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Let X and Y be Banach spaces and T : D(T) — ) be a linear
operator, where D(T) is a dense linear subspace of X.

@ The operator T is called closable if the closure Gr T of its

graph
GrT={(x,Tx):xeD(T)}CXx®)Y

is the graph of a linear operator.

T is closable iff (xk)ken € D(T), y € Y, ||Xk|]| = k—o0 0 and
| T(xk) — ¥|| = k—00 O imply that y = 0.

@ The operator T is called weak** closable if the weak* closure
Gr T of Gr T in X** @ Y** is the graph of a linear operator.

T is weak** closable iff whenever (xj)jc; € D(T) is a net,

y €V, X gje_[ 0 and T(x;j) gjeJ y, we have that y = 0.

Every weak* closable operator is closable.
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Closability for operators

Let X and Y be dual Banach spaces, with specified preduals X
and ), respectively, and D(®) C X be a weak* dense subspace.

@ A linear operator T : D(T) — ) is weak* closable if the
conditions x; € X', y € Y, xi == 0, T(x;) —w+ y imply that
y=0.

Here, the weak* convergence is in the designated weak*
topologies of X and ).

Note that, since the *-weak closure of the graph of T contains its
norm-closure, each weak* closable operator is closable.
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Closability for operators

The domain of the adjoint operator T* is
D(T)={ge Y :3f € X" s. t. (T(x),g) = (x,f) forall xe D(T)}

T*:D(T*) — X* is defined by letting T*(g) = f, where f is the
functional associated with g in the definition of D(T™).

Proposition

Let X and Y be Banach spaces, D(T) C X, T : D(T) — Y be a
densely defined linear operator and set D = D(T*). Consider the
following conditions:

(i) T is weak** closable;

(i) D = Y,

(iv) T is closable.

Then (i)<=(ii)=(iii)<=(iv).




Closability for operators

Weak* closability can be characterised analogously:

Proposition

Let D(T) C X be a weak* dense subspace and T : D(T) — ) be
a linear operator. The following are equivalent:

(i) the operator T is weak* closable;

(ii) the space
D.(T)={g € V.:x— (T(x),g) is w* -cont. on D(T)} is dense
in Y.

v
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Closable multipliers on group C*-algebras — the setting

Let ) : G — C be a measurable function.

Let

D(p) = {f € L}(G) : f € L'(G)};
it is easy to see that the operator f — ¢f, f € D(v)), viewed as a
densely defined operator on L}(G), is closable.
Since A(L}(G)) is dense in C*(G) and ||IA(F)|| < |If]l1, f € LY(G),
the space A(D(v)) is dense in C;(G) in the operator norm.
Thus, the operator Sy, : A(D(v)) — C}(G) given by

Sy(A(F)) = A(¥f)

is a densely defined operator on C}(G).

Recall that B)(G) C B(G) is (isometric to) the dual of C;(G); the
duality is given by

(NF),u) = /G f(s)u(s)ds, f € L*G),uc By\(G).
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The domain of the adjoint of Sy,

The domain of the dual 57 of the operator S, : A(D(¢))) — C7(G)
is

Jy ={g € BA(G) : g € B:(G)}
and
S;(g) =g, g€y
To see this, suppose g € D(S)); then there exists u € B)\(G) with
[ wfgdm = [ fudm, f € D(v).

Take a sequence (Ky)nen of compacts such that UyKy ~ G and
Y| < N on Ky. Then Li(Ky) € D(¥).

Since ¢g|k, and ulk, are elements of L°(Ky), we have g ~ u
on Ky, for each N.

Thus, ¥g ~ u and so ¥g €™ B)\(G).
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Conditions related to the closability of Sy,

The aforementioned criterion of closability now implies that Sy, is
closable if and only if J, is weak* dense in B(G).

| next formulate a couple of other — one necessary, and one
sufficient — conditions for the closability of Sy.

The null set null(J) of a subset J C A(G) is

null(J) ={se€ G:u(s) =0, VueJ}
For a closed subset E C G let I(E) and J(E) be the largest and
the smallest closed ideal of A(G) with null set E.

Recall that a closed subset E C G is called a U-set if

J(E)* N C*(G) = {0} and a U;-set if I(E)* N C*(G) = {0}.
U-sets for arbitrary locally compact groups were first studied by
Bozejko (1977).

The set E is an M-set (resp. Mj-set) if it is not an U-set (resp. an
Us-set).
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Conditions related to the closability of Sy,

Let

ly = {f € A(G) : ¥f € A(G)}.
A function f belongs to A(G) at t if for every open neighbourhood
U of t there exists u € A(G) such that f = v on U.

A function f almost belongs to A(G) at t if for every open
neighbourhood U of t there exists u € A(G) such that f = u
almost everywhere on U.

A(G)'°¢ = {f : belongs to A(G) at every point}.

If f almost belongs to A(G) at every point then f ~ g for some
g € A(G)e.

Proposition

Let Ey = {t € G : 9 does not almost belong to A(G) at t}.

Then null(l,) = Ey.
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Conditions related to the closability of Sy,

Yet another approximation property:

Let us say G possesses property (A) if there exists a net
(u;) € A(G) such that, for every g € By(G),

uig — g weakly* in By\(G).

e If G is weakly amenable then G has property (A).

In fact, if (u;) is a net in A(G) such that ||uj||cbm < C for all i,
and u; — 1 uniformly on compact sets then for g € B)(G) and
f € C.(G) we have

(A(F), gui — &) = /G F(£)(t)(ur(t) — 1)dt — 0.

Since |lgui — glla(e) < (Iuilleom + 1)lgll8(c), and A(Cc(6)) is
dense in C}(G), we are done.
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Conditions related to the closability of Sy,

Suppose that G has property (A) and ¢ : G — C is a measurable
function.

o If Ey is a U-set then Sy is closable;
o If Ey is an M-set then Sw is not closable.

To see these statements, note that Sy, is closable if and only if Jy,
is weak* dense in By(G), if and only if there is no non-zero
T € C}(G) such that

(T,uy=0, forall ue Jy.

On the other hand, property (A) implies that the weak* closures of
Jy and Iy in By(G) coincide.
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Thus, Sy is closable if and only if there is no non-zero T € C}(G)
such that B
(T,u) =0, forall ucly.

The statements now follow from the fact that

J(Ey) C Iy C I(Ey).

Suppose G has property (A). If ¢ : G — C is a measurable
function and m(E,) > 0 then Sy is not closable.
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Schur multipliers

Let (X, u) and (Y, v) be standard measure spaces.
For a function ¢ € L(X x Y), let S, : L2(X x Y) — L3(X x Y)
be the corresponding multiplication operator

Sgag = €.
The space L?(X x Y) can be identified with the Hilbert-Schmidt
class in B(L%(X), L?(Y)) by
€ Te Tef) = [ o) (0dux),

Set [|€]lop = [| Tellop
A function ¢ € L(X x Y) is called a Schur multiplier if there
exists C > 0 such that

15p€llop < Clléllop, & € L2(X xY).
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Local Schur multipliers

The function ¢ : X x Y — C is called a local Schur multiplier if
there exists a family {a; x ;}7°; of measurable rectangles such
that

URjai X Bi 2 X xY

and ¢|q,;x 3, is a Schur multiplier on «; x f;.

Theorem

The measurable function ¢ : X x Y — C is a local Schur
multiplier iff 3 ay, by such that

D lak(x)|* < oo and Y |bi(y)]> < oo a.e.
k=1 k=1

and

Zak x)bi(y a.e.on X x Y.
k=1
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Closable multipliers of Schur type

For a measurable function ¢ : X x Y — C, let
D(p) ={€cl>(XxY):ptel?>XxY)
Let S, : D(p) — L2(X x Y) be given by

Sp€ = €.
We consider D(y) as a subspace of the space K of all compact
operators.
Set &(X,Y) ={p: S, is closable}.

Closability here is considered with respect to the norm topology on
K.

Call the element of &(X, Y) closable multipliers.
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Weak** closable multipliers

Denoting by G¢++(X, Y) the set of all ¢ : X x Y — C for which
the operator S, is weak™** clocable, we have:

¢ € G+ (X, Y) if and ony if ¢ = ZL such that 1 and ¢, are
local Schur multipliers with gpz(x,yf # 0 for (marginally all)
(x,y) e X x Y.

Note that
S(X,Y) C {local Schur multipliers} C Sq++(X, Y) C &a(X, Y).

All inclusions but the middle one are known to be proper.
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Pseudo-topologies and supports

W. Arveson (1974), J. Erdos, A. Katavolos, V.S. Shulman (1998)
Let k CX XY.

(i) k is called marginally null (denoted x ~ ) if
kC(MxY)U(X x N), where M and N are null.

(i) « is said to be marginally equivalent to another subset
k' C X x Y if KAk’ is marginally null.

(iii) k is called w-open if k is marginally equivalent to subset of the
form U2, k;, where the sets k; are rectangles.

(iv) k is called w-closed if k€ is w-open.
(v) An operator T € B(L?(X),L%(Y)) is supported on k if

(axB)Nk~0 = P(B)TP(a) =0,

where P() is the projection from L2(X) onto L?(a).
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Masa-bimodules

If f € L=(X), let M¢ € B(L2(X)) be the operator of multiplication
by f. Set
Dx ={Ms : f € L*(X)};
similarly Dy .
U C B(L%(X), L2(Y)) masa-bimodule if DyUDx C U.

The weak* closed masa-bimodules are precisely the weak* closed
invariant spaces of Schur multipliers.

Theorem (Arveson)

Given an w-closed subset kK C X x Y, there exists a maximal
weak* closed masa-bimodule 9tmax(x) and a minimal weak*
closed masa-bimodule M in (k) with support k.
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Conditions related to closability of multipliers

Given a measurable o : X x Y — C, let
D*(p) = {h € 2(X)&L3(Y) : ph € L2(X)&L2(Y)}.

Note that D*(y) is the domain of the adjoint S.
Let k, C X x Y be the zero set of D*(¢):

ke =2 {(x,y) : h(x,y) =0, for all h e D*(¢)}.

Theorem
Let o : X X Y — C be measurable.

(i) If Mmax(r,) does not contain a compact operator then ¢ is a
closable multiplier;

(i) If Mmin(ky,) contains a compact operator then ¢ is not a
closable multiplier.




Sets of operator multiplicity

Let (X, u) and (Y,v) be standard measure spaces, H; = L?(X),
H, = L2(Y), K the space of all compact operators from Hj to Hy.

Definition

An w-closed set kK C X x Y is called
(i) an operator M-set if KK N Mmax(r) # {0};
(i) an operator M;-set if IC N Mmin(r) # {0}.
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Sets of operator multiplicity

Let (X, u) and (Y,v) be standard measure spaces, H; = L?(X),
H, = L2(Y), K the space of all compact operators from Hj to Hy.

Definition
An w-closed set kK C X x Y is called

(i) an operator M-set if KK N Mmax(r) # {0};
(ii) an operator My-set if KK N Mmin(k) # {0}.

Studied first by Froelich (1988) in relation with problems in
invariant subspace theory.

The space K is a suitable substitute of C;(G) because
I

K(L2(G)) = {M,TM} : a € Go(G), T € C7(G)}



Structure in &4(X, Y)

@ The set of all local Schur multipliers is a subalgebra of
Co(X x Y).



Structure in &4(X, Y)

@ The set of all local Schur multipliers is a subalgebra of
Co(X x Y).

o It follows from the characterisation of G¢«+(X, Y) that it is a
subalgebra of C,(X x Y), too.



Structure in &4(X, Y)

@ The set of all local Schur multipliers is a subalgebra of
Co(X x Y).

o It follows from the characterisation of G¢«+(X, Y) that it is a
subalgebra of C,(X x Y), too.

o G(X,Y) is also an algebra but for a different reason:

Proposition

If U1 and Uy are weak* dense L°°(G)-invariant subspaces of
T(X,Y) then the intersection U Ny is weak* dense in T (X, Y),
too.




Structure in &4(X, Y)

@ The set of all local Schur multipliers is a subalgebra of
Co(X x Y).

o It follows from the characterisation of G¢«+(X, Y) that it is a
subalgebra of C,(X x Y), too.

o G(X,Y) is also an algebra but for a different reason:

Proposition

If U1 and Uy are weak* dense L°°(G)-invariant subspaces of
T(X,Y) then the intersection U Ny is weak* dense in T (X, Y),
too.

Proof for "+" : D*(¢v1) N D*(p2) C D*(p1 + ¢2).
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An example: triangular truncation

It is well-known that triangular truncation on #2(N) is unbounded.

Equip [0, 1] with Lebesgue measure and let

A ={(x,y) €[0,1] x [0,1] : x < y}.

Proposition

Xa is closable but not weak** closable.
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An example: triangular truncation

Proof.

D*(xa) contains the characteristic functions of measurable
rectangles o x 3 disjoint from the diagonal
AN ={(x,x):x€[0,1]}.

Thus, Ky, CA.

However, A does not support a compact operator and hence, by
the above criterion, xa is closable.

XA cannot be weak** closable since it is not equivalent to an
w-continuous function.

Indeed, if xa ~ ¢, and ¢ is w-continuous, then ¢ has to be 1 on
the interiour A° of A and 0 on A€. Since A is in the w-closure of
both A° and A€, ¢ must be both 1 and 0 m.a.e. on A, a
contradiction. O
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(i) E is an M-set if and only if E* is an operator M-set;
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Passage from HA to OT

Theorem

Let E C G be a closed set.
(i) E is an M-set if and only if E* is an operator M-set;

(ii) E is an Mj-set if and only if E* is an operator Mj-set.

Theorem

Let G be a second countable locally compact group satisfying
property (A), ¥ : G — C be a measurable function and ¢ = N(%).
The following are equivalent:

@ the operator Sy, is closable;

@ the operator S, is closable.

The set Clos(G) of all closable multipliers on C;(G) is an algebra
with respect to pointwise addition and multiplication.



About the proof

Theorem (A symbolic calculus)

For ¢ € T(G) let E, : B(L>(G)) — VN(G) be the bounded linear
trasformation with the property

(E)(T),u) = (T, oN(u)), u€AG),T e B(L*G)).

Then E, maps K into C/(G).

The map ¢ — E, is a contractive &(G, G)-module map from
T(G) into CB"" (B(L%(G)), VN(G)).

If T # 0 then E,gp(T) # 0 for some a, b € L?(G).




N(v) closable = 1) closable

Proof.

Let ¢ = N(%) be a closable multiplier. If ¢ is not closable, there
exists a non-zero T € C*(G) that annihilates /;. Let A= My be
such that f € Go(G) and AT # 0. It suffices to show that AT
annihilates D(S}).
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N(v) closable = 1) closable

Proof.

Let ¢ = N(%) be a closable multiplier. If ¢ is not closable, there
exists a non-zero T € C*(G) that annihilates /;. Let A= My be
such that f € Go(G) and AT # 0. It suffices to show that AT
annihilates D(S}).

Since D(Sy) is invariant under &(G), it suffices to show that T
annihilates D(S;).

Let h € D(S7). A direct verification shows that
(T, h) = (T, P(h))

(check first in the case T = X(f)).

Since h € T(G), YP(h) = P(¢h) € A(G) and hence P(h) € Iy.
Thus, (T, P(h)) =0 and hence (T, h) = 0. 0
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Suppose that Sy, is a closable operator but Sy, is not.

There exists 0 # T € KN D(S;;)L
There exist a, b € L2(G) such that E,gp(T) # 0.
Suppose that u € Jy; then

p(a® b)N(u) = (a® b)N(yu) € T(G)

and hence (a ® b)N(u) € D(S).

Thus
(Eagp(T),u) = (T,(a® b)N(u)) = 0.




Y closable = N(%)) closable

Proof.
Suppose that Sy, is a closable operator but Sy, is not.

There exists 0 # T € KN D(S;;)L
There exist a, b € L2(G) such that E,gp(T) # 0.

Suppose that u € Jy; then
v(a® b)N(u) = (a® b)N(ypu) € T(G)

and hence (a ® b)N(u) € D(S).

Thus
(Eagp(T),u) = (T,(a® b)N(u)) = 0.

But Eogs(T) € C(G) and we are done by the closability
criterion. O
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An example: a non-closable multiplier on C(T)

Let ¢ = (¢n)nez € P(Z), p > 2, and d = (dy)nez € F*(Z) be such
that
cxd=0butcxd#0.

(Here d = (dn)nez.)

Let f € A(T) have Fourier transform d and F € VN(T) have
Fourier transform c. Since ¢ € ¢y(Z), we have that F € C(T).

Choose hy € L}(T), k € N, with |[A(hx) — F|| — 0

It follows that A(fh,) — f - F in the operator norm. Similarly,
M(fh,) — f - F in the operator norm.

Let ¢(t) = g f(t) # 0 and ¥(t) = 0 if £(t) = 0.
Then A(fh,) — 0 while Sy (A(fhn)) — f - F # 0.
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An example: a continuous non-closable multiplier on C(T)

Let X C T be a closed set of positive Lebesgue measure and
S C X be a dense subset of Lebesgue measure zero.

There exists h € C(T) whose Fourier series diverges at every point
of S.

By Riemann's Localisation Principle, if a function g belongs locally
to A(G) at t then its Fourier series converges at t.

Thus, 5 g Eh.
Since Ej, is closed, X C E.

Since Ej, has positive measure, Sy, is not closable.
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A class of examples: idempotent closable multipliers on

¢/ (R)

Let F C R be a closed set which is the union of countably many
intervals.

Then xf is a closable multiplier on C}(R).

In fact, E, is the set of boundary points of F, and hence E,, is
contained in the set of all endpoints of intervals whose union is F.

In particular, E,, is countable. However:

Theorem (Bozejko, 1977)

Every closed countable set in a locally compact non-discrete group
is a U-set.

Thus, xf is a closable multiplier.
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Closable multipliers on VN(G)

The natural notion of closability for multipliers on VN(G) is that
of weak* closability.

Let 1) : G — C be a continuous function.

There are two natural domains one may consider for a multiplier
corresponding to :

o D(v) = {A(f) : f € LY(G),vf € LY(G)}, Sy(A(f)) = A(¢f),

and

® VNo(G) =span{)As : s € G}, S5/ (As) = 9(s)As.
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Weak* and weak** closability

Theorem

Let ¢ : G — C be a continuous function and ¢ = N(v). The
following are equivalent:

) the operator Sy is weak* closable;

ii) the operator S, is weak* closable;

(i

(

(iii) the function 1 belongs locally to A(G) at every point;
(iv) the function ¢ is a local Schur multiplier on K(L?(G));
(v

) the operator S, is weak™** closable;
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Distinguishing different types of closability

Let ) : G — C be a continuous function. Then
Sy weak** closable = S, weak* closable = S, closable.
These implications are proper:

o There exists 1) € A(G)'°° such that S is not weak** closable.

Indeed, let f € B(R) such that 1/f ¢ B(R), and let ¢ = 1/f.
Then ¢ € A(R)!° but Jy, is contained in the ideal of B(R)
generated by f and hence is not dense in B(R).

o There exists 1 & A(G)!°° for which S, is closable.

Indeed, this will be the case whenever E;, is a non-empty U-set.
Continuous functions with this property are e.g. those odd 1
which are smooth on (—m, ) \ {0}, ¥(0) = ¢(7) =0, ¥'(7) =0,
and fol Y(t)/tdt diverges. For such ¢, we have E; = {0}.
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