/W⊥) ⊗h (Y/Z⊥))∗ →
(X ⊗h Y )∗. On the other hand, by the last paragraph, ((X/W⊥) ⊗h (Y/Z⊥))∗ ∼=
W⊗hZ completely isometrically. Thus we have the following diagram of completely
isometries (the vertical arrow coming from the injectivity of ⊗h, see 3.1.13):

Mn(X∗ ⊗ Y ∗)x
Mn(W ⊗h Z) −→ Mn(((X/W⊥)⊗h (Y/Z⊥))∗) −→ Mn((X ⊗h Y )∗).
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We may view [uij ] in Mn(W⊗hZ). The composition of the maps in the last sequence
is easily seen to take [uij ] to [J(uij)] ∈Mn((X ⊗h Y )∗), and so we are done.

3.3.11 (The dual of the Haagerup tensor product) If X and Y are operator spaces
then w ∈ (X ⊗h Y )∗ if and only if there exist [ϕi] ∈ RwI (X∗) and [ψi] ∈ CwI (Y ∗)
such that w may be written as

w(x⊗ y) =
∑
i∈I

ϕi(x)ψi(y), x ∈ X, y ∈ Y. (3.22)

The last sum converges absolutely in C, as may be seen by the Cauchy–Schwarz
inequality:∑

i∈I
|ϕi(x)ψi(y)| ≤

(∑
i∈I
|ϕi(x)|2

) 1
2
(∑
i∈I
|ψi(y)|2

) 1
2 = ‖ϕ(x)‖‖ψ(y)‖,

where ϕ : X → RI and ψ : Y → CI are the canonical maps which are associated
with [ϕi] ∈ RwI (X∗) and [ψi] ∈ CwI (Y ∗). Indeed, by 1.2.23 (12), for example, ϕ and
ψ are completely contractive iff [ϕi] and [ψi] have norm ≤ 1. Note that (3.22) may
be rewritten as w(x ⊗ y) = ϕ(x)ψ(y), and now this relation may be seen to be a
restatement of the discussion in 3.2.7. Indeed, this argument shows that ‖w‖ ≤ 1
iff ϕ,ψ above may be chosen to be complete contractions, and iff [ϕi] and [ψi] in
(3.22) have norm ≤ 1.

Thus every w ∈ (X ⊗h Y )∗ ‘is’ a sum of rank one tensors

w =
∑
i∈I

ϕi ⊗ ψi ϕi ∈ X∗ , ψi ∈ Y ∗,

with [ϕi] ∈ RwI (X∗), [ψi] ∈ CwI (X∗). Viewing (X ⊗h Y )∗ as a tensor product of X∗

and Y ∗ in this way, leads to the weak* Haagerup tensor product, often called the
extended Haagerup tensor product, which we shall not discuss further here. It has
properties analogous to the Haagerup tensor product, and was studied by Blecher
and Smith, Effros and Ruan, Spronk, and others.

If time permits we will cover more on the weak∗/extended Haagerup tensor
product, including some material from Spronk, Proc London Math Soc 89 (2004),
161-192.

Historical note: Nearly all the facts about infinite matrices in 3.3.2 and 3.3.3
are explicitly in [20, 13, 14]. The result 3.3.4 is due to Le Merdy [21]. See e.g.
[17] for more on the normal spatial tensor product and the Fubini tensor product.
The selfduality relation (3.21) was proved in full in [16]. Different proofs appear in
[3, 9]. The dual of the Haagerup tensor product was first explored by Effros and
Kishimoto [11] following unpublished work of Haagerup [19], viewing this dual as a
tensor product originates in [9].

END OF COURSE

For more details on topics in this course, or other more advanced aspects of the
theory of operator spaces, see the basic operator space texts, which can be found
in the reference list below.
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