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1. Introduction

The purpose of these notes is to develop the basics of the theory of Herz-
Schur multipliers. This notion was formally introduced in 1985 in [5] and
developed by U. Haagerup and his collaborators, as well as by a number of
other researchers, in the following decades. The literature on the subject
is vast, and its applications – far reaching. A major driving force behind
these developments were the connections with approximation properties of
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operator algebras. In these notes, we will not discuss this side of the subject,
and will only briefly mention how Herz-Schur multipliers are used to define
approximation properties of the Fourier algebra in Section 7. Instead, we
focus on the development of the core material on multipliers on locally com-
pact groups and various specific classes of interest. These notes formed the
basis of a series of lectures at the programme “Harmonic analysis, Banach
and operator algebras” at the Fields Institute in March-April 2014; due to
time limitations, some aspects of the subject, such as that of Littlewood
multipliers, are not included here.

2. Preliminaries

2.1. Operator spaces. We refer the reader to the monographs [8], [41], [42]
for background in Operator Space Theory. In this section, we fix notation
and include some results that will be used in the sequel. If X is a vector
space, we denote as customary by Mn(X ) the vector space of all n by n
matrices with entries in X . If Y is another vector space and ϕ : X →
Y is a linear map, we let ϕ(n) : Mn(X ) → Mn(Y) be the map given by

ϕ(n)((xi,j)) = (ϕ(xi,j)); thus, if we identify Mn(X ) and Mn(Y) with X ⊗Mn

and Y ⊗Mn, respectively, then ϕ(n) = ϕ⊗ id.
If H is a Hilbert space and (ei)i∈I is a fixed basis, we associate to every

element x ∈ B(H) its matrix (xi,j)i,j∈I . Here, xi,j = (xej , ei),i, j ∈ I.
More generally, if X is an operator space then every element of the spacial
norm closed tensor product X ⊗min K(H) can be identified with a matrix
(xi,j)i,j∈I , but this time with xi,j being elements of X . If ϕ : X → Y is a
completely bounded linear map then there exists a (unique) bounded map
ϕ⊗id : X⊗minK → Y⊗minK such that ϕ⊗id((xi,j)) = (ϕ(xi,j)). If, moreover,
X and Y are dual operator spaces and ϕ is weak*-continuous then there
exists a (unique) weak* continuous bounded map ϕ̃ : X⊗̄B(H)→ Y⊗̄B(H)
such that ϕ̃((xi,j)) = (ϕ(xi,j)) for every (xi,j)i,j∈I ∈ X⊗̄B(H). Here, ⊗̄
denotes the weak* spacial tensor product. The map ϕ̃ will still be denoted
by ϕ⊗ id.

We next include the statement of two fundamental theorems in Operator
Space Theory. The first one is Stinespring’s Dilation Theorem:

Theorem 2.1. Let A be a C*-algebra and Φ : A → B(H) be a com-
pletely positive map. There exist a Hilbert space K, a non-degenerate *-
representation π : A → B(K) and a bounded operator V : H → K such
that

Φ(a) = V ∗π(a)V, a ∈ A.

The second is the Haagerup-Paulsen-Wittstock Factorisation Theorem.

Theorem 2.2. Let A be a C*-algebra and Φ : A → B(H) be a com-
pletely bounded map. There exist a Hilbert space K, a non-degenerate *-
representation π : A → B(K) and bounded operators V,W : H → K such
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that
Φ(a) = W ∗π(a)V, a ∈ A.

Moreover, V and W can be chosen so that ‖Φ‖cb = ‖V ‖‖W‖.

We next include some results of R. R. Smith [47] and F. Pop, A. Sinclair
and R. R. Smith [43] that will be useful in the sequel. Let H be a Hilbert
space, A ⊆ B(H) be a C*-algebra, and X ⊆ B(H) be an operator space such
that AXA ⊆ X ; such an X is called an A-bimodule. Since the C*-algebra
K(H) of all compact operators on H is an ideal in B(H), it is an A-bimodule
for every C*-algebra A ⊆ B(H).

Let A be a unital C*-algebra and X be an operator space that is an A-
bimodule. We call A matricially norming for X [43] if, for every n ∈ N and
every X ∈Mn(X ), we have that

‖X‖ = sup{‖CXD‖ : C = (c1, . . . , cn), D = (d1, . . . , dn)t, ‖C‖, ‖D‖ ≤ 1}.

Theorem 2.3. Let A be a unital C*-algebra, X be an A-bimodule and
Φ : X → X be an A-bimodular map. If Φ is bounded and A is matricially
norming for X then Φ is completely bounded with ‖Φ‖cb = ‖Φ‖.

Proof. We have that

‖Φ(n)‖ = sup{‖Φ(n)(X)‖ : X ∈Mn(X ) a contraction}
= sup{‖C∗Φ(n)(X)D‖ : X ∈Mn(X ), C,D ∈Mn,1(A) contractions}
= sup{‖Φ(C∗XD)‖ : X ∈Mn(X ), C,D ∈Mn,1(A) contractions}
≤ ‖Φ‖.

�

Theorem 2.4. Let H be a Hilbert space, A ⊆ B(H) be a C*-subalgebra
with a cyclic vector. If X ⊆ B(H) is an A-bimodule then A is matricially
norming for X .

Proof. Let ξ ∈ H be a vector with Aξ = H and let X = (xi,j) ∈Mn(X ) be
an operator matrix with ‖X‖ > 1. Then there exist vectors ξ′ = (ξ1, . . . , ξn)
and η′ = (η1, . . . , ηn) of norm strictly less than 1 such that |(Xξ′, η′)| > 1.
Since Aξ = H, there exist elements ai, bi ∈ A such that aiξ (resp. biξ)
is as close to ηi (resp. ξi) so that the vectors ξ′′ = (a1ξ, . . . , anξ) and
η′′ = (b1ξ, . . . , bnξ) still have norm strictly less than 1 and the inequality

(1) |(Xξ′′, η′′)| > 1

still holds. Let a =
∑n

i=1 a
∗
i ai and b =

∑n
i=1 b

∗
i bi. We assume first that a

and b are invertible. Let ξ̃ = b1/2ξ, η̃ = a1/2η, ci = aia
−1/2 and di = bib

−1/2.
Then we have that ciη̃ = aiη and diξ̃ = biξ, i = 1, . . . , n, and, by (1), that

(2)

∣∣∣∣∣∣
∑

i,j

c∗ixi,jdj ξ̃, η̃

∣∣∣∣∣∣ > 1.



4 IVAN G. TODOROV

Moreover,

‖ξ̃‖2 = (b1/2ξ, b1/2ξ) = (bξ, ξ) =
n∑
i=1

‖biξ‖2 < 1,

and, similarly, ‖η̃‖2 < 1. It follows that ‖
∑n

i,j=1 c
∗
ixi,jdj‖ > 1. On the other

hand, the operator
∑n

i,j=1 c
∗
ixi,jdj is equal to the product C(xi,j)D, where

C = (c∗1, . . . , c
∗
n) and D = (d1, . . . , dn)t. We have that

‖C‖2 = ‖
n∑
i=1

c∗i ci‖ = ‖
n∑
i=1

a−1/2a∗i aia
−1/2‖ = ‖I‖ = 1

and, similarly, ‖D‖ = 1. Thus, we have that ‖C(xi,j)D‖ > 1. This com-
pletes the proof in the case both a and b are invertible.

In case a or b is not invertible, we consider, instead of the vectors ξ′ and
η′, the vectors (a1ξ, . . . , anξ, εξ) ∈ Hn+1 and (b1ξ, . . . , bnξ, εξ) ∈ Hn+1, and
replace the operator matrix X ∈Mn(X ) with the matrix X⊕0 ∈Mn+1(X ).
The corresponding operators a = ε2I +

∑n
i=1 a

∗
i ai and b = ε2I +

∑n
i=1 b

∗
i bi

are now invertible and the proof proceeds as before. �

Theorem 2.3 and 2.4 have the following consequence, which was first
established by R. R. Smith in [47].

Theorem 2.5 (R. R. Smith). Let H be a Hilbert space, A ⊆ B(H) be a C*-
subalgebra with a cyclic vector and X ⊆ B(H) be an A-bimodule. Suppose
that Φ : A → B(H) is an A-bimodular bounded linear map. Then Φ is
completely bounded and ‖Φ‖cb = ‖Φ‖.

2.2. Harmonic analysis. Throughout these notes, G will denote a locally
compact group. For technical simplicity, we will assume throughout that G
is second countable. If E,F ⊆ G, we let as usual E−1 = {s−1 : s ∈ E},
EF = {st : s ∈ E, t ∈ F} and En = {s1 · · · sn : si ∈ E, i = 1, . . . , n} (n ∈ N).
Left Haar measure on G will be denoted by m, and it will be assumed to
have total mass 1 if G is compact. Integration along m with respect to the
variable s will be written ds. We write Lp(G) for the corresponding Lebesgue
space, for 1 ≤ p ≤ ∞, and M(G) for the space of all regular bounded Borel
measures on G. The Riesz Representation Theorem identifies M(G) with
the Banach space dual of the space C0(G) of all continuous functions on G
vanishing at infinity; the duality here is given by

〈f, µ〉 =

∫
G
f(s)dµ(s), f ∈ C0(G), µ ∈M(G).

Note that M(G) is an involutive Banach algebra with respect to the convo-
lution product ∗ defined through the relation

〈f, µ ∗ ν〉 =

∫
G×G

f(st)dµ(s)dν(t), f ∈ C0(G), µ, ν ∈M(G),
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and the involution given by

µ∗(E) = µ(E−1), µ ∈M(G), E a Borel subset of G.

The space L1(G) can, by virtue of the Radon-Nikodym Theorem, be re-
garded as the closed ideal of all absolutely continuous with respect to m
measures in M(G). Note that the inherited convolution product on L1(G)
turns it into an approximately unital involutive Banach algebra. The invo-
lution of L1(G) is given by

f∗(s) = ∆(s)−1f(s−1), s ∈ G, f ∈ L1(G).

Here, and in the sequel, ∆ denotes the modular function of G, defined by
the property

m(Es) = ∆(s)m(E), s ∈ G,E a Borel subset of G.

Given a complex function f on G, we let

f̌(s) = f(s−1), f̃(s) = f(s−1), s ∈ G.
If H is a Hilbert space, we denote by U(H) the group of all unitary

operators acting on H. A unitary representation of G is a homomorphism
π : G → U(H), continuous in the strong (equivalently, the weak) operator
topology. We often write Hπ = H to designate the dependence of H on
π. Given such π, there exists a non-degenerate *-representation of L1(G)
(which we will denote with the same symbol) such that

π(f) =

∫
G
f(s)π(s)ds, f ∈ L1(G),

in the norm topology of B(Hπ). Two unitary representations π1, π2 of G
are called equivalent if there exists a unitary operator U ∈ B(Hπ1 , Hπ2)
such that Uπ1(s)U∗ = π2(s), s ∈ G. The set of all equivalence classes

of irreducible unitary representations of G is denoted by Ĝ and called the
spectrum ofG. We think of Ĝ as a complete family of inequivalent irreducible
representations of G.

A coefficient of π is a function on G of the form s → (π(s)ξ, η), where
ξ, η ∈ H. The Fourier-Stieltjes algebra of G is the collection of all coeffi-
cients of unitary representations of G; it is clear that B(G) is contained in
the algebra Cb(G) of all bounded continuous functions on G. It is not diffi-
cult to see that B(G) is an algebra with respect to pointwise addition and
multiplication. It is moreover a Banach algebra with respect to the norm

‖u‖ = inf{‖ξ‖‖η‖ : u(·) = (π(·)ξ, η)},
where the infimum is taken over all unitary representations π and all vectors
ξ and η with the designated property.

For s ∈ G, let λs ∈ U(L2(G)) be given by λsf(t) = f(s−1t), t ∈ G,
f ∈ L2(G). The map λ : G→ U(L2(G)) sending s to λs is a representation
ofG, called the left regular representation. The corresponding representation
of L1(G) is faithful (and non-degenerate). The Fourier algebra A(G) of G
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is the collection of all coefficients of λ; it is a closed ideal of B(G) and the
norm on A(G) is given by

‖u‖ = inf{‖ξ‖‖η‖ : u(s) = (λsξ, η), s ∈ G, ξ, η ∈ L2(G)}.
Through the pivotal work of P. Eymard [10], A(G) is a (commutative) semi-
simple regular Banach algebra with spectrum G. We note that A(G) ⊆
C0(G) and ‖u‖∞ ≤ ‖u‖ for every u ∈ A(G). Moreover, B(G) ∩ Cc(G) ⊆
A(G) (here Cc(G) stands for the space of all continuous functions on G with
compact support).

We denote by C∗(G) the C*-algebra ofG; this is the enveloping C*-algebra
of L1(G), that is, the completion of L1(G) with respect to the norm

‖f‖ = sup{‖π(f)‖ : π a unitary representation of G}
(note that the supremum on the right hand side is finite since, for every
representation π of G and every f ∈ L1(G), we have ‖π(f)‖ ≤ ‖f‖1). The
C*-algebra C∗(G) is characterised by the following universal property: for
every unitary representation π of G, there exists a unique non-degenerate
representation π̃ of C∗(G) such that π̃(f) = π(f) for every f ∈ L1(G). In
the future, we will not use a different notation for π̃ and simply denote it by
π. Note that L1(G) can be considered in a natural fashion as a norm dense
*-subalgebra of C∗(G).

The reduced C*-algebra C∗r (G) of G is the closure, in the operator norm, of
the image λ(L1(G)) inside B(L2(G)), while the group von Neumann algebra
of G is the weak* (equivalently, the weak, or the strong, operator topology)
closure of C∗r (G).

The Banach space dual of C∗(G) can be isometrically identified with B(G)
via the formula

(3) 〈f, u〉 =

∫
G
f(s)u(s)ds, f ∈ L1(G), u ∈ B(G) .

In a similar fashion, the (unique) Banach space predual of VN(G) can be
isometrically identified with A(G); in addition to the formula (3) (where u
is taken from A(G)), the duality is described by the formulas

〈u, λs〉 = u(s), s ∈ G, u ∈ A(G) .

For a given u ∈ A(G) and T ∈ VN(G), the functional on A(G) given by
v → 〈uv, T 〉, v ∈ A(G), is bounded and thus there exists a (unique) element
u · T ∈ VN(G) such that

〈v, u · T 〉 = 〈uv, T 〉, v ∈ A(G).

Note that ‖u · T‖ ≤ ‖u‖‖T‖. The map

A(G)×VN(G)→ VN(G), (u, T )→ u · T,
is easily seen to define the structure of a Banach A(G)-module on VN(G). It
can be shown that in fact VN(G) is an operator A(G)-module when equipped
with this action; moreover, for each u ∈ A(G), the map T → u · T is weak*
continuous.
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The positive linear functionals on C∗(G) correspond to positive definite
functions from B(G). A function u ∈ C(G) (where C(G) is the space
of all continuous functions on G) is called positive definite if the matrix
(u(sis

−1
j ))ni,j=1 is positive for every choice s1, . . . , sn of elements of G. Equiv-

alently, u is positive definite if, viewed as an element of L∞(G), it defines a
positive linear functional on L1(G), that is, if∫

G
u(s)(f ∗ f∗)(s)ds ≥ 0, f ∈ L1(G).

We denote by P (G) the collection of all continuous positive definite functions
on G; it is easy to see that P (G) ⊆ Cb(G) and that if u ∈ P (G) then
‖u‖∞ = u(e).

Using GNS theory, one can show that P (G) ⊆ B(G). More precisely, a
function u ∈ B(G) is positive definite if and only if there exists a represen-
tation π of G and a vector ξ ∈ Hπ (cyclic for π) such that u(s) = (π(s)ξ, ξ),
s ∈ G. We then say that u is a positive coefficient of π.

Let Nλ be the kernel of the left regular representation λ of C∗(G). Clearly,
C∗r (G) = C∗(G) /Nλ, up to a *-isomorphism. The groupG is called amenable
ifNλ = {0}; in this case, the C*-algebras C∗(G) and C∗r (G) are *-isomorphic.
We note that amenability is usually defined by requiring the existence of a
left invariant mean on L∞(G). A further equivalent formulation of amenabil-
ity can be derived as follows. Given two families S and T of representations
of G (or, equivalently, of C∗(G)), say that S is weakly contained in T if
∩π∈T kerπ ⊆ ∩π∈S kerπ. Every positive linear functional on C∗r (G) gives
rise, via composition with the corresponding quotient map, to a positive
linear functional on C∗(G) and can hence be identified with an element of
P (G). It was shown by J. M. G. Fell [11] that the elements of P (G) obtained
in this way are precisely the positive coefficients of the unitary representa-
tions of G weakly contained in λ. More precisely, we have the following
facts.

Proposition 2.6. Let u ∈ P (G). The following are equivalent:
(i) The formula

λ(f)→
∫
G
u(s)f(s)ds, f ∈ L1(G),

defines a positive linear functional on C∗r (G);
(ii) The GNS representation corresponding to u is weakly contained in

λ;
(iii) The function u is the limit, in the topology of uniform convergence

on compacts, of functions of the form f ∗ f̃ , f ∈ L2(G).

We note that the functions of the form f ∗ f̃ are precisely the positive
coefficients of the left regular representation of G:

(λs(f), f) =

∫
G
f(s−1t)f(t)dt = (f ∗ f̃)(s), s ∈ G.
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The set of functions satisfying the equivalent conditions of Proposition
2.6 will be denoted by Pλ(G), and its linear span in B(G), by Bλ(G). Thus,
the space Bλ(G) corresponds in a canonical fashion to the Banach space
dual of C∗r (G). We have the following additional characterisation of Bλ(G):

Proposition 2.7. The following are equivalent, for a function u : G→ C:
(i) u ∈ Bλ(G);
(ii) the formula

λ(f)→
∫
G
u(s)f(s)ds, f ∈ L1(G),

defines a bounded linear functional on C∗r (G);

From Proposition 2.7 one can easily derive that the group G is amenable
if and only if the constant function 1 can be approximated, uniformly on
compact sets, by elements of A(G). Equivalently, G is amenable if and only
if A(G) possesses a bounded approximate identity [34].

Since B(G) = C∗(G)∗, we can equip B(G) with the operator space struc-
ture arising from this duality. Similarly, A(G) (resp. Bλ(G)), being the pre-
dual of VN(G) (resp. the dual of C∗r (G)), can be equipped with a canonical
operator space structure. Throughout these notes, any reference to A(G),
B(G) and Bλ(G) as operator spaces utilises the structures just introduced.

If G and H are locally compact groups, we denote as customary by G×H
the direct product of G and H equipped with the product topology. We
have that VN(G×H) = VN(G)⊗̄VN(H). It follows that, up to a complete
isometry, A(G×H) = A(G)⊗̂A(H), where ⊗̂ denotes the operator projective
tensor product.

3. The spaces MA(G) and M cbA(G)

In this section, we define Herz-Schur multipliers and establish some of
their basic properties. We follow closely [5], where Herz-Schur multipliers
were first introduced and studied.

Definition 3.1. A function u : G → C is called a multiplier of A(G) if
uv ∈ A(G) for every v ∈ A(G).

We denote the set of all multipliers of A(G) by MA(G). Clearly, MA(G)
is an algebra with respect to pointwise addition and multiplication. We
note that if u ∈MA(G) then u is continuous; indeed, given s ∈ G, choose a
compact neighbourhood K of s and let v ∈ A(G) be a function with v|K = 1.
Then uv|K = u|K , and since uv is continuous, it follows that u is continuous
at s.

If u ∈MA(G), let mu : A(G)→ A(G) be the map given by mu(v) = uv,
v ∈ A(G). We note that the map mu satisfies the relation mu(vw) = vmu(w)
for all v, w ∈ A(G).

Proposition 3.2. If u ∈MA(G) then the map mu is bounded.
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Proof. The (linear) map mu is defined on a Banach space; in order to show
that mu is bounded, it suffices, by the Closed Graph Theorem, to show that
mu has closed graph. Let therefore (uk)k∈N ⊆ A(G) be a null sequence
such that uuk → v for some v ∈ A(G). Then ‖uk‖∞ →k→∞ 0 and ‖uuk −
v‖∞ →k→∞ 0. Thus,

v(s) = lim
k→∞

u(s)uk(s) = 0, s ∈ G;

in other words, v = 0 as an element of A(G). �

Exercise 3.3. Suppose that T : A(G) → A(G) is a linear map such that
T (vw) = vT (w), v, w ∈ A(G). Then there exists u ∈ MA(G) such that
T = mu.

For u ∈MA(G), we set ‖u‖m
def
= ‖mu‖.

Remark 3.4. We have that B(G) ⊆ MA(G). Moreover, if u ∈ B(G) then
‖u‖m ≤ ‖u‖B(G).

Proof. Since A(G) is an ideal of B(G), we have that B(G) ⊆MA(G). More-
over,

‖mu‖ = sup{‖uv‖ : v ∈ A(G), ‖v‖ ≤ 1} ≤ ‖u‖B(G).

�

Definition 3.5. An element v ∈ MA(G) is called a completely bounded
multiplier of A(G) if the map mv is completely bounded.

Let M cbA(G) be set of all completely bounded multipliers of A(G). Since
muv = mumv (for u, v ∈ MA(G)), we have that M cbA(G) is a subalgebra
of MA(G). Set ‖u‖cbm = ‖mu‖cb (where u ∈ M cbA(G)); then M cbA(G) is
a Banach algebra with respect to ‖ · ‖cbm.

If u ∈MA(G), the dual map m∗u of mu acts on VN(G); we will denote it
by Su. If s ∈ G and v ∈ A(G) then

〈v, Su(λs)〉 = 〈mu(v), λs〉 = 〈uv, λs〉 = u(s)v(s) = 〈v, u(s)λs〉.
This shows that Su(λs) = u(s)λs, s ∈ G. In particular, it follows that

(4) |v(s)| = ‖v(s)λs‖ = ‖Sv(λs)‖ ≤ ‖v‖m, s ∈ G;

and thus the elements of MA(G) are bounded functions. The above argu-
ment also proves a part of the following theorem.

Theorem 3.6. Let u : G → C be a bounded continuous function. The
following are equivalent:

(i) u ∈MA(G);
(ii) There exists a (unique) bounded weak* continuous linear map T on

VN(G) such that T (λs) = u(s)λs, s ∈ G;
(iii) There exists a bounded linear map R on C∗r (G) such that

R(λ(f)) = λ(uf), f ∈ L1(G);

(iv) uv ∈ Bλ(G) for every v ∈ Bλ(G).
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Proof. (i)⇒(ii) follows from the argument before the statement of the the-
orem, by taking T = Su.

(ii)⇒(iii) We claim that the restriction R of T to C∗r (G) satisfies the given
relations. Indeed, letting f ∈ L1(G), we have that, in the topology of the
norm, λ(f) =

∫
G f(s)λsds. Since T is norm continuous,

(5) T (λ(f)) =

∫
G
f(s)T (λs)ds =

∫
G
f(s)u(s)λsds.

Since u is bounded (see (4)), uf ∈ L1(G) and (5) shows that T (λ(f)) =
λ(uf).

(iii)⇒(iv) For v ∈ Bλ(G) and f ∈ L1(G), we have∣∣∣∣∫
G
u(s)v(s)f(s)ds

∣∣∣∣ = |〈λ(uf), v〉| ≤ ‖R‖‖λ(f)‖‖v‖Bλ(G).

It follows that the map

λ(f)→
∫
G
u(s)v(s)f(s)ds, f ∈ L1(G),

extends to a bounded linear functional on C∗r (G) of norm not exceeding
‖R‖‖v‖Bλ(G). By Proposition 2.7, uv ∈ Bλ(G).

(iv)⇒(i) An application of the Closed Graph Theorem as in the proof of
Proposition 3.2 shows that the map v → uv on Bλ(G) is bounded. Sup-
pose that v ∈ B(G) ∩ Cc(G); then uv ∈ Bλ(G) ∩ Cc(G) ⊆ A(G). Since

B(G) ∩ Cc(G) = A(G) [10], it follows that uA(G) ⊆ A(G). �

Remark 3.7. Let u ∈ L∞(G). The following are equivalent:
(i) u is equivalent (with respect to the Haar measure) to a function from

MA(G);
(ii) there exists C > 0 such that

‖λ(uf)‖ ≤ C‖λ(f)‖, f ∈ L1(G).

Proof. (i)⇒(ii) follows from Theorem 3.6 and the fact that if u ∼ v then
λ(uf) = λ(vf) for every f ∈ L1(G).

(ii)⇒(i) Let v ∈ Bλ(G) and ω : λ(L1(G))→ C be the functional given by

ω(λ(f)) =

∫
G
ufvdm, f ∈ L1(G).

Then
|ω(λ(f))| ≤ C‖v‖Bλ(G)‖λ(f)‖, f ∈ L1(G).

Thus, there exists w ∈ Bλ(G) such that

ω(λ(f)) =

∫
G
wfdm, f ∈ L1(G).

It follows that uv = w almost everywhere. Since such a function w exists
for every choice of v ∈ Bλ(G), we conclude that u agrees almost everywhere
with a continuous function. The statement in (i) now follows from Theorem
3.6. �
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Note that u ∈ M cbA(G) if and only if the map T , or that map R, from
Theorem 3.6 are in fact completely bounded.

We next characterise the elements of M cbA(G) within MA(G). If H is
another locally compact group and u : G → C, we write u × 1 for the
function defined on G×H by u× 1(s, t) = u(s), s ∈ G, t ∈ H. To underline
the dependence of this function on H, we write u× 1H . Recall that SU(n)
denotes the special unitary group in dimension n, that is, the group (under
multiplication) of all n by n unitary matrices with determinant 1.

Theorem 3.8. Let u ∈MA(G). The following are equivalent:
(i) u ∈M cbA(G);
(ii) u× 1 ∈MA(G×H) for every locally compact group H;
(iii) u× 1 ∈MA(G× SU(2)).
Moreover, if these conditions are fulfilled then

‖u‖cbm = sup
H l.c.g.

‖u× 1H‖m = ‖u× 1SU(2)‖m.

Proof. (i)⇒(ii) By assumption, the map Su : VN(G) → VN(G) is com-
pletely bounded and weak* continuous. Let H = L2(H). The map Su⊗ id :
VN(G)⊗̄B(H) → VN(G)⊗̄B(H) is bounded and weak* continuous with
‖Su⊗id ‖ ≤ ‖Su‖cb. We have that (Su⊗id)(T⊗S) = Su(T )⊗S, T ∈ VN(G),
S ∈ B(H). In particular, if s ∈ G and t ∈ H then

(Su ⊗ id)(λs ⊗ λt) = Su(λs)⊗ λt = (u× 1)(s, t)λ(s,t).

By Theorem 3.6, u× 1 ∈MA(G×H).
(ii)⇒(iii) is trivial.
(iii)⇒(i) The group SU(2) is compact; by the Peter-Weyl Theorem,

VN(SU(2)) ∼= ⊕`
∞

π∈ ˆSU(2)
B(Hπ)

as von Neumann algebras. It is well-known that for every n ∈ N there exists
a unique equivalence class of irreducible unitary representations of SU(2)
whose underlying Hilbert space has dimension n. Thus, VN(SU(2)) ∼=
⊕∞n=1Mn. It follows that

(6) VN(G)⊗̄VN(SU(2)) ∼= ⊕∞n=1 VN(G)⊗Mn.

For s ∈ G and t ∈ SU(2), we have that Su×1(λs ⊗ λt) = Su(λs) ⊗ λt. By
linearity and weak* continuity, we have that Su×1 = Su⊗ id |SU(2). By (6), if

T = ⊕∞n=1Tn ∈ VN(G)⊗̄VN(SU(2)) then Su×1(T ) = ⊕∞n=1S
(n)
u (Tn). Thus,

‖S(n)
u (Tn)‖ ≤ ‖u×1‖m‖Tn‖, n ∈ N. Since {Tn : T ∈ VN(G)⊗̄VN(SU(2))} =

VN(G)⊗Mn, we conclude that ‖S(n)
u ‖ ≤ ‖u×1‖m, and (i) is established. �

Corollary 3.9. We have B(G) ⊆ M cbA(G). Moreover, if u ∈ B(G) then
‖u‖cbm ≤ ‖u‖B(G).

Proof. Let u ∈ B(G) and H be any locally compact group. Then u× 1H ∈
B(G × H); indeed, if π : G → B(Hπ) is a unitary representation of G
then π ⊗ 1 : G × H → B(Hπ) given by π ⊗ 1(s, t) = π(s) is a unitary
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representation of G × H. It follows that u × 1H ∈ B(G × H); moreover,
‖u× 1H‖B(G×H) ≤ ‖u‖B(G). By Remark 3.4, u× 1H ∈MA(G×H) and

‖u× 1H‖m ≤ ‖u× 1H‖B(G×H) ≤ ‖u‖B(G).

It follows by Theorem 3.8 that u ∈M cbA(G) and ‖u‖cbm ≤ ‖u‖B(G). �

It follows from Corollary 3.9 that

B(G) ⊆M cbA(G) ⊆MA(G).

It was shown by V. Losert [35] that G is amenable if and only if B(G) =
MA(G).

The following simple observation will be useful in the sequel.

Proposition 3.10. If u ∈ A(G) then Su(T ) = u · T for every T ∈ VN(G).

Proof. If s ∈ G and v ∈ A(G) then

〈Su(λs), v〉 = 〈u(s)λs, v〉 = u(s)v(s)λs = 〈λs, uv〉 = 〈u · λs, v〉.
The claim follows by linearity and weak* continuity. �

3.1. The case of commutative groups. In this subsection, we follow the
exposition of [44]. We assume throughout that G is abelian. We briefly

recall some basic facts about Fourier theory on G. Let Γ = Ĝ be the dual
group of G. If f ∈ L1(Γ), let f̂ : G → C be its Fourier transform, namely,
the function

f̂(s) =

∫
Γ
f(γ)γ(s)dγ, s ∈ G.

We also set F(f) = f̂ , f ∈ L1(Γ). Then

‖F(f)‖2 = ‖f‖2, f ∈ L1(Γ) ∩ L2(Γ),

and thus F extends to an isometry (denoted again by F) from L2(Γ) onto

L2(G). We often write f̂ = F(f) for elements f of L2(Γ). Note that, if
f, g ∈ L1(Γ), then F(f ∗ g) = F(f)F(g). This implies that if f, g ∈ L2(Γ)

are such that f̂ , ĝ ∈ L1(G) then f̂g = f̂ ∗ ĝ. These observations form the
base for the following fact.

Proposition 3.11. We have that A(G) = {f̂ : f ∈ L1(Γ)}. Moreover, the

map f → f̂ is an isometric homomorphism of L1(Γ) onto A(G).

Fourier transform gives a useful insight into the C*-algebra and the von
Neumann algebra of Γ. Indeed, let L∞(G) act on L2(G) via multiplication;
more precisely, consider the algebra

DG = {Mϕ : ϕ ∈ L∞(G)},
where Mϕ ∈ B(L2(G)) is given by Mϕf = ϕf , f ∈ L2(G). Let also

CG = {Mϕ : ϕ ∈ C0(G)},
A straightforward calculation shows that

(7) Fλ(f)F∗ = Mf̂ , f ∈ L1(Γ).
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It follows that

F VN(Γ)F∗ = DG, FC∗r (Γ)F∗ = CG.
Our next aim is to characterise similarly B(G) and to show that MA(G)

coincides with it. First note that the Fourier transform can be extended to
the algebra M(G) of all Radon measures on Γ; for µ ∈M(G), set

µ̂(s) =

∫
Γ
γ(s)dµ(γ), s ∈ G.

Note that µ̂ is a continuous function on G with ‖µ̂‖∞ ≤ ‖µ‖ (the latter
norm being the total variation of µ).

The following is a classical result of Bochner’s.

Theorem 3.12. We have that

P (G) = {µ̂ : µ ∈M(Γ), positive}.
Thus, B(G) = {µ̂ : µ ∈M(Γ)}.

Proof. Let u ∈ P (G), and assume, without loss of generality, that u(e) = 1.
Via the identification of B(G) with C∗(G)∗, the function u corresponds to
a state ωu of C∗(G). The Cauchy-Schwarz inequality for positive linear
functionals now implies that

(8) |ωu(f)|2 ≤ ωu(f ∗ f̃), f ∈ L1(G).

Fix f ∈ L1(G) and let h = f ∗ f̃ . Then a successive application of (8) shows
that

|ωu(f)|2 ≤ (‖h2n‖1)2−n .

Taking a limit, we obtain that

|ωu(f)|2 ≤ r(h),

where r(h) is the spectral radius of h as an element of the Banach algebra

L1(G). We have that r(h) = ‖ĥ‖∞, and hence

|ωu(f)|2 ≤ ‖ĥ‖∞.

It now follows that the map f̂ → ωu(f) is well-defined and bounded in the
uniform norm.

On the other hand, an application of the Stone-Weierstrass Theorem
shows that A(Γ) is dense in C0(Γ) in ‖ · ‖∞. By the Riesz Representation
Theorem, there exists a positive measure µ ∈M(Γ) such that

ωu(f) =

∫
Γ
f̂dµ, f ∈ L1(G).

Thus, ∫
G
f(s)u(s)ds = ωu(f) =

∫
G

∫
Γ
f(s)γ(s)dµ(γ)ds, f ∈ L1(G).

It now follows that u = µ̂ almost everywhere. Since both u and µ̂ are
continuous, we conclude that u = µ̂ everywhere.
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Conversely, suppose that µ ∈M(Γ) is a positive measure. For any choice
s1, . . . , sn of points in G, and any choice of scalars λ1, . . . , λn, we have

n∑
i,j=1

λiλjµ̂(si − sj) =

∫
Γ

n∑
i,j=1

λiλjγ(si − sj)dµ(γ)

=

∫
Γ

n∑
i,j=1

λiγ(si)λjγ(sj)dµ(γ).

Since (γ(si)γ(sj))
n
i,j=1 is a positive matrix for all γ ∈ Γ, we have that

n∑
i,j=1

λiγ(si)λjγ(sj) ≥ 0

for all γ ∈ Γ. Since µ is positive, we conclude that

n∑
i,j=1

λiλjµ̂(si − sj) ≥ 0.

This shows that µ̂ is a positive definite function.
The second equality follows from the fact that B(G) is the linear span of

P (G). �

Remark It can be shown that, if µ ∈ M(Γ), then ‖µ̂‖B(G) = ‖µ‖, where
the latter denotes the total variation of µ.

We have the following alternative description of B(G). Let T (Γ) be the
linear space of all trigonometric polynomials on Γ, that is, the space of all
functions f : Γ→ C of the form

(9) f(γ) =

n∑
i=1

ci〈γ, si〉, γ ∈ Γ,

where si ∈ G and ci ∈ C, i = 1, . . . , n. We note that, equivalently, a
trigonometric polynomial of the form (9) can be identified with the element
Tf ∈ VN(G) given by

Tf =
n∑
i=1

ciλsi .

Proposition 3.13. Let u : G→ C be a continuous function. The following
are equivalent:

(i) u ∈ B(G) and ‖u‖ ≤ C;
(ii) if f is a trigonometric polynomial of the form (9) then

(10)

∣∣∣∣∣
n∑
i=1

ciu(si)

∣∣∣∣∣ ≤ C‖f‖∞.
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Proof. (ii)⇒(i) Let Gd be the group G equipped with the discrete topology.
For f ∈ T (Γ), we have, in view of (7), that ‖Tf‖ = ‖f‖∞. Thus, (10) implies
that the linear map ω : Tf →

∑n
i=1 ciu(si) has the property |ω(Tf )| ≤

C‖Tf‖, f ∈ T (Γ). Since {Tf : f ∈ T (Γ)} is dense in C∗(Gd) in norm, the
functional ω has an extension to a bounded linear functional on C∗(Gd).
Thus, there exists v ∈ B(Gd) such that

ω(Tf ) = 〈Tf , v〉 =
n∑
i=1

civ(si), f ∈ T (Γ).

It follows that u = v. However, by the Bochner-Eberlein Theorem, B(Gd)∩
C(G) = B(G), and the proof is complete.

(i)⇒(ii) By virtue of the Bochner-Eberlein Theorem, B(Gd) ∩ C(G) =
B(G), and hence u ∈ B(Gd). The claim now follows from the fact that, if f
is as in (9), then 〈Tf , u〉 =

∑n
i=1 ciu(si). �

Theorem 3.14. Suppose that u : G→ C is a function such that uv ∈ B(G)
for every v ∈ A(G). Then u ∈ B(G). In particular, MA(G) = B(G).

Moreover, if u ∈ B(G) then ‖u‖m = ‖u‖.

Proof. One can easily show that u is continuous; moreover, a straightforward
application of the Closed Graph Theorem (see the proof of Proposition 3.2)
shows that the map T : A(G) → B(G) given by T (v) = uv, is bounded.
Let s1, . . . , sn ∈ G, c1, . . . , cn ∈ C, and f =

∑n
i=1 cisi ∈ T (Γ) be the corre-

sponding trigonometric polynomial on Γ. For a given ε > 0, let v ∈ A(G)
be a function such that v(si) = 1, i = 1, . . . , n, and ‖v‖ ≤ 1 + ε. Then
uv(si) = u(si), i = 1, . . . , n. Since uv ∈ B(G), Theorem 3.12 gives an
element µ ∈M(Γ) such that µ̂ = uv. Thus,∣∣∣∣∣

n∑
i=1

ciu(si)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

ciµ̂(si)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Γ

(
n∑
i=1

ciγ(si)

)
dµ(γ)

∣∣∣∣∣ ≤ ‖µ‖‖f‖∞.
By Proposition 3.13, u ∈ B(G) and

‖u‖ ≤ ‖µ‖ = ‖uv‖B(G) ≤ ‖T‖(1 + ε);

thus, ‖u‖ ≤ ‖T‖. We have that ‖T‖ = ‖u‖m since the image of the map T is
in A(G). Thus, ‖u‖ ≤ ‖u‖m; by Corollary 3.9, we have that ‖u‖ = ‖u‖m. �

Corollary 3.15. Let G be a locally compact abelian group. Then M cbA(G) =
B(G). Moreover, if u ∈ B(G) then ‖u‖ = ‖u‖cbm.

4. Schur multipliers

This section is dedicated to a brief introduction to measurable Schur
multipliers, which will be used in subsequent parts of the present text.
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4.1. ω-topology. We fix for the whole section standard measure spaces
(X,µ) and (Y, ν); by this we mean that there exist locally compact, metris-
able, complete topologies on X and Y (called the underlying topologies),
with respect to which µ and ν are regular Borel σ-finite measures.

By a measurable rectangle we will mean a subset of X × Y of the form
α × β, where α and β are measurable. We denote by µ × ν the product
measure (defined on the product σ-algebra on X × Y , that is, on the σ-
algebra generated by all measurable rectangles).

A subset E ⊆ X × Y will be called marginally null if there exist null sets
M ⊆ X and N ⊆ Y such that E ⊆ (M × Y ) ∪ (X ×N). Every marginally
null subset of X × Y is clearly a µ × ν-null set. The converse is not true;
for an example, consider the subset ∆ = {(x, x) : x ∈ [0, 1]} of [0, 1]× [0, 1],
where the unit interval [0, 1] is equipped with Lebesgue measure.

Two measurable sets E,F ⊆ X × Y will be called marginally equivalent
if the symmetric difference of E and F is marginally null; in this case we
write E ∼= F . The sets E and F will be called equivalent if their symmetric
difference is µ×ν-null; in this case we write E ∼ F . Similarly, for measurable
functions ϕ,ψ : X × Y → C, we write ϕ ∼ ψ (resp. ϕ ∼= ψ) if the set
{(x, y) : ϕ(x, y) 6= ψ(x, y)} is null (resp. marginally null). A measurable
subset κ ⊆ X × Y is called ω-open if it is marginally equivalent to a subset
of X×Y of the form ∪∞i=1αi×βi, where αi ⊆ X and βi ⊆ Y are measurable,
i ∈ N. The set κ will be called ω-closed if its complement κc is ω-open. The
set of all ω-open sets is a pseudo-topology, that is, it is closed under taking
countable unions and finite intersections.

Lemma 4.1 ([9]). Suppose that the underlying topologies of X and Y are
compact and the measures µ and ν are finite. Let κ be an ω-closed set,
and γk, k ∈ N, be ω-open subsets, of X × Y , such that κ ⊆ ∪∞k=1γk. For
every ε > 0 there exist measurable sets Xε ⊆ X and Yε ⊆ Y such that
µ(X \Xε) < ε, µ(Y \ Yε) < ε and the set κ ∩ (Xε × Yε) is contained in the
union of finitely many of the sets γk, k ∈ N.

A function h : X × Y → C will be called ω-continuous if h−1(U) is ω-
open for every open set U ⊆ C. Let Cω(X × Y ) be the set of all (marginal
equivalence classes of) ω-continuous functions on X × Y .

The following facts will be useful; their proofs are left as an exercise.

Proposition 4.2. (i) The set Cω(X × Y ) is an algebra with respect to
pointwise addition and multiplication.

(ii) If ϕ,ψ ∈ Cω(X × Y ) and ϕ ∼ ψ then ϕ ∼= ψ.

4.2. The predual of B(H1, H2). We let H1 = L2(X,µ) and H2 = L2(Y, ν).
It is well-known that the dual Banach space of the space C1(H2, H1) of
all trace class operators from H2 into H1 is isometrically isomorphic to
B(H1, H2), the duality being given by

〈S, T 〉 = tr(ST ), S ∈ C1(H2, H1), T ∈ B(H1, H2),
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where tr denotes the canonical trace on C1(H1). In this subsection we de-
scribe an identification of C1(H2, H1) with a certain function space on X×Y ,
which will be used in the rest of the section. Recall first that C1(H2, H1)
can be naturally identified with the projective tensor product H1⊗̂H2 by
identifying an elementary tensor f ⊗ g, where f ∈ H1 and g ∈ H2, with the
operator Tf⊗g of rank one given by

Tf⊗g(h) = (h, g)f =

(∫
Y
h(y)g(y)dν(y)

)
f, h ∈ H2.

In this way, the operators of finite rank from H2 into H1 are identified with
elements of the algebraic tensor product L2(X,µ)⊗ L2(Y, ν.

Lemma 4.3. Suppose that
∑n

j=1 fj ⊗ gj = 0 as an element of L2(X,µ) ⊗
L2(Y, ν). Then

∑n
j=1 fj(x)gj(y) = 0 for marginally almost all (x, y).

Proof. Let ψ(x, y) =
∑n

j=1 fj(x)gj(y), (x, y) ∈ X × Y . The function ψ is
well-defined up to a marginally null set. We first note that Reψ arises from
the element

1

2

n∑
j=1

fj ⊗ gj +
1

2

n∑
j=1

fj ⊗ gj

of L2(X,µ) ⊗ L2(Y, ν), which coincides with the zero element since both
terms are zero. Similarly, Imψ arises from the element

1

2i

n∑
j=1

fj ⊗ gj −
1

2i

n∑
j=1

fj ⊗ gj

of L2(X,µ)⊗L2(Y, ν) which is zero. If we show that Reψ and Imψ, viewed
as functions, are equal to zero marginally almost everywhere, the lemma will
be established. We may hence assume that the function ψ takes real values.

By Proposition 4.2, ψ is ω-continuous. Suppose that ψ is not marginally
equivalent to the zero function; without loss of generality, assume that there
exist δ > 0 and a rectangle α × β of finite non-zero measure such that
ψ(x, y) > δ for all (x, y) ∈ α× β. But then

0 <

∫
α×β

ψ(x, y)dµ(x)dν(y) =

n∑
j=1

(fj , χα)(gj , χβ) = 0,

a contradiction. �

For an element u =
∑n

j=1 fj ⊗ gj ∈ L2(X,µ)⊗ L2(Y, ν), we let ψu be the

function on X×Y given by ψu(x, y) =
∑n

j=1 fj(x)gj(y). By Lemma 4.3, ψu
is well-defined, as an element of Cω(X × Y ).

Lemma 4.4. Let {un}∞n=1 ∈ L2(X,µ) ⊗ L2(Y, ν) be a sequence converging
to zero in the projective tensor norm, and ψn = ψun. Then there exists a
subsequence {nk}∞k=1 of natural numbers such that ψnk →k→∞ 0 marginally
almost everywhere.
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Proof. We may assume that un =
∑pn

j=1 f
(n)
j ⊗ g(n)

j , and

pn∑
j=1

‖f (n)
j ‖

2
2 →n→∞ 0,

pn∑
j=1

‖g(n)
j ‖

2
2 →n→∞ 0.

Thus, ∫
X

 pn∑
j=1

|f (n)
j (x)|2

 dµ(x)→n→∞ 0

and hence there exists a subsequence {nk}∞k=1 of natural numbers such that

pnk∑
j=1

|f (nk)
j (x)|2 →n→∞ 0 almost everywhere.

We may assume that, moreover,
pnk∑
j=1

|g(nk)
j (y)|2 →n→∞ 0 almost everywhere.

By the Cauchy-Schwarz inequality,

|ψnk(x, y)|2 ≤
pnk∑
j=1

|f (nk)
j (x)|2

pnk∑
j=1

|g(nk)
j (y)|2 −→k→∞ 0

marginally almost everywhere. �

Now let u ∈ L2(X,µ)⊗̂L2(Y, ν), and suppose that u =
∑∞

j=1 fj ⊗ gj ,

where
∑∞

j=1 ‖fj‖22 < ∞ and
∑∞

j=1 ‖gj‖22 < ∞. Since
∑∞

j=1 ‖fj‖22 < ∞ we
have that

∞∑
j=1

|fj(x)|2 <∞ almost everywhere on X

and
∞∑
j=1

|gj(x)|2 <∞ almost everywhere on Y.

By the Cauchy-Schwarz inequality, the sum
∑∞

j=1 fj(x)gj(y) is finite for

marginally all (x, y). Let ψ = ψu be the complex function defined marginally
almost everywhere on X × Y by letting

(11) ψ(x, y) =

∞∑
j=1

fj(x)gj(y).

We note that the function ψ(x, y) does not depend on the representation
of u. To this end, suppose that u =

∑∞
j=1 ξj ⊗ ηj is another representa-

tion of u and let φ(x, y) =
∑∞

j=1 ξj(x)ηj(y). Set un =
∑n

j=1 fj ⊗ gj , vn =∑n
j=1 ξj ⊗ ηj , ψn(x, y) =

∑n
j=1 fj(x)gj(y) and φn(x, y) =

∑n
j=1 ξj(x)ηj(y).
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Thus, ψn(x, y) → ψ(x, y) and φn(x, y) → φ(x, y) marginally almost every-
where. We have that ‖un − vn‖∧ −→n→∞ 0; by Lemma 4.4, there exists a
subsequence {nk}∞k=1 of natural numbers such that ψnk(x, y)−φnk(x, y)→ 0
marginally almost everywhere. Thus, ψ(x, y) = φ(x, y) marginally almost
everywhere.

We now let T (X,Y ) be the space of all classes (with respect to marginal
equivalence) of functions ψu, associated to elements u ∈ L2(X,µ)⊗̂L2(Y, ν).

We equip T (X,Y ) with the norm ‖ψu‖∧
def
= ‖u‖∧. It is easy to note that,

conversely, if ψ : X × Y → C is a function which admits a representation of
the form (11), where

∑∞
j=1 ‖fj‖22 < ∞ and

∑∞
j=1 ‖gj‖22 < ∞, then ψ = ψu,

where u =
∑∞

i=1 fi ⊗ gi.
If u =

∑∞
i=1 fi ⊗ gi, let Tu : H2 → H1 be the nuclear operator given by

Tu(η)(x) =
∞∑
i=1

(η, gi)fi, η ∈ H2.

It is immediate that Tu is an integral operator with integral kernel ψu.
We note that if k ∈ L2(Y × X), Tk ∈ C2(H1, H2) is the corresponding

Hilbert-Schmidt operator given by

Tkξ(y) =

∫
X
k(y, x)ξ(x)dµ(x), y ∈ Y,

and if u ∈ T (X,Y ) then

(12) 〈Tu, Tk〉 =

∫
X×Y

ψu(x, y)k(y, x)dµ× ν(x, y).

Indeed, (12) can be verified first in the case Tψ is an operator of rank one and
then its validity follows by linearity and weak* continuity. If u ∈ T (X,Y )
and T ∈ B(H1, H2), we will often write 〈u, T 〉 for 〈Tu, T 〉.

Remark 4.5. The map sending an element u of L2(X,µ)⊗̂L2(Y, ν) to its
corresponding class (with respect to marginal equivalence) of functions in
T (X,Y ) is injective. That is, if u1, u2 ∈ L2(X,µ)⊗̂L2(Y, ν) and ψu1

∼= ψu2
then Tu1 = Tu2.

Proof. This is immediate from the fact that Tu1 and Tu2 are integral opera-
tors with integral kernels ψu1 and ψu2 , respectively. �

Henceforth, we identify the space of (marginal equivalence classes of)
functions T (X,Y ) with the projective tensor product L2(X,µ)⊗̂L2(Y, ν);
we thus suppress the distinction between u and ψu and use the same symbol
to denote them.

We note that equation (12) implies the following, which will be useful in
the sequel: suppose that ψ ∈ T (X,Y ) and ψ′ is a measurable function with
ψ′ ∼ ψ. Then, clearly,∫

X×Y
ψ(x, y)k(y, x)dµ× ν(x, y) =

∫
X×Y

ψ′(x, y)k(y, x)dµ× ν(x, y),
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for all k ∈ L2(Y ×X). It follows that the map

Tk →
∫
X×Y

ψ′(x, y)k(y, x)dµ× ν(x, y)

is bounded in the operator norm, and hence there exists ψ′′ ∈ T (X,Y ) such
that

〈Tψ′′ , Tk〉 =

∫
X×Y

ψ′(x, y)k(y, x)dµ× ν(x, y).

It now follows that ψ′′ ∼ ψ′, and thus ψ′′ ∼ ψ. Since both ψ′′ and ψ are ω-
continuous, we have by Proposition 4.2 that ψ ∼= ψ′′. Thus, the function ψ′

is the integral kernel of the operator Tψ. In other words, integral operators
Tψ′ can be defined unambiguously for any function ψ′ that is equivalent,
with respect to the product measure, to a function from T (X,Y ).

Proposition 4.6. The inclusion T (X,Y ) ⊆ Cω(X × Y ) holds.

Proof. We first establish the following

Claim. If fn : X × Y → C and φn : X × Y → R+ are ω-continuous
functions such that infn φn(x, y) = 0 for marginally almost all x, y, and if
f : X×Y → C is a function with |f(x, y)−fn(x, y)| ≤ φn(x, y) for marginally
almost all x, y, then f is ω-continuous.

Proof of Claim. It is easy to reduce the statement to the case where fn and
f are real valued. In this case, however, for any a ∈ R, up to a marginally
null set,

f−1((a,+∞)) =
∞⋃

m,n=1

f−1
n ((a+

1

m
,+∞)) ∩ φn((0,

1

m
)).

The claim now follows.

Let h =
∑∞

i=1 fi ⊗ gi, where
∑∞

i=1 ‖fi‖22 < ∞ and
∑∞

i=1 ‖gi‖22 < ∞. Set
φn+1(x, y) =

∑∞
i=n(|fi(x)|2 + |gi(y)|2), n ∈ N. Then the functions φn are

ω-continuous, infn φn(x, y) = 0 for marginally almost all x, y and if we let
hn =

∑n
i=1 fi ⊗ gi we see that |hn − h| ≤ φn up to a marginally null set, for

each n. The statement is now immediate by the Claim. �

4.3. The space T (G). Let G be a locally compact group. We write T (G) =
T (G,G). The map P : T (G)→ A(G), given by

(13) P (f ⊗ g)(t) = 〈λt, f ⊗ g〉 = (λtf, g) =

∫
G
f(t−1s)g(s)ds = g ∗ f̌(t)

is a contractive surjection, by the definition of A(G). The next lemma will
be useful later.

Lemma 4.7. If h ∈ T (G) then

(14) P (h)(t) =

∫
G
h(t−1s, s)ds, t ∈ G.
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Proof. Identity (14) is a direct consequence of (13) if h is a finite sum of
elementary tensors. Let h =

∑∞
i=1 fi ⊗ gi ∈ T (G), where

∑∞
i=1 ‖fi‖22 < ∞

and
∑∞

i=1 ‖gi‖22 < ∞, and let hn be the nth partial sum of this series. By
the continuity of P , ‖P (hn)−P (h)‖ → 0 in A(G); since ‖ · ‖∞ is dominated
by the norm of A(G), we conclude that P (hn)(t)→ P (h)(t) for every t ∈ G.

By Lemma 4.4, there exists a subsequence (hnk)k∈N of (hn)n∈N such
that hnk → h marginally almost everywhere. It follows that, for every
t ∈ G, one has hnk(t−1s, s) → h(t−1s, s) for almost all s ∈ G. By [36,
(4.3)], the function s →

∑∞
i=1 |fi(t−1s)||gi(s)| is integrable, and hence an

application of the Lebesgue Dominated Convergence Theorem shows that∫
G hnk(t−1s, s)ds→k→∞

∫
G h(t−1s, s)ds, for every t ∈ G. The proof is com-

plete. �

4.4. The characterisation theorem. If h : X×Y → C is a function then,
by writing h ∈µ×ν T (X,Y ), we will mean that h is equivalent, with respect
to the measure µ× ν, to a function that lies in T (X,Y ). If h ∈µ×ν T (X,Y )
then there exists a unique, up to marginal equivalence, element h′ of T (X,Y )
such that h ∼ h′. Indeed, if h ∼ h′ and h ∼ h′′, where h′, h′′ ∈ T (X,Y ),
then h′ ∼ h′′ and, by Propositions 4.6 and 4.2, h′ ∼= h′′.

Definition 4.8. A function ϕ ∈ L∞(X × Y ) is called a Schur multiplier if
ϕh ∈µ×ν T (X,Y ) for every h ∈ T (X,Y ).

Let Sµ,ν(X,Y ) be the set of all Schur multipliers on X × Y with respect
to a pair of fixed measures µ, ν. When the measures are understood from
the context, we simply write S(X,Y ). We note that, strictly speaking,
Schur multipliers are classes of functions with respect to almost everywhere
equality.

If ϕ ∈ S(X,Y ), let mϕ : T (X,Y ) → T (X,Y ) be given by mϕh = ϕh.
Note that, strictly speaking, mϕh is (defined to be) the (unique, up to
marginal equivalence) function h′ ∈ T (X,Y ) such that h′ ∼ ϕh. We also
note that if ϕ,ψ ∈ S(X,Y ) and ϕ ∼ ψ then mϕ = mψ. Thus, the map mϕ

is independent of the representative ϕ we use to define it.

Proposition 4.9. If ϕ ∈ S(X,Y ) then the operator mϕ on T (X,Y ) is
bounded.

Proof. We apply the Closed Graph Theorem. Suppose that (hk)k∈N ⊆
T (X,Y ) is such that ‖hk‖∧ → 0 and ‖ϕhk−h‖∧ → 0 for some h ∈ T (X,Y ).
Let h′k be the unique element from T (X,Y ) such that ϕhk ∼ h′k, k ∈ N. Us-
ing Lemma 4.4, we may assume, after passing to subsequences, that hk → 0
and h′k → h marginally almost everywhere. It follows that ϕhk → h almost
everywhere, and hence h = 0 almost everywhere. Since h is ω-continuous,
Proposition 4.2 implies that h = 0 marginally almost everywhere, and thus
h = 0 as an element of T (X,Y ). �

If ϕ ∈ S(X,Y ), we write ‖ϕ‖S = ‖mϕ‖. Our next aim is to give a
characterisation of Schur multipliers; we follow the approach of [29]. For
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ϕ ∈ S(X,Y ), we let Sϕ = m∗ϕ; thus, Sϕ : B(H1, H2) → B(H1, H2) is a
bounded weak* continuous map.

For a ∈ L∞(X,µ) let Ma be the operator on L2(X,µ) defined by Maf =
af . Let DX = {Ma : a ∈ L∞(X,µ)}; define DY analogously. For a function
ϕ : X×Y → C, let ϕ̂ : Y ×X → C be the function given by ϕ̂(y, x) = ϕ(x, y).

Theorem 4.10. Let ϕ ∈ S(X,Y ). Then Sϕ is a weak* continuous com-
pletely bounded DY ,DX-module map and, if k ∈ L2(Y ×X), then Sϕ(Tk) =
Tϕ̂k.

Conversely, if Φ : B(H1, H2) → B(H1, H2) is a a weak* continuous
bounded DY ,DX-module map then there exists a unique ϕ ∈ S(X,Y ) such
that Φ = Sϕ.

Proof. Suppose that ϕ ∈ S(X,Y ). The fact that Sϕ is a bounded weak*
continuous map was observed after the proof of Proposition 4.9. Let k ∈
L2(Y ×X) and h ∈ T (X,Y ). Using (12), we have

〈Sϕ(Tk), Th〉 = 〈Tk,mϕ(Th)〉 = 〈Tk, Tϕh〉

=

∫
X×Y

k(y, x)ϕ(x, y)h(x, y)dµ× ν(x, y) = 〈Tϕ̂k, Th〉.

Thus, Sϕ(Tk) = Tϕ̂k.
Now let a ∈ L∞(X,µ) and b ∈ L∞(Y, ν); for k ∈ L2(Y × X) and h ∈

T (X,Y ) we have

〈Sϕ(MbTkMa), Th〉 =

∫
X×Y

a(x)b(y)ϕ(x, y)k(y, x)h(x, y)dµ× ν(x, y)

= 〈Sϕ(Tk),MaThMb〉 = 〈MbSϕ(Tk)Ma, Th〉;

thus, Sϕ is a DY ,DX -module map.
It is easy to see that DX and DY have cyclic vectors. By Theorem 2.5,

Sϕ is completely bounded.
The proof of the converse direction follows the lines of [29]. Suppose

that Φ : B(H1, H2)→ B(H1, H2) is a a weak* continuous bounded DY ,DX -
module map. By Theorem 2.5, Φ is completely bounded. By a well-known
result of U. Haagerup’s [17], there exists a bounded (row) operator B =
(Mbk)k∈N ∈ M1,∞(DY ) and a bounded (column) operator A = (Mak)k∈N ∈
M∞,1(DX) such that

Φ(T ) =
∞∑
k=1

MbkTMak , T ∈ B(H1, H2),

where the series converges in the weak* topology. We have that

C1 = esssup
x∈X

∞∑
k=1

|ak(x)|2 <∞ and C2 = esssup
y∈Y

∞∑
k=1

|bk(y)|2 <∞,
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and hence the function

ϕ(x, y) =
∞∑
k=1

ak(x)bk(y)

is well-defined up to a marginally null set. We show that ϕ ∈ S(X,Y ); let
h =

∑∞
i=1 fi ⊗ gi ∈ T (X,Y ). Then

ϕ(x, y)h(x, y) =
∑
k,i

ak(x)fi(x)bk(y)gi(y), m.a.e..

However,∑
k,i

‖akfi‖22 =

∫
X

∑
k,i

|ak(x)fi(x)|2dµ(x) ≤ C1

∫
X

∑
i

|fi(x)|2dµ(x)

= C1

∞∑
i=1

‖fi‖22;

similarly, ∑
k,i

‖bkgi‖22 ≤ C2

∞∑
i=1

‖gi‖22,

and we are done.
For k ∈ L2(Y ×X) we now have Φ(Tk) = Sϕ(Tk); since both Φ and Sϕ

are bounded and weak*-continuous, we conclude by the weak* density of
C2(H1, H2) in B(H1, H2) that Φ = Sϕ. �

Theorem 4.10 and its proof show the following.

Corollary 4.11. The map from S(X,Y ) into the space CBw∗
DY ,DX (B(H1, H2))

of all completely bounded weak* continuous DY ,DX-module maps, sending
ϕ to Sϕ, is a bijective isometry.

Exercise 4.12 ([48]). Show that the map from Corollary 4.11 is a complete
isometry.

In the sequel, we call ϕ the symbol of Sϕ and equip S(X,Y ) with the
operator space structure that makes the map ϕ → Sϕ a complete isome-
try. By a well-known result of U. Haagerup’s [17] (see also [1]), the space
CBw∗
DY ,DX (B(H1, H2)) is completely isometric and weak* homeomorphic to

the weak* Haagerup tensor product DY ⊗w∗h DX via the mapping sending
an element

∑∞
k=1Bk ⊗ Ak ∈ DY ⊗w∗h DX to the map T →

∑∞
k=1BkTAk.

Utilising the canonical isomorphism between DX (resp. DY ) and L∞(X,µ)
(resp. L∞(Y, ν)), we see that DY ⊗w∗hDX can be viewed as a space of (equiv-
alence classes of) functions, and that it can be identified with S(X,Y ). We
summarise this as a part of the theorem that follows.

Theorem 4.13. Let ϕ ∈ L∞(X × Y ). The following are equivalent:
(i) ϕ ∈ S(X,Y ) and ‖ϕ‖S ≤ C;
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(ii) there exists sequences (ak)
∞
k=1 ⊆ L∞(X,µ) and (bk)

∞
k=1 ⊆ L∞(Y, ν)

with

C1
def
= esssup

x∈X

∞∑
k=1

|ak(x)|2 ≤ C and C2
def
= esssup

y∈Y

∞∑
k=1

|bk(y)|2 ≤ C,

such that

ϕ(x, y) =
∞∑
k=1

ak(x)bk(y) a.e. on X × Y ;

(iii) there exist a separable Hilbert space K and weakly measurable func-
tions a : X → K, b : Y → K, such that

esssup
x∈X

‖a(x)‖ ≤
√
C, esssup

y∈Y
‖b(y)‖ ≤

√
C

and
ϕ(x, y) = (a(x), b(y)), a.e. on X × Y ;

(iv) ‖Tϕ̂k‖ ≤ C‖Tk‖ for all k ∈ L2(Y ×X).

Proof. The equivalence (i)⇔(ii) was established in the proof of Theorem
4.10.

(iv)⇒(i) Let h ∈ T (X,Y ). The functional

Tk →
∫
X×Y

ϕ(x, y)k(y, x)h(x, y)dµ× ν(x, y)

on C2(H1, H2) is bounded in the operator norm, and has norm not exceeding
C. It follows that ϕh ∈ T (X,Y ) and ‖ϕh‖∧ ≤ C. Thus, ϕ ∈ S(X,Y ) and
‖ϕ‖S ≤ C.

(i)⇒(iv) follows from Theorem 4.10.
(ii)⇒(iii) Set K = `2, a(x) = (ak(x))∞k=1 and b(y) = (bk(y))∞k=1.
(iii)⇒(ii) Let (ek)

∞
k=1 be an orthonormal basis of K and set ak(x) =

(a(x), ek), bk(y) = (ek, b(y)). Then
∞∑
k=1

|ak(x)|2 =
∞∑
k=1

(a(x), ek)(ek, a(x)) = ‖a(x)‖2

and similarly for b(y); thus the boundedness conditions follow. Similarly,

(a(x), b(y)) =

∞∑
k=1

(a(x), ek)(ek, b(y)) =

∞∑
k=1

ak(x)bk(y)

holds for almost all (x, y). �

Corollary 4.14. Every element of S(X,Y ) is equivalent to a (unique) func-
tion from Cω(X × Y ).

Proof. By Theorem 4.13, every element of S(X,Y ) is equivalent, with re-
spect to the product measure on X × Y , to a function of the form

(x, y)→
∞∑
k=1

ak(x)bk(y),
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where the sequences (ak)
∞
k=1 ⊆ L∞(X,µ) and (bk)

∞
k=1 ⊆ L∞(Y, ν) satisfy

the conditions in Theorem 4.13 (ii). It is now easy to check that all such
functions are ω-continuous. �

An important subclass of Schur multipliers is formed by the positive ones.
A Schur multiplier ϕ ∈ S(X,X) is called positive if the map Sϕ is positive,
that is, if T ∈ B(L2(X,µ)), T ≥ 0 implies that Sϕ(T ) ≥ 0.

Exercise 4.15. Define an order version of the notion of a matricially norm-
ing algebra (see Theorem 2.3) and use it to show the following version of R.
R. Smith’s theorem (Theorem 2.5):

If ϕ ∈ S(X,X) and Sϕ is positive then Sϕ is completely positive.

Exercise 4.16. Let ϕ ∈ S(X,X). The following are equivalent:
(i) ϕ is positive;
(ii) there exists a separable Hilbert space K and an essentially bounded

weakly measurable function a : X → K such that

ϕ(x, y) = (a(x), a(y)), a.e. on X ×X.
Moreover, if (ii) holds true then ‖ϕ‖S = esssupx∈X ‖a(x)‖.

4.5. Discrete and continuous Schur multipliers. A particular case of
special importance is where X and Y are equipped with the counting mea-
sure. In this case, it is convenient to drop the assumption on their σ-
finiteness, and this consider arbitrary (and not necessarily countable) sets
X and Y .

Exercise 4.17. Let X and Y be sets. A function ϕ ∈ `∞(X×Y ) is a Schur
multiplier with respect to the counting measures on X and Y if and only if
(ϕ(x, y)ax,y) ∈ B(`2(X), `2(Y )) whenever (ax,y) ∈ B(`2(X), `2(Y )).

We include two characterisation results; for their proofs, we refer the
reader to [30].

Theorem 4.18. Let X (resp. Y ) be a locally compact Hausdorff space and
µ (resp. ν) be a Radon measure on X (resp. Y ) with support equal to X
(resp. Y ). Let ϕ : X × Y → C be a continuous function. The following are
equivalent:

(i) ϕ ∈ Sµ,ν(X,Y );
(ii) ϕ is a Schur multiplier with respect to the counting measures on X

and Y .

Theorem 4.19. Let X (resp. Y ) be a locally compact Hausdorff space and
µ (resp. ν) be a Radon measure on X (resp. Y ) with support equal to X
(resp. Y ). Let ϕ : X × Y → C be an ω-continuous function. The following
are equivalent:

(i) ϕ ∈ Sµ,ν(X,Y );
(ii) there exist null sets M ⊆ X and N ⊆ Y such that ϕ|(X\M)×(Y \N) is a

Schur multiplier with respect to the counting measures on X \M and Y \N .



26 IVAN G. TODOROV

We finish this section by recalling a well-known example of a function
that is not a Schur multiplier. Let X = Y = N, equipped with counting
measure. For a number of questions in Operator Theory, it is important to
truncate a matrix A = (ai,j) of an operator in B(`2). In other words, given
a subset κ ⊆ N × N, we wish to replace A by the matrix B = (bi,j), where
bi,j = ai,j if (i, j) ∈ κ and bi,j = 0 otherwise. If χκ is a Schur multiplier then
B = Sχκ(A) and is hence again a bounded operator on `2. The question
which subsets κ have the property that Sχκ is a Schur multiplier is still
open. (Note that the Schur multipliers that are characteristic functions are
precisely the idempotent ones.)

The next theorem is often phrased by saying that triangular truncation
is unbounded.

Theorem 4.20. Let κ = {(i, j) ∈ N × N : i ≤ j}. Then χκ is not a Schur
multiplier.

The theorem has a natural measurable version:

Theorem 4.21. Equip the unit interval [0, 1] with Lebesgue measure and
let κ = {(x, y) ∈ [0, 1]× [0, 1] : x ≤ y}. Then χκ is not a Schur multiplier.

While the statement of Theorem 4.20 requires estimates of matrix norms,
its measurable version, Theorem 4.21, can be obtained directly using the
results of this section; we suggest its proof as an(other) exercise.

5. Further properties of M cbA(G)

5.1. Embedding into the Schur multipliers. In this section, we estab-
lish a fundamental result due to M. Bożejko-G. Fendler and J. E. Gilbert
which establishes an embedding of M cbA(G) into the algebra of Schur mul-
tipliers. Let G be a second countable locally compact group equipped with
left Haar measure m. We write for short S(G) = Sm,m(G,G).

Recall the usual notation for the map of conjugation by a unitary operator:
if U is a unitary operator acting on a Hilbert space H, we let AdU (T ) =
UTU∗, T ∈ B(H). Let ρ : G → B(L2(G)), r → ρr, be the right regular
representation of G on L2(G), that is, the representation given by (ρrf)(s) =

∆(r)1/2f(sr), s, r ∈ G, f ∈ L2(G). We recall that

(15) VN(G) = {ρs : s ∈ G}′.
Given a function h : G×G→ C and r ∈ G, let hr : G×G→ C be given by

hr(s, t) = h(sr, tr), s, t ∈ G.

Definition 5.1. A Schur multiplier ϕ ∈ S(G) will be called invariant if
Sϕ ◦Adρr = Adρr ◦Sϕ for every r ∈ G.

We denote by Sinv(G) the set of all invariant Schur multipliers.

Lemma 5.2. If ϕ,ψ ∈ S(G) and Sϕ(T ) = Sψ(T ) for all T ∈ VN(G) then
ϕ = ψ.
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Proof. It is well-known (see, e.g., [37, Lemma 3.1]) that the von Neumann
algebra generated by DG and VN(G) is B(L2(G)). (One way to see this is
to observe first that DG ∩VN(G)′ = CI and then to take the commutant of
this relation.) Note, however, that, if a ∈ L∞(G), s ∈ G and as ∈ L∞(G) is
given by as(t) = a(st), t ∈ G, then Maλs = λsMas . It follows that

span{Maλs : a ∈ L∞(G), s ∈ G}w
∗

= B(L2(G)).

The claim follows from the fact that the maps Sϕ and Sψ are DG-bimodular
and weak* continuous. �

Lemma 5.3. (i) If ϕ ∈ S(G) then ϕr ∈ S(G), ‖ϕr‖S = ‖ϕ‖S and
Adρ∗r ◦Sϕ ◦Adρr = Sϕr−1 ;

(ii) If h ∈ T (G) then hr ∈ T (G) and ‖hr‖t ≤ ∆(r)−1‖h‖t.

Proof. We only prove (i). For a ∈ L∞(G) let ar ∈ L∞(G) be given by
ar(s) = a(sr), s ∈ G. A direct verification shows that ρrMaρ

∗
r = Mar .

Clearly, if ϕ =
∑∞

k=1 ak⊗bk as in Theorem 4.13 then ϕr =
∑∞

k=1(ak)r⊗(bk)r.
Now, if T ∈ B(L2(G)) then

Ad ρ∗r ◦ Sϕ ◦Ad ρr(T ) =
∞∑
k=1

(ρ∗rMbkρr)T (ρ∗rMakρr)

=
∞∑
k=1

M(bk)r−1
TM(ak)r−1

= Sϕr−1 (T ).

�

Lemma 5.4. A Schur multiplier ϕ is invariant if and only if Sϕ leaves
VN(G) invariant.

Proof. If ϕ is an invariant Schur multiplier and T ∈ VN(G) then, by (15),

Sϕ(T ) = Sϕ(ρrTρ
∗
r) = ρrSϕ(T )ρ∗r , r ∈ G.

Thus, Sϕ(T ) commutes with ρr, r ∈ G; by (15) again, it belongs to VN(G).
Conversely, assume that Sϕ leaves VN(G) invariant. If T ∈ VN(G) then

Sϕ(T ) ∈ VN(G) and hence

Sϕ(ρrTρ
∗
r) = Sϕ(T ) = ρrSϕ(T )ρ∗r , r ∈ G.

Thus,
ρ∗rSϕ(ρrTρ

∗
r)ρr = Sϕ(T ), T ∈ VN(G).

By Lemma 5.3,
Sϕr−1 (T ) = Sϕ(T ), T ∈ VN(G)

and now Lemma 5.2 implies that

Sϕr−1 (T ) = Sϕ(T ), for all T ∈ B(L2(G)).

Using Lemma 5.3 again, we obtain that

Sϕ(ρrTρ
∗
r) = ρrSϕ(T )ρ∗r , for all T ∈ B(L2(G)),

and hence ϕ is an invariant Schur multiplier. �
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The proof of Lemma 5.4 implies the following.

Corollary 5.5. The following are equivalent, for an element ϕ ∈ S(G):
(i) ϕ ∈ Sinv(G);
(ii) ϕ ∼ ϕr, for every r ∈ G.

Given a function u : G → C, let N(u) : G × G → C be the function
defined by

N(u)(s, t) = u(ts−1), s, t ∈ G.
It is clear that if u is measurable (resp. continuous) then N(u) is measurable
(resp. continuous).

The next theorem is one of the main results in this section. For its proof,
we follow [28].

Theorem 5.6. The map N is a surjective isometry from M cbA(G) onto
Sinv(G).

Proof. Let u ∈ M cbA(G). Recall from Section 3 that we denote by Su the
dual, acting on VN(G), of the multiplication map mu. Let Φ : C∗r (G) →
C∗r (G) be the restriction of Φ to the reduced C*-algebra of G. By Theorem
2.2, there exists a Hilbert space K, a non-degenerate *-representation π :
C∗r (G)→ B(K) and bounded operators V,W : L2(G)→ K such that

Φ(a) = W ∗π(a)V, a ∈ C∗r (G), and ‖Φ‖cb = ‖V ‖‖W‖.

Set π̃ be the *-representation of L1(G) given by π̃(f) = π(λ(f)). The
representation π̃ arises from a unitary representation of G on K, which will
be denoted again by π̃; thus, π̃(f) =

∫
G f(s)π̃(λs)ds, f ∈ L1(G).

We have

(16) Φ(λ(f)) = Wπ(λ(f))V, f ∈ L1(G).

Fix s ∈ G and, for each compact neighbourhood V of s, let fV ∈ L1(G) be a
function taking non-negative values such that ‖fV ‖1 = 1. Then λ(fV ) →V

λs and π̃(fV ) → π̃(s) in the weak* topology (we leave these facts as an
exercise). Since Φ is weak* continuous and Su(λs) = u(s)λs, (16) shows
that

(17) u(s)λs = Φ(λs) = Wπ̃(s)V, s ∈ G.

Let ζ ∈ L2(G) be a unit vector and, for each s ∈ G, set

ξ(s) = π̃(s−1)V λsζ, η(s) = π̃(s−1)Wλsζ.

Thus, ξ, η : G → K are continuous (and hence weakly measurable) vector-
valued functions with

sup s∈G‖ξ(s)‖ = sup s∈G‖π̃(s−1)V λsζ‖ ≤ ‖V ‖

and, similarly,

sup s∈G‖η(s)‖ ≤ ‖W‖.
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By (17),

(ξ(s), η(t)) = (π̃(s−1)V λsζ, π̃(t−1)Wλtζ)

= (W ∗π̃(ts−1)V λsζ, λtζ)

= u(ts−1)(λts−1λsζ, λtζ) = u(ts−1).

By Theorem 4.13, N(u) ∈ S(G) and

(18) ‖N(u)‖S ≤ ‖V ‖‖W‖ = ‖Φ‖cb = ‖u‖cbm.

By Corollary 5.5, N(u) ∈ Sinv(G).
Note next that SN(u) extends Su. Indeed, let f ∈ Cc(G). If g, h ∈ L2(G)

and L ⊆ G is compact, then

(MχLλ(f)MχLg, h) =

∫
G×G

f(s)χL(s−1t)g(s−1t)χL(t)h(t)dsdt

=

∫
LL−1×L

f(s)g(s−1t)h(t)dsdt

=

∫
LL−1L×L

∆(r−1)f(tr−1)g(r)h(t)drdt

=

∫
G×G

χLL−1L×L(r, t)∆(r−1)f(tr−1)g(r)h(t)drdt.

The function k : G×G→ C given by k(t, r) = χLL−1L×L(r, t)∆(r−1)f(tr−1)
belongs to L2(G×G), and MχLλ(f)MχL = Tk. It follows that

SN(u)(MχLλ(f)MχL) = T
N̂(u)k

= MχLλ(uf)MχL .

Since this holds for all compact sets L, we conclude that SN(u)(λ(f)) =
λ(uf) for all f ∈ Cc(G). Thus, SN(u)(λ(f)) = u · λ(f) for all f ∈ Cc(G);
since the set {λ(f) : f ∈ Cc(G)} is dense in VN(G) in the weak* topology,
we obtain, using Proposition 3.10 and the weak* continuity of SN(u) and Su,
that

(19) SN(u)(T ) = u · T = Su(T ), T ∈ VN(G).

Thus, SN(u) extends Su.
Suppose that ϕ ∈ Sinv(G). By Lemma 5.4, Sϕ leaves VN(G) invariant;

let Φ = Sϕ|VN(G). If u ∈ A(G) and T ∈ VN(G) then, using (19), we have

Φ(u · T ) = Sϕ(SN(u)(T )) = SN(u)(Sϕ(T )) = u · Φ(T ).

By Exercise 3.3, there exists an element v ∈ MA(G) such that Sv = Φ.
Since Φ is a completely bounded map, v ∈M cbA(G). Now,

SN(v)(T ) = Sv(T ) = Sϕ(T ), T ∈ VN(G).

By Lemma 5.2, ϕ = N(v) and thus the map N is onto Sinv(G). Moreover,

‖v‖cbm = ‖Sv‖cb ≤ ‖SN(v)‖cb = ‖N(v)‖S,
where the inequality follows from the fact that SN(v) extends Sv. Combined

with (18), this shows thatN is an isometry fromM cbA(G) onto Sinv(G). �
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The proof of Theorem 5.6 yields the following fact.

Remark 5.7. If u ∈ M cbA(G) then there exist bounded and continuous
functions ξ, η : G→ L2(G) such that N(u)(s, t) = (ξ(s), η(t)), s, t ∈ G.

Remark 5.8. A continuous function u : G→ C belongs to M cbA(G) if and
only if the function (s, t)→ u(s−1t) is a Schur multiplier.

Proof. If u(ts−1) = (ξ(s), η(t)), s, t ∈ G, for some weakly measurable Hilbert
space valued functions ξ and η, then u(s−1t) = (ξ(t−1), η(s−1)), s, t ∈ G,
and the functions s→ η(s−1) and t→ ξ(t−1) are weakly measurable. �

Corollary 5.9. Let u ∈ L∞(G). The following are equivalent:
(i) u ∈m M cbA(G);
(ii) N(u) ∈ S(G).
Moreover, if (i) holds then ‖u‖cbm = ‖N(u)‖S.

Proof. (i)⇒(ii) Let v ∈ M cbA(G) be a function such that u ∼ v. Then
N(u) ∼ N(v); by Theorem 5.6, N(u) ∈ Sinv(G).

(ii)⇒(i) Suppose N(u) ∈ S(G). By Corollary 5.5, N(u) is an invariant
Schur multiplier. By Theorem 5.6, there exists v ∈ M cbA(G) such that
N(v) ∼ N(u). It follows that u ∼ v. �

Exercise 5.10 ([48]). Show that N is in fact a complete isometry.

We note two useful consequences of Theorem 5.6.

Corollary 5.11. Let G be a locally compact group and H be a closed sub-
group of G. If u ∈ M cbA(G) then the restriction u|H of u to H belongs to
M cbA(H), and ‖u|H‖cbm ≤ ‖u‖cbm.

Proof. Immediate from Theorem 5.6. �

Corollary 5.12. Let G and H be locally compact groups, u ∈M cbA(G) and
v ∈ M cbA(H). Then the function u ⊗ v (given by u ⊗ v(s, x) = u(s)v(x))
belongs to M cbA(G×H) and ‖u⊗ v‖cbm = ‖u‖cbm‖v‖cbm.

Proof. Using Theorem 5.6, write

u(ts−1) = (p(s), q(t)), s, t ∈ G, and v(yx−1) = (p′(x), q′(y)), x, y ∈ H,
where p, q : G→ `2 and p′, q′ : H → `2 are bounded functions with

‖u‖cbm = ‖p‖∞‖q‖∞ and ‖v‖cbm = ‖p′‖∞‖q′‖∞.
Let f, g : G×H → `2 ⊗ `2 be given by f(s, x) = p(s)⊗ p′(x) and g(s, x) =
q(s)⊗ q′(x). Then ‖f‖∞ = ‖p‖∞‖p′‖∞, ‖g‖∞ = ‖q‖∞‖q′‖∞ and

(u⊗ v)((t, y)−1(s, x)) = u(ts−1)v(yx−1) = (f(s, x), g(t, y))`2⊗`2 .

By Theorem 5.6, u⊗ v ∈M cbA(G×H) and ‖u⊗ v‖cbm ≤ ‖u‖cbm‖v‖cbm.
It follows that the operator Su⊗Sv, defined on the algebraic tensor prod-

uct VN(G) ⊗ VN(H), admits an extension to VN(G × H) which coincides
with Su⊗v. It now follows that ‖Su⊗v‖cb ≥ ‖Su‖cb‖Sv‖cb and we conclude
that ‖u⊗ v‖cbm = ‖u‖cbm‖v‖cbm. �
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If u ∈ M cbA(G) then N(u) is continuous and hence ω-continuous. It
is perhaps surprising that the latter condition alone suffices to ensure the
continuity of the function u; in fact, if u : G → C is a measurable function
then it can be shown [46] that N(u) is ω-continuous if and only if u is
continuous.

5.2. The case of compact groups. Let the group G be compact. In this
case, the Haar measure m is a probability measure and 1 ∈ A(G). Thus, if
u ∈ M cbA(G) then u = mu(1) ∈ A(G); so, M cbA(G) = A(G). Moreover,
‖u‖A(G) ≤ ‖u‖cbm.

Similarly, the constant function on G×G taking value 1 belongs to T (G)
(it coincides with the elementary tensor 1 ⊗ 1). Thus, if ϕ ∈ S(G) then
ϕ = mϕ(1⊗ 1) ∈ T (G); moreover,

(20) ‖ϕ‖∧ ≤ ‖ϕ‖S.

We thus have that N maps A(G) into T (G). In the reverse direction, we
have the contraction P : T (G)→ A(G) defined by

P (f ⊗ g)(s) = 〈λs, f ⊗ g〉, f, g ∈ L2(G), s ∈ G.

Proposition 5.13. We have that P ◦N = idA(G). Thus, N is an isometry
when considered as a map from A(G) into T (G).

Proof. Let u ∈ A(G). By Lemma 4.7,

P (N(u))(t) =

∫
G
N(u)(t−1s, s)ds =

∫
G
u(t)ds = u(t), t ∈ G.

Moreover,

‖u‖A(G) = ‖P (N(u))‖A(G) ≤ ‖N(u)‖∧ ≤ ‖N(u)‖S
= ‖u‖cbm ≤ ‖u‖B(G) = ‖u‖A(G)

and hence we have equalities throughout. �

5.3. Coefficients of representations. The following corollary gives a sup-
ply of examples of Herz-Schur multipliers.

Corollary 5.14. Let G be a locally compact group and π : G → B(H) be
a strongly continuous uniformly bounded (not necessarily unitary) represen-
tation, with sups∈G ‖π(s)‖ = C < ∞. Let ξ, η ∈ H and u(s) = (π(s)ξ, η),
s ∈ G. Then u ∈M cbA(G) and ‖u‖cbm ≤ C2‖ξ‖‖η‖.

Proof. We have

N(u)(s, t) = (π(ts−1)ξ, η) = (π(s−1)ξ, π(t−1)η), s, t ∈ G,

sup
s∈G
‖π(s−1)ξ‖ ≤ C‖ξ‖ and sup

t∈G
‖π(t−1)η‖ ≤ C‖η‖.

The claim now follows from Corollary 5.9 and Theorem 4.13. �
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A naturally arising question is whether the class of Herz-Schur multipliers
exhibited in Corollary 5.14 contains functions outside of the Fourier-Stieltjes
algebra B(G). To this end, we note the following result, established in [5]:

Theorem 5.15. Let G be a locally compact group and π : G → B(H) be a
strongly continuous uniformly bounded cyclic representation. The following
are equivalent:

(i) All coefficients of π belong to B(G);
(ii) π is similar to a unitary representation of G.

The above result implies that, for a number of groups, M cbA(G) 6= B(G);
examples of such groups are SL(2,R), SL(n,C) (n ≥ 2), O(n,C) (n ≥ 5).
It was shown in [5] that, moreover, if H is a closed normal subgroup of
G for which G/H is isomorphic to any of the groups listed above then
M cbA(G) 6= B(G).

For c ≥ 1, let us denote by Bc(G) the set of all coefficients of strongly
continuous representations π : G → B(H) such that sups∈G ‖π(s)‖ ≤ c.
Since a representation π is unitary if and only if sups∈G ‖π(s)‖ = 1, we have
that B1(G) = B(G). By Corollary 5.14,

(21) B(G) ⊆ ∩c>1Bc(G) ⊆ ∪c>1Bc(G) ⊆M cbA(G) ⊆MA(G).

The natural question that arises is whether the above inclusions are strict.
To this end, we have the following result (recall that Fn denotes the free
group on n generators).

Theorem 5.16. If G = Fn with n > 1 then the inclusions in (21) are
proper.

The fact that the first inclusion is strict, in the case G = Fn, follows from
[3, Corollary 2.2]. The fact that the third inclusion is proper was proved by
U. Haagreup [18] and the fact that the last inclusion is proper can be found
in [2] and [23], among others (see also Theorem 6.13).

Although there are Herz-Schur multipliers that do not arise as coefficients
of uniformly bounded representations (even for discrete groups), we have the
results below in the positive direction. We will need the following fact [3].

Exercise 5.17. Let K be a subgroup of a discrete group G. For u ∈
M cbA(K), let v be the function on G that coincides with u on K and is
zero on G \K. Then v ∈M cbA(G) and ‖v‖cbm ≤ ‖u‖cbm.

Hint. Write G = ∪i∈IxiK as a disjoint union of left cosets of K. If u admits
a representation in the form u(yx−1) = (a(x), b(y)), where a, b : K → H and
H is a Hilbert space, work with the Hilbert space H = ⊕i∈IH, direct sum
of |I| copies of H.

The next theorem was established in [3].
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Theorem 5.18. Let G be a countable discrete group. The following are
equivalent, for a function u : G→ C:

(i) u ∈M cbA(G);
(ii) for every ε > 0, there exists a (not necessarily uniformly bounded)

representation π : G→ B(H) and vectors ξ, η ∈ H such that

sup
s∈G
‖π(s)ξ‖ ≤ 2(1 + ε)‖u‖cbm, sup

t∈G
‖π(t)η‖ ≤ 2(1 + ε)‖u‖cbm

and

(22) u(s−1t) = (π(s)ξ, π(t)η), s, t ∈ G.

Proof. (ii)⇒(i) follows from Theorem 5.6.

(i)⇒(ii) It suffices to show that if u is hermitian, that is, u(x) = u∗(x)
def
=

u(x−1) (x ∈ G) then there exists a representation π on a Hilbert space H
and vectors ξ, η ∈ H such that

sup
s∈G
‖π(s)ξ‖ ≤ (1 + ε)‖u‖cbm, sup

t∈G
‖π(t)η‖ ≤ (1 + ε)‖u‖cbm

and (24) holds. Indeed, every multiplier u can be written as a sum 1
2(u +

u∗) + i 1
2i(u − u

∗) of two hermitian ones. A standard direct sum argument
then implies the statement for a general u.

So assume that u is hermitian and that ‖u‖cbm = 1
1+ε for some ε > 0. Let

H be a Hilbert space and a, b : G→ H be functions with supx∈G ‖a(x)‖ ≤ 1,
supx∈G ‖b(x)‖ ≤ 1 and

u(x−1y) = (a(x), b(y)), x, y ∈ G.

For x, y ∈ G, set

a1(x, y) =
1

4
(a(x)+b(x), a(y)+b(y)), a2(x, y) =

1

4
(a(x)−b(x), a(y)−b(y)).

Clearly, a1 and a2 are positive definite functions on G×G. Moreover, since
u(x−1y) = u(y−1x), we have that (a(x), b(y)) = (b(x), a(y)), x, y ∈ G. It
follows that

u(x−1y) = a1(x, y)− a2(x, y), x, y ∈ G.
Moreover,

a1(x, x) =
1

4
‖a(x) + b(x)‖2 =

1

4
(‖a(x)‖2 + ‖b(x)‖2 + 2Re(a(x), b(x)))

≤ 1

4
(2 + 2Re(u(e)));

similarly,

a2(x, x) ≤ 1

4
(2− 2Re(u(e)))

and thus

sup
x∈G

a1(x, x) + sup
x∈G

a2(x, x) ≤ 1 = (1 + ε)‖u‖cbm.
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By [26], the group G can be embedded in a group generated by two
elements, say a and b. By Exercise 5.17, we may assume that the group G
itself is generated by a and b.

Let E = {a, b, a−1, b−1}, µ0 = δe be the mass point measure at the neutral
element e and

µ = |E|−1
∑
x∈E

δx.

If c : G×G→ C is a bounded function, and ν =
∑k

i=1 λiδzi , where λi ∈ C
and zi ∈ G, i = 1, . . . , n, let

ν ◦ c(x, y) =
k∑
i=1

λkc(zix, ziy), x, y ∈ G.

Thus,

µ ◦ c(x, y) = |E|−1
∑
z∈E

c(zx, zy), x, y ∈ G.

It is easy to see that if c is positive definite then so is µ ◦ c. Let µn be the
nth convolution power of µ and set

Sx,y,i(n) = (µn ◦ ai)(x, y), x, y ∈ G, i = 1, 2.

Let M be a Banach limit on `∞ and set

ãi(x, y) = M((Sx,y,i(n)n∈N), i = 1, 2.

We have that

(1) ã1 and ã2 are positive definite bounded functions on G×G,
(2) supx∈G ãi(x, x) ≤ supx,y∈G ai(x, y) ≤ supx∈G ai(x, x) ≤ 1, i = 1, 2,
(3) µn ◦ ãi = ãi, i = 1, 2, n ∈ N,
(4) u(x−1y) = ã1(x, y)− ã2(x, y), x, y ∈ G.

Indeed, (1) and (2) are straightforward. Identity (3) follows from the shift
invariance of the functional M . Finally, (4) follows from the fact that, for
every z ∈ G we have

a1(zx, zy)− a2(zx, zy) = u((zx)−1(zy)) = u(y−1x);

thus

u(x−1y) = µ ◦ a1 − µ ◦ a2

and hence

u(xy−1) = Sx,y,1(n)− Sx,y,2(n), n ∈ N.
Let K(G) be the vector space of all finitely supported functions on G

(that is, K(G) = Cc(G)). For f, g ∈ K(G) and a positive definite function
c : G×G→ C, write

c(f, g) =
∑
x,y∈G

c(x, y)f(x)g(y).
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Also, for x ∈ G and f ∈ K(G), let xf = λx(f); thus, xf(y) = f(x−1y),
y ∈ G. Relation (3) implies

(23) |E|−n
∑

z1,...,zn∈E
ãi(z1 . . . znf, z1 . . . zng) = ãi(f, g), f, g ∈ K(G).

Indeed, the left hand side of (23) is easily seen to be equal to (µn ◦ ãi)(f, g).
Let Hi be the vector space K(G) equipped with the inner product

(f, g)i = ãi(f, ḡ), f, g ∈ K(G), i = 1, 2.

(Since ãi is positive definite, we have that the above formula indeed defines
an inner product.) If x ∈ En then, by (23),

0 ≤ ãi(xf, xf̄) ≤
∑
z∈En

ãi(zf, zf̄) ≤
∑

z1,...,zn∈E
ãi(z1 . . . znf, z1 . . . znf̄)

= |E|nãi(f, f̄).

Denote by L the left regular representation of G on K(G); thus, Lx(f) =
xf , x ∈ G. Setting Ni = {f ∈ Hi : (f, f)i = 0}, the above inequalities
now imply that Ni is invariant under Lx for all x ∈ G (here we use the

fact that G = ∪n≥0E
n). Set H̃i = Hi/Ni, i = 1, 2 and H̃ = H̃1 ⊕ H̃2. Let

πi : G→ B(H̃i) be the representation given by

πi(x)(f +Ni) = Lx(f) +Ni, x ∈ G, i = 1, 2.

Set π = π1 ⊕ π2, δ̃i = δe +Ni ∈ H̃i, i = 1, 2,

ξ = δ̃1 ⊕ δ̃2, η = δ̃1 ⊕ (−δ̃2).

We have

(π(x)ξ, π(y)η) = ((π1(x)⊕ π2(x))(δ̃1 ⊕ δ̃2), (π1(y)⊕ π2(y))(δ̃1 ⊕ (−δ̃2))

= (δx, δy)1 − (δx, δy)2 = ã1(x, y)− ã2(x, y) = u(x−1y).

Moreover, for x ∈ G we have

‖π(x)ξ‖2 = ‖π1(x)δ̃e‖2 + ‖π2(x)δ̃e‖2 = ã1(x, x) + ã2(x, x) ≤ (1 + ε)‖f‖cbm.

Similarly, one shows that ‖π(x)ξ‖2 ≤ (1 + ε)‖f‖cbm for every x ∈ G, and
the proof is complete. �

A further extension of Theorem 5.18 was established by T. Steenstrup in
[50].

Theorem 5.19. Let G be a second countable locally compact group. The
following are equivalent, for a function u : G→ C:

(i) u ∈M cbA(G);
(ii) there exists a (not necessarily uniformly bounded) representation π :

G→ B(H) and vectors ξ, η ∈ H such that

sup
s∈G
‖π(s)ξ‖ =

√
‖u‖cbm, sup

t∈G
‖π(t)η‖ =

√
‖u‖cbm
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and

(24) u(t−1s) = (π(s)ξ, π(t)η), s, t ∈ G.

5.4. The canonical predual of M cbA(G). For f ∈ L1(G), we define

‖f‖pred = sup

{∣∣∣∣∫
G
f(x)u(x)dx

∣∣∣∣ : u ∈M cbA(G), ‖u‖cbm ≤ 1

}
.

It is easy to observe that ‖ · ‖pred is a norm on L1(G); let Q(G) be the
completion of L1(G) with respect to ‖ · ‖pred. By (4), ‖u‖∞ ≤ ‖u‖cbm for

every u ∈M cbA(G), and hence

(25) ‖f‖pred ≤ ‖f‖1, f ∈ L1(G).

Lemma 5.20. If (ui)i ⊆ M cbA(G) is a net with ‖ui‖cbm ≤ 1 for all i,
u ∈ L∞(G) and ui → u in the weak* topology of L∞(G), then u is almost
everywhere equal to an element from M cbA(G) and ‖u‖cbm ≤ 1.

Proof. We have

(λ(uif)ξ, η) =

∫
G
ui(s)f(s)(ξ ∗ η̃)(s)ds, ξ, η ∈ L2(G), f ∈ L1(G),

where η̃(x) = η(x−1), x ∈ G. Note that, since ξ ∗ η̃ is a bounded function,
f(ξ ∗ η̃) belongs to L1(G); thus, the assumption implies that

|(λ(uf)ξ, η)| =

∣∣∣∣∫
G
u(s)f(s)(ξ ∗ η̃)(s)ds

∣∣∣∣
≤ lim sup |(λ(uif)ξ, η)| ≤ ‖λ(f)‖‖ξ‖2‖η‖2

and the claim follows from Remark 3.7. �

Proposition 5.21. The Banach space dual Q(G)∗ of Q(G) is isometrically
isomorphic to M cbA(G).

Proof. Let ω ∈ Q(G)∗ have norm one. Then

|ω(f)| ≤ ‖f‖pred ≤ ‖f‖1, f ∈ L1(G).

Thus there exists u ∈ L∞(G) such that

(26) ω(f) =

∫
G
ufdm, f ∈ L1(G).

Since ‖ω‖ = 1, we have

‖f‖pred ≤ 1 =⇒
∣∣∣∣∫
G
ufdm

∣∣∣∣ ≤ 1.

By the Hahn-Banach Theorem, u is in the weak* closure in L∞(G) of the
unit ball of M cbA(G). By Lemma 5.20, u is equivalent to an element of the
unit ball of M cbA(G).

Conversely, if u ∈M cbA(G) has norm one, then the definition of ‖ · ‖pred

implies that the functional on Q(G) defined through (26) has norm one. �
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The space Q(G) has two more useful descriptions, which we include here.
The first one is due to U. Haagerup and J. Kraus [22]. Let H be a fixed
infinite dimensional separable Hilbert space. For an element a ∈ C∗r (G)⊗min

K(H) and an element ϕ ∈ (VN(G)⊗̄B(H))∗, let ωa,ϕ : M cbA(G) → C be
given by

ωa,ϕ(u) = 〈(Su ⊗ id)(a), ϕ〉, u ∈M cbA(G) .

Clearly,

|ωa,ϕ(u)| ≤ ‖Su ⊗ id ‖‖a‖‖ϕ‖ = ‖u‖cbm‖a‖‖ϕ‖.
Thus, ωa,ϕ is a bounded functional on M cbA(G) and

‖ωa,ϕ‖ ≤ ‖a‖‖ϕ‖.

In fact, we have the following result:

Theorem 5.22. The elements of Q(G) are precisely the functionals on
M cbA(G) of the form ωa,ϕ for some a ∈ C∗r (G) ⊗min K(H) and some
ϕ ∈ (VN(G)⊗̄B(H))∗.

We will not give here the proof of this theorem, but we suggest as an
exercise the easier implication, namely, that all ωa,ϕ belong to Q(G).

We close this section with yet a third view on the predual of M cbA(G),
described in [48]. We first recall that the space S(G) of all Schur multipliers
on G × G can be identified in a natural fashion with the weak* Haagerup
tensor product L∞(G)⊗w∗h L

∞(G). On the other hand, the latter space is
the dual of the Haagerup tensor product L1(G) ⊗h L

1(G), where L1(G) is
equipped with the operator space structure arising from the identification
L1(G)∗ = L∞(G). The duality between L1(G)⊗h L

1(G) and S(G) is given
as follows:

〈ϕ, f ⊗ g〉 =

∫
G×G

ϕ(s, t)f(s)g(t)dsdt, ϕ ∈ S(G), f, g ∈ L1(G).

Let m : L1(G)⊗ L1(G) → L1(G) be the linear map given on elementary
tensors by

m(f ⊗ g) = f ∗ g, f, g ∈ L1(G);

thus,

m(f ⊗ g)(t) =

∫
G
f(s)g(s−1t)ds, t ∈ G.

Set K0 = kerm and K = K0, where the closure is taken with respect to the
Haagerup norm in L1(G)⊗h L

1(G).
For ϕ ∈ S(G) let ϕ̃ be the function given by ϕ̃(s, t) = ϕ(t−1, s). It is easy

to see that the mapping ϕ → ϕ̃ is a weak* continuous surjective isometry
on S(G). Let Ñ be the map sending a function u : G → C to the function

Ñ(u). Thus, Ñ(u)(s, t) = u(st), s, t ∈ G. Set S̃inv(G) = Ñ(M cbA(G)).

Since Ñ is the composition of two isometries, we have that it is itself an
isometry from M cbA(G) into S(G).
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Lemma 5.23. We have that K⊥ = S̃inv(G).

Proof. Suppose that ϕ ∈ S̃inv(G) and h =
∑k

i=1 fi⊗ gi ∈ K0. Then m(h) =
0, that is, ∫

G

k∑
i=1

fi(s)gi(ts
−1)ds = 0, for almost all t ∈ G.

Let u ∈M cbA(G) be such that ϕ = Ñ(u). Then

〈ϕ, h〉 =

∫
G×G

u(st)
k∑
i=1

fi(s)gi(t)dsdt

=

∫
G×G

u(r)

k∑
i=1

fi(s)gi(s
−1r)dsdr

=

∫
G×G

u(r)m(h)(r)dr = 0.

This shows that S̃inv(G) ⊆ K⊥.
To show the reverse inclusion, fix r ∈ G and let f0 and g0 be given by

f0(x) = ∆(r−1)f(xr−1), g0(y) = g(ry), x, y ∈ G, where f, g ∈ L1(G). Then

f ⊗ g − f0 ⊗ g0 ∈ K.

Indeed,

m(f0 ⊗ g0)(t) =

∫
G
f0(s)g0(s−1t)ds

=

∫
G

∆(r)−1f0(sr−1)g(rs−1t)ds

=

∫
G
f(x)g(x−1)ydx = m(f ⊗ g)(t).

Suppose that ϕ ∈ K⊥. Then∫
G×G

ϕ(s, t)f(s)g(t)dsdt =

∫
G×G

ϕ(s, t)f0(s)g0(t)dsdt

=

∫
G×G

ϕ(s, t)∆(r−1)f(sr−1)g(rt)dsdt

=

∫
G×G

ϕ(xr, r−1y)f(x)g(y)dxdy.

It follows that ϕ(xr, r−1y) = ϕ(x, y) for almost all x, y. Let ψ ∈ S(G) be
given by ψ(s, t) = ϕ(t, s−1). Then

ψ(sr, tr) = ϕ(tr, r−1s−1) = ϕ(t, s−1) = ψ(s, t), for almost all s, t.

It follows that ψ ∈ Sinv(G) and hence ϕ = ψ̃ ∈ S̃inv(G). �
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Theorem 5.24. The space Q(G) is isometrically isomorphic to (L1(G)⊗h
L1(G))/K.

Proof. Note that, by Lemma 5.23, (L1(G) ⊗h L1(G)/K)∗ is isometric to

S̃inv(G). Let q : L1(G) ⊗h L1(G) → (L1(G) ⊗h L1(G))/K be the quotient
map. For f ∈ L1(G) write, by virtue of the Cohen Factorisation Theorem,
f = g ∗ h, and set ι(f) = q(g ⊗ h). The map ι is well-defined. Indeed, if
g ∗ h = g′ ∗ h′ for some g′, h′ ∈ L1(G), then g ⊗ h− g′ ⊗ h′ ∈ K0 and hence
q(g ⊗ h) = q(g′ ⊗ h′). Moreover, by the Cohen Factorisation Theorem, ι is

isometric. Let ϕ ∈ S̃inv(G) and u ∈ M cbA(G) be such that Ñ(u) = ϕ. We
have

〈ϕ, ι(f)〉 =

∫
G×G

u(st)g(s)h(t)dsdt

=

∫
G×G

u(x)g(s)h(s−1x)dsdx =

∫
G×G

u(x)f(x)dx.

It is easy to verify that the image of ι is dense in (L1(G) ⊗h L1(G))/K. It
follows by the definition of Q(G) that ι extends to an isometry from Q(G)
onto (L1(G)⊗h L1(G))/K. �

Corollary 5.25. The map N : M cbA(G)→ Sinv(G) is weak* continuous.

Proof. Let, as in the proof of Theorem 5.24, q : L1(G)⊗hL1(G)→ (L1(G)⊗h
L1(G))/K be the quotient map. By Theorem 5.24, ((L1(G)⊗h L1(G))/K)∗

is isometric to Q(G)∗ = M cbA(G); if we identify the latter two spaces, it is

easily seen that q∗ : M cbA(G)→ S(G) coincides with the map Ñ . It follows
that N is weak* continuous, too. �

Exercise 5.26. Show that the identification in Theorem 5.24 is completely
isometric.

6. Classes of multipliers

6.1. Positive multipliers.

Definition 6.1. (i) Let X be a locally compact Hausdorff space. A function
k : X × X → C is called positive definite if (k(xi, xj))

n
i,j=1 is a positive

matrix, for all n ∈ N and all x1, . . . , xn ∈ X.
(ii) Let G be a group. A function u : G→ C is called positive definite if

N(u) is positive definite.

Exercise 6.2. Let A = (ai,j) ∈Mn. The following are equivalent:
(i) for every positive matrix B ∈Mn, the Schur product A ∗B of A and

B is a positive matrix ;
(ii) the matrix A is positive.

We recall a version of Mercer’s Theorem, which will be needed in the proof
of the next proposition: if X is a locally compact Hausdorff space equipped
with a Radon measure of full support and if h ∈ L2(X ×X) ∩ C(X ×X),
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the integral operator Th on L2(X) with kernel h is positive if and only if h
is positive definite.

Proposition 6.3. Let X be a σ-compact metric space, equipped with a
Radon measure µ with full support. Let k : X × X → C be a continuous
Schur multiplier. The following are equivalent:

(i) Sk is positive;
(ii) k is positive definite.

Proof. (i)⇒(ii) By the assumption and Mercer’s Theorem, kh is a positive
definite function whenever h ∈ L2(X ×X) ∩ C(X ×X) is positive definite.
The statement now follows from Exercise 6.2.

(ii)⇒(i) follows from Mercer’s Theorem, Exercise 6.2 and the fact that

{Tk : k ∈ L2(X ×X) ∩ C(X ×X), Tk ≥ 0}‖·‖ = K(L2(X))+.

(The latter can be seen as follows: suppose that h ∈ T (X,X) and 〈Tk, Th〉 ≥
0 for each k ∈ L2(X ×X) ∩ C(X ×X) with Tk ≥ 0. By taking k = a ⊗ ā,
where a ∈ Cc(G), we see that (Tha, a) ≥ 0 for all such a, and this implies
that Th ≥ 0. It follows that 〈T, Th〉 ≥ 0 for all T ∈ K(L2(X))+, and the
claim now follows from the Krein-Milman Theorem.) �

Exercise 6.4. Show that the unit ball of the subspace

A =

{
k∑
i=1

AiTi : Ai ∈ DG, Ti ∈ VN(G)

}
is strongly dense in the unit ball of B(L2(G)).

Hint. Use the Stone-von Neumann Theorem, according to which the rep-
resentation of the crossed product G ×α C0(G) arising from the covariant
pair of representations (λ, π), where λ is the left regular representation of G
and π : C0(G)→ B(L2(G)) is given by π(a) = Ma, is faithful and its image
coincides with the C*-algebra K(L2(G)) of all compact operators on L2(G).

Theorem 6.5. Let G be a locally compact second countable group and u :
G→ C be a continuous function. The following are equivalent:

(i) u ∈M cbA(G) and Su is completely positive;
(ii) u is positive definite.
If these conditions are fulfilled then ‖u‖cbm = u(e).

Proof. (ii)⇒(i) Since u is positive definite and continuous, u ∈ B(G); by
Corollary 3.9, u ∈ M cbA(G). By Proposition 6.3, SN(u) is positive and
by Exercise 4.15, SN(u) is completely positive. Thus, its restriction Su to
VN(G) is completely positive.

(i)⇒(ii) Since Su is completely positive, it is also completely bounded
(with ‖Su‖cb = ‖Su(I)‖) and hence u ∈ M cbA(G). Let T ∈ B(L2(G)) be
positive contraction and write T = SS∗ for some contraction S ∈ B(L2(G)).
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Using Exercise 6.4, approximate S in the strong operator topology by con-

tractions of the form
∑k

i=1AiTi, where Ai ∈ DG and Ti ∈ VN(G), i =
1, . . . , k. It follows that T can be approximated in the weak* topology by

the operators
∑k

i,j=1AiTiT
∗
j A
∗
j . Since Su is completely positive and the

matrix (TiT
∗
j )i,j is positive, (Su(TiT

∗
j ))i,j is positive and hence, using the

fact that SN(u) is a DG-bimodule map, and letting A = (A1, . . . , Ak) be the
corresonding row operator, we have

SN(u)

 k∑
i,j=1

AiTiT
∗
j A
∗
j

 = A(Su(TiT
∗
j ))ki,j=1A

∗ ≥ 0.

By the weak* continuity of SN(u), we have that SN(u) is positive; by Propo-
sition 6.3, u is positive definite.

The last statement follows from the fact that Su(I) = Su(λe) = u(e)I. �

The following fact, which we leave as an exercise, was established in [5].

Exercise 6.6. The following are equivalent, for a continuous function u :
G→ C and a natural number n:

(i) Su is n-positive;
(ii) for all fi, gi ∈ Cc(G), i = 1, . . . , n, we have∫

G
u(s)

n∑
i=1

(f∗i ∗ fi)(s)(gi ∗ g̃i)(s)ds ≥ 0.

In this case, ‖u‖m = u(e).

6.2. Idempotent multipliers. A natural class of multipliers, with impor-
tance for applications, is formed by the idempotent ones. Clearly, u ∈
M cbA(G) is an idempotent Herz-Schur multiplier precisely when u is the
characteristic function of a (closed and open) subset of G.

The coset ring of a locally compact group G is the ring of sets generated
by the translates of open subgroups of G. We have the following result [27].

Theorem 6.7. An element u ∈ B(G) is idempotent precisely when u = χE
for an element E of the coset ring of G.

As a consequence of this result, note that if G is a connected group then
there are no non-trivial (that is, different from 0 and 1) idempotents in
B(G).

This result answers completely the question of which are the idempotent
Herz-Schur multipliers in the case of abelian, or more generally amenable,
groups (note that in this case B(G) = M cbA(G)). The description of the
idempotents inM cbA(G) for a general groupG seems to be an open question.
In the positive direction, we have the following result from [49]:

Theorem 6.8. Let G be a locally compact group and E ⊆ G. The following
are equivalent:

(i) χE ∈M cbA(G) and ‖χE‖cbm = 1;
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(ii) E belongs to the coset ring of G.

6.3. Radial multipliers. Let r > 1 and recall that Fr denotes the free
group on r generators, say a1, . . . , ar. Thus, the elements of Fr are of the
form t = t1 . . . tk, where ti ∈ {a1, . . . , ar, a

−1
1 , . . . , a−1

r } and t−1
i 6= ti+1 for all

i = 1, . . . , k − 1 (such an expression of t is called a reduced word). We set
|t| = k, and |e| = 0; note that |st| ≤ |s|+ |t| and |t−1| = |t| We often call |t|
the length of t.

A function ϕ : Fr → C is called radial if it only depends on |t|; that
is, if there exists a function ϕ̇ : N0 → C (where N0 = N ∪ {0}) such that
ϕ(s) = ϕ(|s|), s ∈ Fr. In the sequel, we will use the symbol ϕ̇ to denote the
function linked to a radial function ϕ in the above way.

Radial multipliers of A(Fr), that is, multipliers of A(Fr) which are radial
functions, have been studied in great detail since U. Haagerup’s paper [16],
where he used them to show that the C*-algebra C∗(Fr) possesses the metric
approximation property, although it is not nuclear. We include the following
result [16], [23] which provides a source of examples of multipliers of A(Fr)
(as we will see below, not all those are Herz-Schur multipliers, however).

Theorem 6.9. Let ϕ : Fr → C.
(i) If sups∈Fr |ϕ(s)|(1 + |s|2) <∞ then ϕ ∈MA(Fr) and

‖ϕ‖m ≤ sup
s∈Fr
|ϕ(s)|(1 + |s|2).

(ii) Suppose that ϕ is radial. If
∑∞

n=0(n + 1)2|ϕ̇(n)|2 < ∞ then ϕ ∈
MA(Fr) and

‖ϕ‖m ≤

( ∞∑
n=0

(n+ 1)2|ϕ̇(n)|2
) 1

2

.

Radial multipliers of A(Fr) were characterised by U. Haagerup and R.
Szwarc in an unpublished manuscript [24]. Recently this characterisation
was extended to the case of groups of the form

(27) G =
(
∗Mi=1Z2

)
∗ FN ,

as a consequence of much more general results on Schur multipliers on ho-
mogeneous trees.

We now explain the relation between groups of the form (27) and ho-
mogeneous trees. Let G be a discrete group, generated by a finite set, say
E = {s1, . . . , sn}, assumed to satisfy E = E−1. The Cayley graph CG of G
is the graph whose vertices are the elements of G, and a (two-element) set
{s, t} ⊆ G is an edge of CG if ts−1 ∈ E . A tree is a connected graph without
cycles. The degree of a vertex is the number of edges containing the vertex,
and a graph is called locally finite if the degrees of all vertices are finite. It
is called homogeneous if all vertices have the same degree (called in this case
the degree of the graph).

We have the following fact [12] (see Theorem 6.3 and p. 16-18).
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Theorem 6.10. Let G be a discrete finitely generated group. The Cayley
graph CG of G is a locally finite homogeneous tree if and only if G is of the
form (27); in this case, the degree q of CG is equal to 2M +N − 1.

If C is a homogeneous tree with vertex set X, let d(x, y) be the distance
between two vertices x, y; that is, the length of the (unique) path connecting
x and y. We set d(x, x) = 0. (Note that d(x, y) = 1 precisely when {x, y}
is an edge of C.) Fix a vertex o of C. A function ϕ : X → C is called radial
if there exists a function ϕ̇ : N0 → C such that ϕ(x) = ϕ̇(d(x, o)), x ∈ X.
In case C = CG is the Cayley graph of a group of the form (27), we choose
o = e, the neutral element of G.

The relation between radial Herz-Schur multipliers on a group G of the
form (27) and radial functions on homogeneous trees becomes clear through
the following proposition.

Proposition 6.11. Let ϕ̇ : N0 → C be a function, ϕ : G → C be the
radial function corresponding to ϕ̇, and let ϕ̃ : G × G → C be given by
ϕ̃(s, t) = ϕ̇(d(s, t)), s, t ∈ G.

Then ϕ ∈ M cbA(G) if and only if ϕ̃ is a Schur multiplier; in this case,
‖ϕ‖cbm = ‖ϕ̃‖S.

Proof. Since the distance d is left invariant, we have

ϕ̃(s, t) = ϕ̇(d(s, t)) = ϕ̇(d(t−1s, e)) = ϕ(t−1s).

The claim now follows from Theorem 5.6. �

The following characterisation of radial multipliers on homogeneous trees
was obtained in [23].

Theorem 6.12. Let X be a homogeneous tree of degree q + 1 (2 ≤ q ≤ ∞)
with distinguished vertex o. Let ϕ̇ : N0 → C be a function, ϕ : X → C be
the corresponding radial function and ϕ̃(x, y) = ϕ̇(d(x, y)), x, y ∈ X. Set
H = (hi,j)i,j∈N0, where

hi,j = ϕ̇(i+ j)− ϕ̇(i+ j + 2), i, j ∈ N0.

(i) The function ϕ̃ is a Schur multiplier if and only if H is the matrix of
a trace class operator.

(ii) (For simplicity we assume that q =∞). If the statements in (i) hold,
then the limits

lim
n→∞

ϕ̇(2n) and lim
n→∞

ϕ̇(2n+ 1)

exist. Setting

c± =
1

2
( lim
n→∞

ϕ̇(2n)± lim
n→∞

ϕ̇(2n+ 1)),

we have that
‖ϕ̃‖S = |c+|+ |c−|+ ‖H‖1.

Theorem 6.12 can be used [23] to establish the following result. We note
that, in case G is a non-commutative free group, the result was obtained by
M. Bożejko in [2].
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Theorem 6.13. Let G be a group of the form (27). There exists a radial
function ϕ which lies in MA(G) but not in M cbA(G).

Idea of proof. Let ϕ be the radial function associated with the function
ϕ̇ : N0 → C given by ϕ̇(n) = 0 if n 6= 2k, k ∈ N, and ϕ̇(2k) = 1

k2k
, k ∈ N.

Then
∞∑
n=0

(n+ 1)2|ϕ̇(n)|2 <∞,

which by Theorem 6.9 implies that ϕ ∈MA(G). One can now show directly
that the corresponding matrix H does not belong to the trace class.

There is a natural version of radiality that involves the free product of
arbitrary groups. Let Gi, i = 1, . . . , n, be discrete groups of the same
cardinality (either finite or countably infinite), and set G = ∗ni=1Gi. Every
element g of G has a unique representation g = gi1gi2 · · · gik , where gim ∈
Gim are distinct from the corresponding neutral elements and i1 6= i2 6= · · · 6=
im. The number m is called the block length of g and denoted ‖g‖. Call a
function ϕ : G → C in this setting radial if it depends only on ‖g‖. The
following result of J. Wysoczański [51] should be compared to Haagerup’s
characterisation of radial multipliers on Fn. We note that explicit formulas
for the corresponding multiplier norm are given in [51].

Theorem 6.14. Let ϕ̇ : N0 → C and ϕ : G→ C be the corresponding radial
function with respect to the block length. The following are equivalent:

(i) ϕ ∈M cbA(G);
(ii) the matrix (ϕ̇(i + j) − ϕ̇(i + j + 1))i,j defines a trace class operator

on `2(N0).

We now turn our attention to the completely positive radial multipliers
on Fn. The following result is taken from [16].

Theorem 6.15. Let 0 < θ < 1. Then the function t→ θ|t| on Fn or on F∞
is positive definite.

Proof. We give only a sketch of the proof. It uses Shoenberg’s Theorem,
according to which, if k(x, y) is a conditionally negative definite kernel, then

e−k(x,y) is a positive definite function. The kernel k : X × X → R being
conditionally negative definite means the following: k(x, x) = 0 for all x,
k(x, y) = k(y, x) for all x, y, and

m∑
i,j=1

k(xi, xj)αiαj ≤ 0,

for all x1, . . . , xm ∈ X and all α1, . . . , αm ∈ R with
∑n

i=1 αi = 0. It is known
that k is conditionally negative definite if and only if there exists a function
b : X → H, where H is a Hilbert space, such that k(x, y) = ‖b(x) − b(y)‖,
x, y ∈ X.
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Hence, in order to establish the theorem, it suffices to show that the kernel
k, given by k(s, t) = |s−1t|, is conditionally negative definite. This is done
by exhibiting a Hilbert space H and a function b : Fn → H such that

(28) |s−1t| = ‖b(s)− b(t)‖.

Fix generators a1, . . . , an of Fn. The Hilbert space H can be taken to be
`2(Λ), where Λ = {(s, t) ∈ Fn × Fn : s−1t = ai, for some i}. Let {e(s,t) :

(s, t) ∈ Λ} be the corresponding orthonormal basis of H. If s−1t = a−1
i for

some i, then set e(s,t) = −e(t,s). For an element s = s1s2 . . . sk, where si is
either a generator or its inverse, let

b(s) = e(e,s1) + e(s1,s1s2) + · · ·+ e(s1s2...sk−1,s).

We leave it as an exercise to show that identity (28) holds with this choice
of H and b. �

Equipped with Theorem 6.15, it is now easy to establish the following
characterisation.

Exercise 6.16. Let θ ∈ R. Then the function ϕθ : t→ θ|t| on Fn is positive
definite if and only if −1 ≤ θ ≤ 1.

It turns out that the functions ϕθ can be used to synthesise all positive
definite radial functions on F∞: the following characterisation was obtained
by U. Haagerup and S. Knudby in [21]:

Theorem 6.17. Let ϕ : F∞ → C be a radial function with ϕ(e) = 1. The
following are equivalent:

(i) The function ϕ is positive definite;
(ii) There exists a probability measure µ on [−1, 1] such that

ϕ(x) =

∫ 1

−1
θ|x|dµ(θ), x ∈ Fn.

Moreover, if (ii) holds, then µ is uniquely determined by ϕ.

In the case of Fr, 1 < r <∞, the general form of positive definite radial
multipliers is different. The rest of the section is dedicated to the treatment
of that case; the material is taken from U. Haagerup and S. Knudby’s paper
[21] and the monograph [13]. For the purpose of motivation, we start with
suggesting the following exercise.

Exercise 6.18. Let u : Z → R be a symmetric function, that is, u(n) =
u(−n) for each n ∈ Z. Show that there exists a finite positive Borel measure
µ on [0, π] such that

u(n) =

∫ π

0
cos(nθ)dµ(θ), n ∈ N.
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Let En = {x ∈ Fr : |x| = n}. For n > 0, let µn be the function taking
the same constant value on the elements of En and zero on Fr \ En, such
that

∑
x µn(x) = 1 (note that the constant value equals 1

2r(2r−1)n−1 ). Let

also µ0 be the characteristic function of the singleton {e}. Denote by A
the subalgebra of the group algebra C[Fr] generated by µn, n ≥ 0 – this
is the algebra of all radial functions on Fr, equipped with the operation of
convolution. Clearly, A is the linear span of {µn : n ≥ 0}.

Lemma 6.19. Let q = 2r − 1. Then

µ1 ∗ µn =
1

q + 1
µn−1 +

q

q + 1
µn+1, n ≥ 1.

Proof. We have

(29) µ1 ∗ µn(x) =
∑
y∈Fr

µ1(y)µn(y−1x) =
1

q + 1

∑
|y|=1

µn(y−1x).

Let {a1, . . . , aq+1} be the set of words of length one. If |x| = n+ 1, then
among the words ajx, j = 1, . . . , q, there is only one of length n, namely,

the word ajx for which x = a−1
j x′ (for some x′ ∈ Fr). Thus, in this case

µ1 ∗ µn(x) =
1

q + 1

1

(q + 1)qn−1
=

q

q + 1
µn+1(x).

If |x| = n− 1, then among the words ajx, j = 1, . . . , r, there are q of length
n, and thus

µ1 ∗ µn(x) =
1

q + 1

q

(q + 1)qn−1
=

1

q + 1
µn−1(x).

Finally, if x has length different from n + 1 or n − 1 then all words ajx,
j = 1, . . . , q have length different from n and hence the right hand side of
(29) is zero. The claim follows. �

Define a sequence (Pn) of polynomials by setting P0(x) = 1, P1(x) = x
and

(30) Pn+1(x) =
q + 1

q
xPn(x)− 1

q
Pn−1(x), n ≥ 1.

By the definition of this sequence, we have that

(31) µn = Pn(µ1), n ≥ 0.

(Here, the product is taken with respect to the convolution.)

The Laplace operator is the (linear) map L acting on C[Fr] and given by

(32) Lϕ = µ1 ∗ ϕ, ϕ ∈ C[Fr] .

It is clear that, if ϕ ∈ C[Fr] and x ∈ Fr, then

(33) Lϕ(x) =
1

q + 1

∑
y

ϕ(y),
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where the sum is taken over all neighbours y of x in the the Cayley tree of
Fr.

Spherical functions, defined now, were first introduced in [13].

Definition 6.20. Call a function ϕ ∈ C[Fr] spherical if ϕ is radial, ϕ(e) = 1
and Lϕ = sϕ for some s ∈ C.

Thus, spherical functions are the normalised radial eigenvalues of the
Laplace operator. Suppose that ϕ ∈ C[Fr] is spherical and let ϕ̇ be as usual
the underlying function defined on N0. Identity (33) implies

(34) ϕ̇(0) = 1, ϕ̇(1) = s, ϕ̇(n+ 1) =
q + 1

q
sϕ̇(n)− 1

q
ϕ̇(n− 1).

Using (30), we now see that

(35) ϕ̇(n) = Pn(s), n ≥ 0.

It also follows that for each s ∈ C there exists a unique spherical function
corresponding to the eigenvalue s; we denote this function by ϕs.

On the group algebra C[Fr], consider the bilinear form 〈·, ·〉 given by

〈f, g〉 =
∑
x∈Fr

f(x)g(x), f, g ∈ C[Fr] .

If ϕ ∈ A then
〈µn, ϕ〉 = ϕ̇(n), n ≥ 0.

Thus, by (35),

(36) 〈µn, ϕs〉 = Pn(s), n ≥ 0.

We have the following characterisation of spherical functions.

Lemma 6.21. Let ϕ : Fr → C be a non-zero radial function. The following
are equivalent:

(i) ϕ is spherical;
(ii) the functional f → 〈f, ϕ〉 on A is multiplicative.

Proof. (i)⇒(ii) Let s ∈ C. By (31) and (36),

〈Pn(µ1), ϕs〉 = Pn(s), n ≥ 0.

The set {Pn : n ≥ 0} spans the set of all polynomials, and hence by linearlity

〈P (µ1), ϕs〉 = P (s), P a polynomial.

On the other hand, the map P → P (µ1), is a bijective algebra homomor-
phism from the algebra of all polynomials onto A. Statement (ii) now fol-
lows.

(ii)⇒(i) For n > 0 we have

〈µn, ϕ〉 = 〈µ0 ∗ µn, ϕ〉 = 〈µ0, ϕ〉〈µn, ϕ〉
and hence ϕ̇(0) = 〈µ0, ϕ〉 = 1.

Let s = ϕ̇(1) = 〈µ1, ϕ〉. Then

〈µ1 ∗ µn, ϕ〉 = 〈µ1, ϕ〉〈µn, ϕ〉 = sϕ̇(n).
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On the other hand, by Lemma 6.19,

〈µ1 ∗ µn, ϕ〉 =

〈
1

q + 1
µn−1, ϕ

〉
+

〈
q

q + 1
µn+1, ϕ

〉
=

1

q + 1
ϕ̇(n− 1) +

q

q + 1
ϕ̇(n+ 1).

Thus, (34) holds for ϕ and hence ϕ = ϕs. �

Let E : C[Fr]→ A be the map given by

E(f)(x) =
1

(q + 1)qn−1

∑
|y|=n

f(y), |x| = n;

thus,

E(f)(x) = 〈f, µn〉, |x| = n.

Lemma 6.22. (i) The following two properties hold:
(a) E(f) = f if f ∈ A;
(b) 〈f, E(g)〉 = 〈f, g〉 if f is radial.
Moreover, if E ′ : C[Fr]→ A satisfies (a) and (b) then E ′ = E.
(ii) Let R be the von Neumann subalgebra of VN(Fr) generated by A.

Then the map E extends to a normal conditional expectation from VN(Fr)
onto R.

Proof. (i) Properties (a) and (b) are straightforward. Suppose E ′ : C[Fr]→
A satisfies (a) and (b). If f ∈ C[Fr] and x ∈ Fr then

E ′(f)(x) = 〈E ′(f), δx〉 = 〈E ′(f), E(δx)〉 = 〈f, E(δx)〉 = E(f)(x).

(ii) By general von Neumann algebra theory, there exists a normal condi-
tional expectation from VN(Fr) onto R. Its restriction on C[Fr] must satisfy
(a) and (b), and by (i) it must coincide with E . �

Proposition 6.23. The function ϕs is positive definite if and only if −1 ≤
s ≤ 1.

Proof. Suppose that −1 ≤ s ≤ 1. By (34), ϕs is real-valued. It was shown
in [13] that in this case ϕs is also bounded. Let A be the closure of A in
`1(Fr). Since ϕs is radial, we have that ϕs(x) = ϕs(x

−1) for all x ∈ Fr. We
claim that the functional f → 〈f, ϕs〉 on A is positive. Indeed, if f ∈ A
then, using Lemma 6.21, we have

〈f ∗ f∗, ϕs〉 = 〈f, ϕs〉〈f∗, ϕs〉 =

(∑
x∈Fr

f(x)ϕs(x)

)(∑
x∈Fr

f(x−1)ϕs(x)

)

=

(∑
x∈Fr

f(x)ϕs(x)

)(∑
x∈Fr

f(x−1)ϕs(x−1)

)
= 〈f, ϕs〉〈f, ϕs〉 ≥ 0.
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Now let f ∈ `1(Fr) be positive. Then E(f) is positive and by Lemma 6.22
and the previous paragraph,

〈f, ϕs〉 = 〈E(f), ϕs〉 ≥ 0.

It follows that the functional on `1(Fr) , f → 〈f, ϕs〉, is positive, and hence
ϕs is positive definite.

Conversely, suppose that ϕs is positive definite. Then ϕs(x) = ϕs(x
−1)

and since |x| = |x−1|, the function ϕs is real-valued. Since ϕs is also
bounded, we have, by (35), that −1 ≤ s ≤ 1. �

Theorem 6.24. Let ϕ : Fr → C be a radial function with ϕ(e) = 1. The
following are equivalent:

(i) ϕ is positive definite;
(ii) there exists a probability measure µ on [−1, 1] such that

ϕ(x) =

∫ 1

−1
ϕs(x)dµ(s), x ∈ Fr.

If (ii) holds true then the measure µ is uniquely determined by ϕ.

Proof. (ii)⇒(i) follows from Proposition 6.23.
(i)⇒(ii) Let Φ (resp. Φs, −1 ≤ s ≤ 1) be the state on C∗(Fr) which

corresponds to ϕ (resp. ϕs, −1 ≤ s ≤ 1) on C[Fr]. Let C∗(µ1) be the
C*-subalgebra of C∗(Fr) generated by µ1; since A is generated by µ1 as an
algebra, C∗(µ1) coincides with the closure of A in C∗(Fr). We have that
µ1 = µ∗1 and ‖µ1‖ ≤ 1 (indeed, in every representation of Fr, the image of
µ1 is the average of r unitary operators and hence has norm at most 1),
we have that the spectrum of µ1 is contained in [−1, 1]. Conversely, since
Φs(µ1) = 〈µ1, ϕs〉 = s, we have that the spectrum of µ1 coincides with
[−1, 1].

It follows that C∗(µ1) is *-isomorphic to C([−1, 1]). The restriction of Φ
to C∗(µ1) hence yields a state on C([−1, 1]); by the Riesz Representation
Theorem, there exists a probability measure µ on [−1, 1] such that

Φ(f(µ1)) =

∫ 1

−1
f(s)dµ(s), f ∈ C([−1, 1]).

Now taking f = Pn, we obtain

ϕ̇(n) = Φ(µn) = Φ(Pn(µ1)) =

∫ 1

−1
Pn(s)dµ(s) =

∫ 1

−1
ϕ̇s(n)dµ(s).

The uniqueness follow from the fact that the polynomials Pn span all
polynomials; the details are left as an exercise. �

Radial multipliers, considered in this section, have had a number of ap-
plications; among them is the construction of various approximate identities
in relation with approximation properties for locally compact groups. We
consider some of those in the next section.
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7. Approximation properties for groups

In this brief section, we introduce two more approximation properties
for groups. They are defined in terms of Herz-Schur multipliers, and have
important counterparts as approximation properties of operator algebras.
The link between the two is given by passing from a group G to the C*-
algebra C∗r (G) or the von Neumann algebra VN(G). However, we will not
discuss this relation.

We first recall that a locally compact group G is amenable if A(G) pos-
sesses a bounded approximate identity. It is known that G is amenable if
and only if there exists a net (ui) of continuous compactly supported positive
definite functions such that ui → 1 uniformly on compact sets.

Amenability is a fairly restrictive property and in some cases weaker ap-
proximation properties prove to be more instrumental. Such is the property
of weak amenability, first defined by M. Cowling and U. Haagerup in [7].

Definition 7.1. [7] A locally compact group G is called weakly amenable if
there exists a net (ui) ⊆ A(G) and a constant C > 0 such that ‖ui‖cbm ≤ C
and ui → 1 uniformly on compact sets.

If G is weakly amenable, the infimum of all constants C appearing in
Definition 7.1 is denoted by ΛG. It was shown in [7, Proposition 1.1] that
if G is a weakly amenable group then the net (ui) from Definition 7.1 can
moreover be chosen so that the following conditions are satisfied:

• ui is compactly supported for each i;
• uiu→ u in the norm of A(G), for every u ∈ A(G).

It is easy to see that every amenable group is weakly amenable.
The notion of weak amenability has been studied extensively; one of the

first results in this direction was the fact that Fn is weakly amenable [16].
The multipliers that were utilised in this setting were radial. Since non-
commutative free groups are not amenable, we have that the class of weakly
amenable groups is strictly larger than that of amenable ones.

The weak amenability of Fn was generalised in [4] by showing the follow-
ing:

Theorem 7.2. Let Gi, i ∈ I, be amenable locally compact groups, each of
which contains a given open compact group H. Then the free product G of
the family (Gi)i∈I over H is weakly amenable and ΛG = 1.

The multipliers that are utilised in establishing the latter result were also
radial.

We point out a functoriality property of weak amenability: if G1 and G2

are discrete groups then ΛG1×G2 = ΛG1ΛG2 .

An even weaker approximation property for groups was introduced by
U. Haagerup and J. Kraus in [22]. We refer to Section 5.4 for the weak*
topology used in the definition below.
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Definition 7.3. A locally compact group G is said to have the approxima-
tion property (AP) if there exists a net (ui) ⊆ A(G) such that ui → 1 in the
weak* topology of M cbA(G).

Exercise 7.4. (i) Show that the functions ui from Definition 7.3 can be
chosen of compact support.

(ii) Show that every weakly amenable locally compact group has the ap-
proximation property.

The following result was established in [22].

Theorem 7.5. The following are equivalent, for a locally compact group G:
(i) G has (AP);
(ii) for every locally compact group H, there exists a net (ui) ⊆ A(G) of

functions with compact support such that (ui⊗1) is an approximate identity
for A(G×H);

(iii) there exists a net (ui) ⊆ A(G) of functions with compact support such
that (ui ⊗ 1) is an approximate identity for A(G× SU(2)).

The difference between amenability, weak amenability and (AP) are clearly
highlighted in the following result.

Theorem 7.6. Let G be a locally compact group.
(i) the group G is weakly amenable with ΛG ≤ L if and only if the

constant function 1 can be approximated in the weak* topology of M cbA(G)
by elements of the set {u ∈ A(G) : ‖u‖cbm ≤ L}.

(ii) the group G is amenable if and only if the constant function 1 can
be approximated in the weak* topology of M cbA(G) by elements of the set
{u ∈ A(G) : u positive definite, u(e) = 1}.

The approximation property has the following nice functoriality property
[21]:

Theorem 7.7. Let G be a locally compact group and H be a closed normal
subgroup of G. If H and G/H have (AP) then so does G.

We include an (incomplete) list of examples of groups in relation with
weak amenability and (AP).

• [5] SOo(n, 1): the connected component of the identity of the group
SO(n, 1) of all real (n + 1) × (n + 1) matrices with determinant
1, leaving the quadratic form −t10 + t21 + · · · + t2n invariant. Here
ΛSOo(1,n) = 1.
• [7] More generally, connected real Lie groups with finite centre that

are locally isomorphic to SO(1, n) or SU(1, n). Here ΛG = 1. (finite-
ness of centre removed in [25]).
• More generally, real simple Lie groups of real rank one are weakly

amenable ([5], [7], [25]).
• [19] Real simple Lie groups of real rank at least two are not weakly

amenable.
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• [38] Hyperbolic groups are weakly amenable.
• [39] Wreath products of arbitrary groups by non-amenable groups

are not weakly amenable.
• [20] Connected simple Lie groups with finite centre and real rank at

least two do not have the (AP).
• SL(2, Z) o Z2 has (AP) but is not weakly amenable [21], [19].
• [32] SL(3, Z) does not have (AP).

A characterisation of weak amenability for connected Lie groups was given
in [6].
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[2] M. Bożejko, Remark on Herz-Schur multipliers on free groups, Math. Ann. 258
(1981), 11-15.
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