Injectivity and (quantum group) amenability

Matthias Neufang

Carleton University (Ottawa) and Université Lille 1

- 1 Amuse-gueule
- 2 Locally Compact Quantum Groups
- **3** Duality via $\mathcal{T}(L_2(\mathbb{G}))$
- **4** Amenability = $\mathcal{T}(L_2(\mathbb{G}))$ -Covariant Injectivity

- Amuse-gueule
- **2** Locally Compact Quantum Groups
- 3 Duality via $\mathcal{T}(L_2(\mathbb{G}))$
- **4** Amenability = $\mathcal{T}(L_2(\mathbb{G}))$ -Covariant Injectivity

Amenability

Amenability ... needs no introduction here.

Amenability . . . needs no introduction here. Recall:

Definition

vN algebra $M \subseteq \mathcal{B}(H)$ injective $\Leftrightarrow \exists$ cond. exp. $E : \mathcal{B}(H) \to M$

Amenability ... needs no introduction here.

Recall:

Definition

vN algebra $M \subseteq \mathcal{B}(H)$ injective $\Leftrightarrow \exists$ cond. exp. $E : \mathcal{B}(H) \to M$

For LC group \mathcal{G} , consider $\mathcal{L}(\mathcal{G}) = \{L_g \mid g \in \mathcal{G}\}'' \subseteq \mathcal{B}(L_2(\mathcal{G}))$.

Amenability ... needs no introduction here.

Recall:

Definition

vN algebra $M \subseteq \mathcal{B}(H)$ injective $\Leftrightarrow \exists$ cond. exp. $E : \mathcal{B}(H) \to M$

For LC group \mathcal{G} , consider $\mathcal{L}(\mathcal{G}) = \{L_g \mid g \in \mathcal{G}\}'' \subseteq \mathcal{B}(L_2(\mathcal{G}))$.

• \mathcal{G} discrete (or inner-amenable): \mathcal{G} amenable $\Leftrightarrow \mathcal{L}(\mathcal{G})$ injective

Amenability . . . needs no introduction here. Recall:

Definition

vN algebra $M \subseteq \mathcal{B}(H)$ injective $\Leftrightarrow \exists$ cond. exp. $E : \mathcal{B}(H) \to M$

For LC group \mathcal{G} , consider $\mathcal{L}(\mathcal{G}) = \{L_g \mid g \in \mathcal{G}\}'' \subseteq \mathcal{B}(L_2(\mathcal{G}))$.

- ullet $\mathcal G$ discrete (or inner-amenable): $\mathcal G$ amenable $\Leftrightarrow \mathcal L(\mathcal G)$ injective
- \mathcal{G} LC: \mathcal{G} amenable $\Rightarrow \mathcal{L}(\mathcal{G})$ injective

Amenability . . . needs no introduction here. Recall:

Definition

vN algebra $M \subseteq \mathcal{B}(H)$ injective $\Leftrightarrow \exists$ cond. exp. $E : \mathcal{B}(H) \to M$

For LC group \mathcal{G} , consider $\mathcal{L}(\mathcal{G}) = \{L_g \mid g \in \mathcal{G}\}'' \subseteq \mathcal{B}(L_2(\mathcal{G}))$.

- \mathcal{G} discrete (or inner-amenable): \mathcal{G} amenable $\Leftrightarrow \mathcal{L}(\mathcal{G})$ injective
- \mathcal{G} LC: \mathcal{G} amenable $\Rightarrow \mathcal{L}(\mathcal{G})$ injective

The converse does not hold in general:

Amenability ... needs no introduction here.

Recall:

Definition

vN algebra $M \subseteq \mathcal{B}(H)$ injective $\Leftrightarrow \exists$ cond. exp. $E : \mathcal{B}(H) \to M$

For LC group \mathcal{G} , consider $\mathcal{L}(\mathcal{G}) = \{L_g \mid g \in \mathcal{G}\}'' \subseteq \mathcal{B}(L_2(\mathcal{G}))$.

- ullet $\mathcal G$ discrete (or inner-amenable): $\mathcal G$ amenable $\Leftrightarrow \mathcal L(\mathcal G)$ injective
- \mathcal{G} LC: \mathcal{G} amenable $\Rightarrow \mathcal{L}(\mathcal{G})$ injective

The converse does not hold in general:

Theorem (Connes/Dixmier '76)

 \mathcal{G} separable, connected LC group $\Rightarrow \mathcal{L}(\mathcal{G})$ injective

Amenability ... needs no introduction here.

Recall:

Definition

vN algebra $M \subseteq \mathcal{B}(H)$ injective $\Leftrightarrow \exists$ cond. exp. $E : \mathcal{B}(H) \to M$

For LC group \mathcal{G} , consider $\mathcal{L}(\mathcal{G}) = \{L_g \mid g \in \mathcal{G}\}'' \subseteq \mathcal{B}(L_2(\mathcal{G}))$.

- ullet $\mathcal G$ discrete (or inner-amenable): $\mathcal G$ amenable $\Leftrightarrow \mathcal L(\mathcal G)$ injective
- ullet $\mathcal G$ LC: $\mathcal G$ amenable $\Rightarrow \mathcal L(\mathcal G)$ injective

The converse does not hold in general:

Theorem (Connes/Dixmier '76)

 ${\mathcal G}$ separable, connected LC group $\Rightarrow {\mathcal L}({\mathcal G})$ injective

Question: $\mathcal{L}(\mathcal{G})$ injective + ? \Rightarrow \mathcal{G} amenable

Amenability . . . needs no introduction here.

Recall:

Definition

vN algebra $M \subseteq \mathcal{B}(H)$ injective $\Leftrightarrow \exists$ cond. exp. $E : \mathcal{B}(H) \to M$

For LC group \mathcal{G} , consider $\mathcal{L}(\mathcal{G}) = \{L_g \mid g \in \mathcal{G}\}'' \subseteq \mathcal{B}(L_2(\mathcal{G}))$.

- ullet $\mathcal G$ discrete (or inner-amenable): $\mathcal G$ amenable $\Leftrightarrow \mathcal L(\mathcal G)$ injective
- $\mathcal G$ LC: $\mathcal G$ amenable $\Rightarrow \mathcal L(\mathcal G)$ injective

The converse does not hold in general:

Theorem (Connes/Dixmier '76)

 ${\mathcal G}$ separable, connected LC group $\Rightarrow {\mathcal L}({\mathcal G})$ injective

Question: $\mathcal{L}(\mathcal{G})$ injective $+? \Rightarrow \mathcal{G}$ amenable We will answer this more generally for LC quantum groups.

- 1 Amuse-gueule
- 2 Locally Compact Quantum Groups
- 3 Duality via $\mathcal{T}(L_2(\mathbb{G}))$
- **4** Amenability = $\mathcal{T}(L_2(\mathbb{G}))$ -Covariant Injectivity

Definition

Hopf-von Neumann algebra = (M, Γ)

Definition

Hopf-von Neumann algebra = (M, Γ)

M vN algebra

Definition

Hopf-von Neumann algebra = (M, Γ)

- M vN algebra
- $\Gamma: M \to M \bar{\otimes} M$ co-multiplication: normal unital isometric *-hom., co-associative:

$$(id \otimes \Gamma) \circ \Gamma = (\Gamma \otimes id) \circ \Gamma$$

Definition

Hopf-von Neumann algebra = (M, Γ)

- M vN algebra
- Γ: M → M⊗M co-multiplication: normal unital isometric *-hom., co-associative:

$$(id \otimes \Gamma) \circ \Gamma = (\Gamma \otimes id) \circ \Gamma$$

Examples:

•
$$M = L_{\infty}(\mathcal{G}) = L_1(\mathcal{G})^*$$

 $\Gamma = adjoint of convolution product *$

Definition

Hopf-von Neumann algebra = (M, Γ)

- M vN algebra
- Γ: M → M⊗̄M co-multiplication: normal unital isometric *-hom., co-associative:

$$(\mathrm{id} \otimes \Gamma) \circ \Gamma = (\Gamma \otimes \mathrm{id}) \circ \Gamma$$

Examples:

- $M = L_{\infty}(\mathcal{G}) = L_1(\mathcal{G})^*$
 - $\Gamma = adjoint of convolution product *$
- $M = \mathcal{L}(\mathcal{G}) = A(\mathcal{G})^*$
 - Γ = adjoint of pointwise product •

Non-commutative integration (Tomita-Takesaki):

Non-commutative integration (Tomita-Takesaki):

Weight $\varphi: M^+ \to [0,\infty]$ additive & positive homogeneous $M_{\varphi}:= \text{lin } \{x \in M^+ \mid \varphi(x) < \infty\}$

Non-commutative integration (Tomita-Takesaki):

Weight $\,arphi\,:\,M^+ o[0,\infty]\,$ additive & positive homogeneous

$$M_{\varphi} := \text{lin } \{x \in M^+ \mid \varphi(x) < \infty\}$$

$$N_{\varphi} := \{x \in M \mid \varphi(x^*x) < \infty\}$$

Non-commutative integration (Tomita-Takesaki):

Weight $\varphi: M^+ \to [0,\infty]$ additive & positive homogeneous

$$M_{\varphi} := \text{lin } \{x \in M^+ \mid \varphi(x) < \infty\}$$

$$N_{\varphi} := \{x \in M \mid \varphi(x^*x) < \infty\}$$

Then φ extends to a lin. map on M_{φ} , and N_{φ} is a left ideal of M.

Non-commutative integration (Tomita-Takesaki):

Weight $\varphi: M^+ \to [0,\infty]$ additive & positive homogeneous

$$M_{\varphi} := \text{lin } \{x \in M^+ \mid \varphi(x) < \infty\}$$

$$N_{\varphi} := \{ x \in M \mid \varphi(x^*x) < \infty \}$$

Then φ extends to a lin. map on M_{φ} , and N_{φ} is a left ideal of M.

Given an nsf weight φ on M, N_{φ} , equipped with $(x,y) := \varphi(y^*x)$, is a pre-Hilbert space; we denote by $L_2(M,\varphi)$ its completion.

Definition (Kustermans-Vaes '00)

LC Quantum Group $\mathbb{G} = (M, \Gamma, \varphi, \psi)$

Definition (Kustermans-Vaes '00)

LC Quantum Group $\mathbb{G} = (M, \Gamma, \varphi, \psi)$

 \bullet (M,Γ) Hopf-von Neumann algebra

Definition (Kustermans-Vaes '00)

LC Quantum Group $\mathbb{G} = (M, \Gamma, \varphi, \psi)$

- (M, Γ) Hopf-von Neumann algebra
- φ left invariant nsf weight on M:

$$\varphi((f \otimes id)(\Gamma x)) = f(1)\varphi(x) \quad (f \in M_*, x \in M_{\varphi})$$

Definition (Kustermans-Vaes '00)

LC Quantum Group $\mathbb{G} = (M, \Gamma, \varphi, \psi)$

- (M, Γ) Hopf-von Neumann algebra
- φ left invariant nsf weight on M:

$$\varphi((f \otimes id)(\Gamma x)) = f(1)\varphi(x) \quad (f \in M_*, x \in M_{\varphi})$$

• ψ right invariant nsf weight on M:

$$\psi((\mathsf{id}\otimes f)(\mathsf{\Gamma} x)) = f(1)\psi(x) \quad (f\in M_*, x\in M_\psi)$$

Definition (Kustermans-Vaes '00)

LC Quantum Group $\mathbb{G} = (M, \Gamma, \varphi, \psi)$

- (M, Γ) Hopf-von Neumann algebra
- φ left invariant nsf weight on M:

$$\varphi((f \otimes id)(\Gamma x)) = f(1)\varphi(x) \quad (f \in M_*, x \in M_{\varphi})$$

• ψ right invariant nsf weight on M:

$$\psi((\mathsf{id}\otimes f)(\mathsf{\Gamma} x)) = f(1)\psi(x) \quad (f\in M_*, x\in M_\psi)$$

 φ , ψ called left resp. right Haar weight

Examples

•
$$M = L_{\infty}(\mathcal{G})$$
; $\Gamma(f)(s,t) = f(st)$

Examples

• $M=L_{\infty}(\mathcal{G}); \ \Gamma(f)(s,t)=f(st)$ arphi and ψ given by left resp. right Haar measure

Examples

- $M = L_{\infty}(\mathcal{G}); \ \Gamma(f)(s,t) = f(st)$ φ and ψ given by left resp. right Haar measure
- $M = \mathcal{L}(\mathcal{G})$; $\Gamma(L_x) = L_x \otimes L_x$

- $M = L_{\infty}(\mathcal{G}); \ \Gamma(f)(s,t) = f(st)$ φ and ψ given by left resp. right Haar measure
- $M = \mathcal{L}(\mathcal{G})$; $\Gamma(L_x) = L_x \otimes L_x$ $\varphi = \psi$ given by the Plancherel weight on $\mathcal{L}(\mathcal{G})$

Co-multiplication Γ implemented by left fundamental unitary $W \in \mathcal{B}(L_2(M,\varphi) \otimes L_2(M,\varphi))$:

Co-multiplication Γ implemented by left fundamental unitary $W \in \mathcal{B}(L_2(M,\varphi) \otimes L_2(M,\varphi))$:

$$\Gamma(x) = W^*(1 \otimes x)W \quad (x \in M)$$

Co-multiplication Γ implemented by left fundamental unitary $W \in \mathcal{B}(L_2(M,\varphi) \otimes L_2(M,\varphi))$:

$$\Gamma(x) = W^*(1 \otimes x)W \quad (x \in M)$$

•
$$M = L_{\infty}(G)$$
: $Wf(x, y) = f(x, xy) \ \forall \ f \in L_2(G \times G)$

Co-multiplication Γ implemented by left fundamental unitary $W \in \mathcal{B}(L_2(M,\varphi) \otimes L_2(M,\varphi))$:

$$\Gamma(x) = W^*(1 \otimes x)W \quad (x \in M)$$

- $M = L_{\infty}(G)$: $Wf(x, y) = f(x, xy) \ \forall \ f \in L_2(G \times G)$
- $M = \mathcal{L}(\mathcal{G})$: fundy W assigns to $\omega \in A(\mathcal{G})$ the function $x \to \langle L_x, \omega \rangle$ seen as an element of $L_{\infty}(\mathcal{G}) \overline{\otimes} \mathcal{L}(\mathcal{G})$

Co-multiplication Γ implemented by left fundamental unitary $W \in \mathcal{B}(L_2(M,\varphi) \otimes L_2(M,\varphi))$:

$$\Gamma(x) = W^*(1 \otimes x)W \quad (x \in M)$$

Examples:

- $M = L_{\infty}(G)$: $Wf(x, y) = f(x, xy) \ \forall \ f \in L_{2}(G \times G)$
- $M = \mathcal{L}(\mathcal{G})$: fundy W assigns to $\omega \in \mathcal{A}(\mathcal{G})$ the function $x \to \langle L_x, \omega \rangle$ seen as an element of $L_\infty(\mathcal{G}) \overline{\otimes} \mathcal{L}(\mathcal{G})$

Write $L_{\infty}(\mathbb{G}):=M$ and $L_1(\mathbb{G}):=M_*$

Co-multiplication Γ implemented by left fundamental unitary $W \in \mathcal{B}(L_2(M,\varphi) \otimes L_2(M,\varphi))$:

$$\Gamma(x) = W^*(1 \otimes x)W \quad (x \in M)$$

- $M = L_{\infty}(G)$: $Wf(x, y) = f(x, xy) \ \forall \ f \in L_{2}(G \times G)$
- $M = \mathcal{L}(\mathcal{G})$: fundy W assigns to $\omega \in A(\mathcal{G})$ the function $x \to \langle L_x, \omega \rangle$ seen as an element of $L_{\infty}(\mathcal{G}) \overline{\otimes} \mathcal{L}(\mathcal{G})$

Write
$$L_{\infty}(\mathbb{G}):=M$$
 and $L_{1}(\mathbb{G}):=M_{st}$

$$\rightsquigarrow L_1(\mathbb{G})$$
 Banach algebra: $f * g = \Gamma_*(f \otimes g)$

Left regular representation $\lambda: L_1(\mathbb{G}) \to \mathcal{B}(L_2(M,\varphi))$ given by

$$\lambda(f) = (f \otimes \mathrm{id})W$$

 \sim λ injective c.c. homomorphism

Left regular representation $\lambda: L_1(\mathbb{G}) \to \mathcal{B}(L_2(M,\varphi))$ given by

$$\lambda(f) = (f \otimes \mathrm{id})W$$

 $\rightarrow \lambda$ injective c.c. homomorphism

$$\hat{M} := \overline{\{\lambda(f) : f \in M_*\}}^{w^*}$$

is vN algebra on $L_2(M, \varphi)$.

Left regular representation $\lambda: L_1(\mathbb{G}) \to \mathcal{B}(L_2(M,\varphi))$ given by

$$\lambda(f) = (f \otimes \mathrm{id})W$$

 $\rightarrow \lambda$ injective c.c. homomorphism

$$\hat{M} := \overline{\{\lambda(f) : f \in M_*\}}^{w^*}$$

is vN algebra on $L_2(M, \varphi)$.

We obtain dual quantum group $\hat{\mathbb{G}}=(\hat{M},\hat{\Gamma},\hat{arphi},\hat{\psi})$ with

$$\hat{\Gamma}(x) = \hat{W}^*(1 \otimes x)\hat{W},$$

where $\hat{W} = \sigma W^* \sigma$.

Left regular representation $\lambda: L_1(\mathbb{G}) \to \mathcal{B}(L_2(M,\varphi))$ given by

$$\lambda(f) = (f \otimes \mathrm{id})W$$

 $\rightarrow \lambda$ injective c.c. homomorphism

$$\hat{M} := \overline{\{\lambda(f) : f \in M_*\}}^{w^*}$$

is vN algebra on $L_2(M, \varphi)$.

We obtain dual quantum group $\hat{\mathbb{G}}=(\hat{M},\hat{\Gamma},\hat{arphi},\hat{\psi})$ with

$$\hat{\Gamma}(x) = \hat{W}^*(1 \otimes x)\hat{W},$$

where $\hat{W} = \sigma W^* \sigma$.

We can identify $L_2(M,\varphi) \cong L_2(\hat{M},\hat{\varphi})$, and we write $L_2(\mathbb{G})$.

Theorem (Kustermans–Vaes '00)

"Pontryagin" duality $\widehat{\widehat{\mathbb{G}}} \cong \mathbb{G}$

Theorem (Kustermans-Vaes '00)

"Pontryagin" duality $\hat{\widehat{\mathbb{G}}} \cong \mathbb{G}$

$$\mathcal{L}(\mathcal{G}) \cong \widehat{L_{\infty}(\mathcal{G})}$$
 dual Kac algebras

Theorem (Kustermans-Vaes '00)

"Pontryagin" duality $\hat{\widehat{\mathbb{G}}} \cong \mathbb{G}$

Example:

$$\mathcal{L}(\mathcal{G}) \cong \widehat{L_{\infty}(\mathcal{G})}$$
 dual Kac algebras

... building on earlier work by Baaj–Skandalis, Effros–Ruan, Enock–Schwartz, Kac–Vainerman, Takesaki, ...

What we did for the left Haar weight φ can of course also be done for the right one, $\psi.$

What we did for the left Haar weight φ can of course also be done for the right one, ψ .

We have $L_2(M, \psi) \cong L_2(M, \varphi) = L_2(\mathbb{G})$.

What we did for the left Haar weight φ can of course also be done for the right one, ψ .

We have $L_2(M, \psi) \cong L_2(M, \varphi) = L_2(\mathbb{G})$.

Right fundamental unitary V gives:

$$\Gamma(x) = V(x \otimes 1)V^*.$$

What we did for the left Haar weight φ can of course also be done for the right one, ψ .

We have $L_2(M, \psi) \cong L_2(M, \varphi) = L_2(\mathbb{G})$.

Right fundamental unitary V gives:

$$\Gamma(x) = V(x \otimes 1)V^*.$$

Right regular representation ρ given by

$$\rho(f)=(\mathrm{id}\otimes f)V\in \hat{M}'.$$

$$\mathcal{C}_0(\mathbb{G}) := \overline{\{(\operatorname{id} \otimes
u)(W) \mid
u \in \mathcal{T}(L_2(\mathbb{G}))\}}^{\|\cdot\|} \subseteq L_\infty(\mathbb{G})$$

$$C_0(\mathbb{G}) := \overline{\{(\operatorname{id} \otimes
u)(W) \mid
u \in \mathcal{T}(L_2(\mathbb{G}))\}}^{\|\cdot\|} \subseteq L_\infty(\mathbb{G})$$

•
$$L_{\infty}(\mathbb{G}) = L_{\infty}(\mathcal{G}) \rightsquigarrow C_0(\mathbb{G}) = C_0(\mathcal{G})$$

$$\mathcal{C}_0(\mathbb{G}) := \overline{\{(\operatorname{id} \otimes
u)(W) \mid
u \in \mathcal{T}(L_2(\mathbb{G}))\}}^{\|\cdot\|} \subseteq L_\infty(\mathbb{G})$$

•
$$L_{\infty}(\mathbb{G}) = L_{\infty}(\mathcal{G}) \rightsquigarrow C_0(\mathbb{G}) = C_0(\mathcal{G})$$

•
$$L_{\infty}(\mathbb{G}) = \mathcal{L}(\mathcal{G}) \rightsquigarrow C_r^*(\mathcal{G})$$

$$\mathcal{C}_0(\mathbb{G}) := \overline{\{(\operatorname{id} \otimes
u)(W) \mid
u \in \mathcal{T}(L_2(\mathbb{G}))\}}^{\|\cdot\|} \subseteq L_\infty(\mathbb{G})$$

- $L_{\infty}(\mathbb{G}) = L_{\infty}(\mathcal{G}) \rightsquigarrow C_0(\mathbb{G}) = C_0(\mathcal{G})$
- $L_{\infty}(\mathbb{G}) = \mathcal{L}(\mathcal{G}) \rightsquigarrow C_r^*(\mathcal{G})$
- from Mathematical Physics: Woronowicz's $SU_q(2)$ with deformation parameter $q \in (0,1]$

$$\mathcal{C}_0(\mathbb{G}) := \overline{\{(\operatorname{id} \otimes
u)(W) \mid
u \in \mathcal{T}(L_2(\mathbb{G}))\}}^{\|\cdot\|} \subseteq \mathcal{L}_\infty(\mathbb{G})$$

- $L_{\infty}(\mathbb{G}) = L_{\infty}(\mathcal{G}) \rightsquigarrow C_0(\mathbb{G}) = C_0(\mathcal{G})$
- $L_{\infty}(\mathbb{G}) = \mathcal{L}(\mathcal{G}) \rightsquigarrow C_r^*(\mathcal{G})$
- from Mathematical Physics: Woronowicz's $SU_q(2)$ with deformation parameter $q \in (0,1]$
 - $SU_q(2) = C(SU(2))$ for q = 1

$$\mathcal{C}_0(\mathbb{G}) := \overline{\{(\operatorname{id} \otimes
u)(W) \mid
u \in \mathcal{T}(L_2(\mathbb{G}))\}}^{\|\cdot\|} \subseteq \mathcal{L}_\infty(\mathbb{G})$$

- $L_{\infty}(\mathbb{G}) = L_{\infty}(\mathcal{G}) \rightsquigarrow C_0(\mathbb{G}) = C_0(\mathcal{G})$
- $L_{\infty}(\mathbb{G}) = \mathcal{L}(\mathcal{G}) \rightsquigarrow C_r^*(\mathcal{G})$
- from Mathematical Physics: Woronowicz's $SU_q(2)$ with deformation parameter $q \in (0,1]$
 - $SU_q(2) = C(SU(2))$ for q = 1
 - Non-commutative C^* -algebra for $q \in (0,1)$

Recall:

$$L_{\infty}(\mathbb{G}) := M$$
 $L_{1}(\mathbb{G}) := M_{*}$

Recall:

$$L_{\infty}(\mathbb{G}) := M$$
 $L_{1}(\mathbb{G}) := M_{*}$

$$L_1(\mathbb{G})$$
 Banach algebra: $f * g = \Gamma_*(f \otimes g)$

Recall:

$$L_{\infty}(\mathbb{G}) := M$$
 $L_{1}(\mathbb{G}) := M_{*}$

 $L_1(\mathbb{G})$ Banach algebra: $f * g = \Gamma_*(f \otimes g)$

$$\mathfrak{M}_{\mathsf{cb}} L_1(\mathbb{G}) \,:=\, \{\Phi: L_1(\mathbb{G}) \to L_1(\mathbb{G}) \,\mid\, \Phi \,\mathsf{CB} \,\&\, \Phi(f * g) = f * \Phi(g)\}$$

Recall:

$$L_{\infty}(\mathbb{G}) := M$$
 $L_{1}(\mathbb{G}) := M_{*}$

 $L_1(\mathbb{G})$ Banach algebra: $f * g = \Gamma_*(f \otimes g)$

$$\mathfrak{M}_{\mathsf{cb}} \mathcal{L}_1(\mathbb{G}) \,:=\, \{ \Phi : \mathcal{L}_1(\mathbb{G}) \to \mathcal{L}_1(\mathbb{G}) \,\mid\, \Phi \,\mathsf{CB} \,\&\, \Phi(f \! * \! g) = f \! * \! \Phi(g) \}$$

Theorem (Junge-N-Ruan)

$$\theta: \mathfrak{M}_{\mathsf{cb}} L_1(\mathbb{G}) \cong \mathcal{NCB} \underset{\mathsf{loc}(\widehat{\mathbb{G}})}{\overset{\mathsf{L}_{\infty}(\mathbb{G})}{(\mathcal{G})}} (\mathcal{B}(L_2(\mathbb{G})))$$

- Amuse-gueule
- **2** Locally Compact Quantum Groups
- **3** Duality via $\mathcal{T}(L_2(\mathbb{G}))$
- **4** Amenability = $\mathcal{T}(L_2(\mathbb{G}))$ -Covariant Injectivity

Duality = Commutation in $\mathcal{T}(L_2(\mathbb{G}))$

Duality = Commutation in $\mathcal{T}(L_2(\mathbb{G}))$

Co-multiplications Γ and $\widehat{\Gamma}$ extend to

$$\mathcal{B}(L_2(\mathbb{G})) o \mathcal{B}(L_2(\mathbb{G})) \ ar{\otimes} \ \mathcal{B}(L_2(\mathbb{G}))$$

Duality = Commutation in $\mathcal{T}(L_2(\mathbb{G}))$

Co-multiplications Γ and $\widehat{\Gamma}$ extend to

$$\mathcal{B}(L_2(\mathbb{G})) o \mathcal{B}(L_2(\mathbb{G})) \ \bar{\otimes} \ \mathcal{B}(L_2(\mathbb{G}))$$

$$ightsqrtapprox \Gamma_* = m$$
 and $\widehat{\Gamma}_* = \widehat{m}$ yield 2 dual products

$$\mathcal{T}(L_2(\mathbb{G}))\ \widehat{\otimes}\ \mathcal{T}(L_2(\mathbb{G})) o \mathcal{T}(L_2(\mathbb{G}))$$

Duality = Commutation in $\mathcal{T}(L_2(\mathbb{G}))$

Co-multiplications Γ and $\widehat{\Gamma}$ extend to

$$\mathcal{B}(L_2(\mathbb{G})) \to \mathcal{B}(L_2(\mathbb{G})) \ \bar{\otimes} \ \mathcal{B}(L_2(\mathbb{G}))$$

 $ightsquigarrow \Gamma_* = \mathrm{m} \;\; \text{and} \;\; \widehat{\Gamma}_* = \widehat{\mathrm{m}} \;\; \text{yield 2 dual products}$

$$\mathcal{T}(L_2(\mathbb{G})) \ \widehat{\otimes} \ \mathcal{T}(L_2(\mathbb{G})) \to \mathcal{T}(L_2(\mathbb{G}))$$

Theorem (Kalantar–N)

On $\mathcal{T}(L_2)\widehat{\otimes}\mathcal{T}(L_2)\widehat{\otimes}\mathcal{T}(L_2)$ we have

$$m \circ (\widehat{m} \otimes id) = \widehat{m} \circ (m \otimes id) \circ (id \otimes \sigma)$$

Here $\sigma(\rho \otimes \tau) = \tau \otimes \rho$ is the flip.

Duality = Commutation in $\mathcal{T}(L_2(\mathbb{G}))$

Co-multiplications Γ and $\widehat{\Gamma}$ extend to

$$\mathcal{B}(L_2(\mathbb{G})) \to \mathcal{B}(L_2(\mathbb{G})) \ \bar{\otimes} \ \mathcal{B}(L_2(\mathbb{G}))$$

 $ightsqrtapprox \Gamma_* = m$ and $\widehat{\Gamma}_* = \widehat{m}$ yield 2 dual products

$$\mathcal{T}(L_2(\mathbb{G})) \ \widehat{\otimes} \ \mathcal{T}(L_2(\mathbb{G})) o \mathcal{T}(L_2(\mathbb{G}))$$

Theorem (Kalantar–N)

On $\mathcal{T}(L_2)\widehat{\otimes}\mathcal{T}(L_2)\widehat{\otimes}\mathcal{T}(L_2)$ we have

$$m \circ (\widehat{m} \otimes id) = \widehat{m} \circ (m \otimes id) \circ (id \otimes \sigma)$$

Here $\sigma(\rho \otimes \tau) = \tau \otimes \rho$ is the flip.

Anti-Commutation Relation on Tensor Level!

On $\mathcal{T}(L_2(\mathbb{G}))$ we can compare "convolution" and "pointwise product"!

On $\mathcal{T}(L_2(\mathbb{G}))$ we can compare "convolution" and "pointwise product"!

$$(\rho * \tau) \cdot \psi = (\rho \cdot \psi) * \tau$$

$$L_{\infty}(\mathbb{G}) := M$$
 $L_{1}(\mathbb{G}) := M_{*}$ $L_{2}(\mathbb{G}) := L_{2}(M, \varphi)$

$$L_{\infty}(\mathbb{G}) := M$$
 $L_{1}(\mathbb{G}) := M_{*}$ $L_{2}(\mathbb{G}) := L_{2}(M, \varphi)$

$$LUC(\mathbb{G}) := \overline{\lim} L_{\infty}(\mathbb{G}) * L_{1}(\mathbb{G}) \subseteq L_{\infty}(\mathbb{G})$$

• \mathbb{G} compact if $C_0(\mathbb{G})$ unital ($\Leftrightarrow \exists$ Haar state)

- \mathbb{G} compact if $C_0(\mathbb{G})$ unital ($\Leftrightarrow \exists$ Haar state)
- \mathbb{G} discrete if $L_1(\mathbb{G})$ unital

- \mathbb{G} compact if $C_0(\mathbb{G})$ unital ($\Leftrightarrow \exists$ Haar state)
- \mathbb{G} discrete if $L_1(\mathbb{G})$ unital
- \mathbb{G} co-amenable if $L_1(\mathbb{G})$ has BAI

 $\mathcal{T}(L_2(\mathbb{G}))$

$\mathsf{LUC}(\mathbb{G})$

Proposition (Hu–N–Ruan)

$$\mathsf{LUC}(\mathbb{G}) = \overline{\mathsf{lin}} \,\, \mathcal{B}(\mathit{L}_2(\mathbb{G})) * \mathcal{T}(\mathit{L}_2(\mathbb{G}))$$

$LUC(\mathbb{G})$

Proposition (Hu-N-Ruan)

$$\mathsf{LUC}(\mathbb{G}) = \overline{\mathsf{lin}} \,\, \mathcal{B}(\mathit{L}_2(\mathbb{G})) * \mathcal{T}(\mathit{L}_2(\mathbb{G}))$$

Proposition (Hu-N-Ruan)

 $\mathcal{T}(L_2(\mathbb{G}))$ does not have LAI unless \mathbb{G} trivial

 $\mathcal{T}(L_2(\mathbb{G}))$ has BRAI $\Leftrightarrow \mathbb{G}$ co-amenable

 $\mathcal{T}(L_2(\mathbb{G}))$ has right identity $\Leftrightarrow \mathbb{G}$ discrete

$\mathsf{LUC}(\mathbb{G})$

Proposition (Hu–N–Ruan)

 $\mathsf{LUC}(\mathbb{G}) = \overline{\mathsf{lin}} \,\, \mathcal{B}(\mathcal{L}_2(\mathbb{G})) * \mathcal{T}(\mathcal{L}_2(\mathbb{G}))$

Proposition (Hu–N–Ruan)

 $\mathcal{T}(L_2(\mathbb{G}))$ does not have LAI unless \mathbb{G} trivial

 $\mathcal{T}(L_2(\mathbb{G}))$ has BRAI $\Leftrightarrow \mathbb{G}$ co-amenable

 $\mathcal{T}(L_2(\mathbb{G}))$ has right identity $\Leftrightarrow \mathbb{G}$ discrete

Proposition (Hu–N–Ruan)

G co-amenable. Then:

$$\mathsf{LUC}(\mathbb{G}) = \mathsf{LUC}(\mathbb{G}) * L_1(\mathbb{G}) = L_{\infty}(\mathbb{G}) * L_1(\mathbb{G}) = \mathcal{B}(L_2(\mathbb{G})) * \mathcal{T}(L_2(\mathbb{G}))$$

$\mathsf{LUC}(\mathbb{G})$ as a C^* -algebra

$\mathsf{LUC}(\mathbb{G})$ as a C^* -algebra

Definition

Consider
$$C(V) := \{ (\mathrm{id} \otimes \rho)(\sigma V) \mid \rho \in \mathcal{T}(L_2(\mathbb{G})) \} \subseteq \mathcal{B}(L_2(\mathbb{G})) \}$$

$LUC(\mathbb{G})$ as a C^* -algebra

Definition

```
Consider C(V) := \{ (\mathrm{id} \otimes \rho)(\sigma V) \mid \rho \in \mathcal{T}(L_2(\mathbb{G})) \} \subseteq \mathcal{B}(L_2(\mathbb{G})) \}
```

G regular [resp. semi-regular] if

$$\mathcal{K}(L_2(\mathbb{G})) = \overline{\lim} C(V)$$
 [resp. $\mathcal{K}(L_2(\mathbb{G})) \subseteq \overline{\lim} C(V)$]

$\mathsf{LUC}(\mathbb{G})$ as a C^* -algebra

Definition

```
Consider C(V) := \{ (\mathrm{id} \otimes \rho)(\sigma V) \mid \rho \in \mathcal{T}(L_2(\mathbb{G})) \} \subseteq \mathcal{B}(L_2(\mathbb{G})) \}
```

 \mathbb{G} regular [resp. semi-regular] if $\mathcal{K}(L_2(\mathbb{G})) = \overline{\lim} C(V)$ [resp. $\mathcal{K}(L_2(\mathbb{G})) \subseteq \overline{\lim} C(V)$]

Examples:

Kac algebras, compact and discrete quantum groups are regular

$LUC(\mathbb{G})$ as a C^* -algebra

Definition

Consider
$$C(V) := \{ (\mathrm{id} \otimes \rho)(\sigma V) \mid \rho \in \mathcal{T}(L_2(\mathbb{G})) \} \subseteq \mathcal{B}(L_2(\mathbb{G})) \}$$

G regular [resp. semi-regular] if

$$\mathcal{K}(L_2(\mathbb{G})) = \overline{\lim} C(V)$$
 [resp. $\mathcal{K}(L_2(\mathbb{G})) \subseteq \overline{\lim} C(V)$]

Examples:

Kac algebras, compact and discrete quantum groups are regular

Theorem (Hu-N-Ruan)

If \mathbb{G} is semi-regular, then LUC(\mathbb{G}) is unital C^* -algebra.

Regularity and Discreteness

Regularity and Discreteness

Theorem (Hu–N–Ruan)

TFAE:

- G is regular
- convolution in $\mathcal{T}(L_2(\mathbb{G}))$ is w^* -cont. on the left

Regularity and Discreteness

Theorem (Hu–N–Ruan)

TFAE:

- G is regular
- convolution in $\mathcal{T}(L_2(\mathbb{G}))$ is w^* -cont. on the left

Theorem (Hu–N–Ruan)

TFAE:

- convolution in $\mathcal{T}(L_2(\mathbb{G}))$ is w^* -cont. on the right
- convolution in $\mathcal{T}(L_2(\mathbb{G}))$ is separately w^* -cont.
- G is discrete

Arens (Ir-)Regularity

Arens (Ir-)Regularity

Theorem (Hu-N-Ruan)

 \mathbb{G} bi-amenable with $L_1(\mathbb{G})$ separable. TFAE:

- $\mathcal{T}(L_2(\mathbb{G}))$ is Arens Regular
- $\mathcal{T}(L_2(\mathbb{G}))$ is Strongly Arens Irregular (SAI)
- G is finite

- 1 Amuse-gueule
- **2** Locally Compact Quantum Groups
- 3 Duality via $\mathcal{T}(L_2(\mathbb{G}))$
- **4** Amenability = $\mathcal{T}(L_2(\mathbb{G}))$ -Covariant Injectivity

Definition

 $\mathbb G$ amenable if \exists state $F \in L_\infty(\mathbb G)^*$ s.t. $\langle F, h * g \rangle = \langle g, 1 \rangle \ \langle F, h \rangle$ $\forall \ h \in L_\infty(\mathbb G), \ g \in L_1(\mathbb G)$

Definition

 \mathbb{G} amenable if \exists state $F \in L_{\infty}(\mathbb{G})^*$ s.t. $\langle F, h * g \rangle = \langle g, 1 \rangle \ \langle F, h \rangle$ $\forall \ h \in L_{\infty}(\mathbb{G}), \ g \in L_{1}(\mathbb{G})$

Examples - amenability:

Definition

$$\mathbb{G}$$
 amenable if \exists state $F \in L_{\infty}(\mathbb{G})^*$ s.t. $\langle F, h * g \rangle = \langle g, 1 \rangle \langle F, h \rangle$ $\forall h \in L_{\infty}(\mathbb{G}), g \in L_1(\mathbb{G})$

Examples - amenability:

ullet $\mathbb{G}=L_{\infty}(\mathcal{G})$ amenable $\Leftrightarrow \mathcal{G}$ amenable

Definition

$$\mathbb{G}$$
 amenable if \exists state $F \in L_{\infty}(\mathbb{G})^*$ s.t. $\langle F, h * g \rangle = \langle g, 1 \rangle \langle F, h \rangle$ $\forall h \in L_{\infty}(\mathbb{G}), g \in L_1(\mathbb{G})$

Examples - amenability:

- $\mathbb{G} = L_{\infty}(\mathcal{G})$ amenable $\Leftrightarrow \mathcal{G}$ amenable
- ullet $\mathbb{G}=\mathcal{L}(\mathcal{G})$ amenable for all \mathcal{G}

Definition

$$\mathbb{G}$$
 amenable if \exists state $F \in L_{\infty}(\mathbb{G})^*$ s.t. $\langle F, h * g \rangle = \langle g, 1 \rangle \langle F, h \rangle$ $\forall h \in L_{\infty}(\mathbb{G}), g \in L_{1}(\mathbb{G})$

Examples - amenability:

- ullet $\mathbb{G} = L_{\infty}(\mathcal{G})$ amenable $\Leftrightarrow \mathcal{G}$ amenable
- ullet $\mathbb{G}=\mathcal{L}(\mathcal{G})$ amenable for all \mathcal{G}

Examples – co-amenability:

Definition

$$\mathbb{G}$$
 amenable if \exists state $F \in L_{\infty}(\mathbb{G})^*$ s.t. $\langle F, h * g \rangle = \langle g, 1 \rangle \langle F, h \rangle$ $\forall h \in L_{\infty}(\mathbb{G}), g \in L_{1}(\mathbb{G})$

Examples - amenability:

- $\mathbb{G} = L_{\infty}(\mathcal{G})$ amenable $\Leftrightarrow \mathcal{G}$ amenable
- ullet $\mathbb{G}=\mathcal{L}(\mathcal{G})$ amenable for all \mathcal{G}

Examples – co-amenability:

ullet $\mathbb{G}=L_{\infty}(\mathcal{G})$ co-amenable for all \mathcal{G}

Definition

$$\mathbb{G}$$
 amenable if \exists state $F \in L_{\infty}(\mathbb{G})^*$ s.t. $\langle F, h * g \rangle = \langle g, 1 \rangle \langle F, h \rangle$ $\forall h \in L_{\infty}(\mathbb{G}), g \in L_{1}(\mathbb{G})$

Examples - amenability:

- ullet $\mathbb{G} = \mathcal{L}_{\infty}(\mathcal{G})$ amenable $\Leftrightarrow \mathcal{G}$ amenable
- ullet $\mathbb{G}=\mathcal{L}(\mathcal{G})$ amenable for all \mathcal{G}

Examples – co-amenability:

- \bullet $\mathbb{G} = L_{\infty}(\mathcal{G})$ co-amenable for all \mathcal{G}
- $\mathbb{G} = \mathcal{L}(\mathcal{G})$ co-amenable $\Leftrightarrow \mathcal{G}$ amenable (Leptin)

Theorem (Bédos-Tuset '03; Tomatsu '06)

 $\hat{\mathbb{G}}$ co-amenable $\Rightarrow \mathbb{G}$ amenable.

Theorem (Bédos–Tuset '03; Tomatsu '06)

 $\hat{\mathbb{G}}$ co-amenable $\Rightarrow \mathbb{G}$ amenable. The converse holds if \mathbb{G} is discrete.

Theorem (Bédos-Tuset '03; Tomatsu '06)

 $\hat{\mathbb{G}}$ co-amenable $\Rightarrow \mathbb{G}$ amenable. The converse holds if \mathbb{G} is discrete.

Theorem (Hu–N–Ruan)

 \mathbb{G} amenable and co-amenable $\Leftrightarrow L_1(\mathbb{G})_0$ has BAI

Theorem (Bédos–Tuset '03; Tomatsu '06)

 $\hat{\mathbb{G}}$ co-amenable $\Rightarrow \mathbb{G}$ amenable. The converse holds if \mathbb{G} is discrete.

Theorem (Hu–N–Ruan)

 \mathbb{G} amenable and co-amenable $\Leftrightarrow L_1(\mathbb{G})_0$ has BAI

The following is a quantum group version of Hulanicki's amenability criterion.

Theorem (Bédos–Tuset '03; Tomatsu '06)

 $\hat{\mathbb{G}}$ co-amenable $\Rightarrow \mathbb{G}$ amenable. The converse holds if \mathbb{G} is discrete.

Theorem (Hu–N–Ruan)

 \mathbb{G} amenable and co-amenable $\Leftrightarrow L_1(\mathbb{G})_0$ has BAI

The following is a quantum group version of Hulanicki's amenability criterion.

Proposition (Kalantar-N)

Let G be co-amenable. TFAE:

- Ĝ co-amenable
- $\lambda: L_1(\mathbb{G}) \to L_{\infty}(\hat{\mathbb{G}})$ isometry on $L_1(\mathbb{G})^+$

Recall:

• For $\mathcal G$ discrete: $\mathcal G$ amenable $\Leftrightarrow \mathcal L(\mathcal G)$ injective

Recall:

- For $\mathcal G$ discrete: $\mathcal G$ amenable $\Leftrightarrow \mathcal L(\mathcal G)$ injective
- For $\mathcal G$ LC: $\mathcal G$ amenable $\Rightarrow \mathcal L(\mathcal G)$ injective

Recall:

- For \mathcal{G} discrete: \mathcal{G} amenable $\Leftrightarrow \mathcal{L}(\mathcal{G})$ injective
- For \mathcal{G} LC: \mathcal{G} amenable $\Rightarrow \mathcal{L}(\mathcal{G})$ injective

The converse does not hold in general (Connes/Dixmier '76).

Recall:

- For \mathcal{G} discrete: \mathcal{G} amenable $\Leftrightarrow \mathcal{L}(\mathcal{G})$ injective
- For $\mathcal G$ LC: $\mathcal G$ amenable $\Rightarrow \mathcal L(\mathcal G)$ injective

The converse does not hold in general (Connes/Dixmier '76).

We get equivalence if we take into account action by $\mathcal{T}(L_2(\mathbb{G}))!$

V induces extended co-multiplication

$$\Gamma^r: \mathcal{B}(L_2(\mathbb{G}))\ni x\mapsto V(x\otimes 1)V^*\in \mathcal{B}(L_2(\mathbb{G}))\overline{\otimes}\mathcal{B}(L_2(\mathbb{G}))$$

V induces extended co-multiplication

$$\Gamma^r: \mathcal{B}(L_2(\mathbb{G})) \ni x \mapsto V(x \otimes 1)V^* \in \mathcal{B}(L_2(\mathbb{G})) \overline{\otimes} \mathcal{B}(L_2(\mathbb{G}))$$

 \sim c.c. product \triangleright on $\mathcal{T}(L_2(\mathbb{G}))$

V induces extended co-multiplication

$$\Gamma^r: \mathcal{B}(L_2(\mathbb{G})) \ni x \mapsto V(x \otimes 1)V^* \in \mathcal{B}(L_2(\mathbb{G})) \overline{\otimes} \mathcal{B}(L_2(\mathbb{G}))$$

 \sim c.c. product \triangleright on $\mathcal{T}(L_2(\mathbb{G}))$

 ${\it W}$ analogously induces extended co-multiplication

$$\Gamma^{\ell}: \mathcal{B}(L_2(\mathbb{G})) \ni x \mapsto W^*(1 \otimes x)W \in \mathcal{B}(L_2(\mathbb{G})) \overline{\otimes} \mathcal{B}(L_2(\mathbb{G}))$$

V induces extended co-multiplication

$$\Gamma^r: \mathcal{B}(L_2(\mathbb{G})) \ni x \mapsto V(x \otimes 1)V^* \in \mathcal{B}(L_2(\mathbb{G})) \overline{\otimes} \mathcal{B}(L_2(\mathbb{G}))$$

 \sim c.c. product \triangleright on $\mathcal{T}(L_2(\mathbb{G}))$

 ${\it W}$ analogously induces extended co-multiplication

$$\Gamma^{\ell}: \mathcal{B}(L_2(\mathbb{G})) \ni x \mapsto W^*(1 \otimes x)W \in \mathcal{B}(L_2(\mathbb{G})) \overline{\otimes} \mathcal{B}(L_2(\mathbb{G}))$$

 \rightsquigarrow c.c. product \triangleleft on $\mathcal{T}(L_2(\mathbb{G}))$

V induces extended co-multiplication

$$\Gamma': \mathcal{B}(L_2(\mathbb{G})) \ni x \mapsto V(x \otimes 1)V^* \in \mathcal{B}(L_2(\mathbb{G})) \overline{\otimes} \mathcal{B}(L_2(\mathbb{G}))$$

 \sim c.c. product \triangleright on $\mathcal{T}(L_2(\mathbb{G}))$

 ${\it W}$ analogously induces extended co-multiplication

$$\Gamma^{\ell}: \mathcal{B}(L_2(\mathbb{G})) \ni x \mapsto W^*(1 \otimes x)W \in \mathcal{B}(L_2(\mathbb{G})) \overline{\otimes} \mathcal{B}(L_2(\mathbb{G}))$$

 \rightsquigarrow c.c. product \triangleleft on $\mathcal{T}(L_2(\mathbb{G}))$

Both \triangleright and \triangleleft yield $\mathcal{T}(L_2(\mathbb{G}))$ -actions on $\mathcal{B}(L_2(\mathbb{G}))$

Theorem (Crann–N)

G LC quantum group.

 \mathbb{G} amenable $\Leftrightarrow \exists$ conditional expectation $E: \mathcal{B}(L_2(\mathbb{G})) \to L_\infty(\hat{\mathbb{G}})$ commuting with right $\mathcal{T}(L_2(\mathbb{G}))_{\triangleright}$ -action

Theorem (Crann-N)

G LC quantum group.

 \mathbb{G} amenable $\Leftrightarrow \exists$ conditional expectation $E: \mathcal{B}(L_2(\mathbb{G})) \to L_{\infty}(\hat{\mathbb{G}})$ commuting with right $\mathcal{T}(L_2(\mathbb{G}))_{\triangleright}$ -action

In other words:

LC quantum group \mathbb{G} amenable $\Leftrightarrow L_{\infty}(\hat{\mathbb{G}})$ covariantly injective

Theorem (Crann-N)

G LC quantum group.

 \mathbb{G} amenable $\Leftrightarrow \exists$ conditional expectation $E: \mathcal{B}(L_2(\mathbb{G})) \to L_{\infty}(\hat{\mathbb{G}})$ commuting with right $\mathcal{T}(L_2(\mathbb{G}))_{\triangleright}$ -action

In other words:

LC quantum group \mathbb{G} amenable $\Leftrightarrow L_{\infty}(\hat{\mathbb{G}})$ covariantly injective

Corollary (Crann-N)

LC group \mathcal{G} amenable $\Leftrightarrow \mathcal{L}(\mathcal{G})$ covariantly injective

Since LUC(\mathbb{G}) $\hookrightarrow L_{\infty}(\mathbb{G})$, the quotient map $L_{\infty}(\mathbb{G})^* \to LUC(\mathbb{G})^*$ transports 1st Arens product

Since LUC(\mathbb{G}) $\hookrightarrow L_{\infty}(\mathbb{G})$, the quotient map $L_{\infty}(\mathbb{G})^* \to LUC(\mathbb{G})^*$ transports 1st Arens product

ightsquigarrow Banach algebra LUC(\mathbb{G})*

Since LUC(\mathbb{G}) $\hookrightarrow L_{\infty}(\mathbb{G})$, the quotient map $L_{\infty}(\mathbb{G})^* \to LUC(\mathbb{G})^*$ transports 1st Arens product

- ightsquigarrow Banach algebra LUC(\mathbb{G})*
- \rightarrow right inv. means in LUC(\mathbb{G})* are idempotent states

Since LUC(\mathbb{G}) $\hookrightarrow L_{\infty}(\mathbb{G})$, the quotient map $L_{\infty}(\mathbb{G})^* \to LUC(\mathbb{G})^*$ transports 1st Arens product

- \sim Banach algebra LUC(\mathbb{G})*
- \rightarrow right inv. means in LUC(\mathbb{G})* are idempotent states
- ightharpoonup these give rise to cond. exp.'s when acting on $\mathcal{B}(L_2(\mathbb{G}))$

Since LUC(\mathbb{G}) $\hookrightarrow L_{\infty}(\mathbb{G})$, the quotient map $L_{\infty}(\mathbb{G})^* \to LUC(\mathbb{G})^*$ transports 1st Arens product

- ightarrow Banach algebra $LUC(\mathbb{G})^*$
- \rightarrow right inv. means in LUC(\mathbb{G})* are idempotent states
- ightharpoonup these give rise to cond. exp.'s when acting on $\mathcal{B}(L_2(\mathbb{G}))$

Key tool = non-normal version of our rep. of cb-multipliers:

Since LUC(\mathbb{G}) $\hookrightarrow L_{\infty}(\mathbb{G})$, the quotient map $L_{\infty}(\mathbb{G})^* \to LUC(\mathbb{G})^*$ transports 1st Arens product

- ightarrow Banach algebra $LUC(\mathbb{G})^*$
- \rightarrow right inv. means in LUC(\mathbb{G})* are idempotent states
- ightharpoonup these give rise to cond. exp.'s when acting on $\mathcal{B}(L_2(\mathbb{G}))$

Key tool = non-normal version of our rep. of cb-multipliers:

Theorem (Hu-N-Ruan)

LC quantum group \mathbb{G} . We have w^* -cont. compl. contr. representation $LUC(\mathbb{G})^* \hookrightarrow \mathcal{CB}_{\mathcal{T}_{\triangleright}}(\mathcal{B}(L_2)) \cap \mathcal{CB}^{L_{\infty}(\mathbb{G})}_{L_{\infty}(\hat{\mathbb{G}})}(\mathcal{B}(L_2))$

Since LUC(\mathbb{G}) $\hookrightarrow L_{\infty}(\mathbb{G})$, the quotient map $L_{\infty}(\mathbb{G})^* \to LUC(\mathbb{G})^*$ transports 1st Arens product

- \sim Banach algebra LUC(\mathbb{G})*
- \rightarrow right inv. means in LUC(\mathbb{G})* are idempotent states
- \rightarrow these give rise to cond. exp.'s when acting on $\mathcal{B}(L_2(\mathbb{G}))$

Key tool = non-normal version of our rep. of cb-multipliers:

Theorem (Hu–N–Ruan)

LC quantum group \mathbb{G} . We have w^* -cont. compl. contr. representation LUC(\mathbb{G})* $\hookrightarrow \mathcal{CB}_{\mathcal{T}_{\triangleright}}(\mathcal{B}(L_2)) \cap \mathcal{CB}_{L_{\infty}(\hat{\mathbb{G}})}^{L_{\infty}(\mathbb{G})}(\mathcal{B}(L_2))$

Here, $m \in \mathsf{LUC}(\mathbb{G})^*$ acts via

$$\langle \Theta(m)(T), \rho \rangle = \langle m, \underbrace{T \rhd \rho}_{\in \mathsf{LUC}(\mathbb{G})} \rangle \ \forall \ T \in \mathcal{B}(L_2(\mathbb{G})), \ \rho \in \mathcal{T}(L_2(\mathbb{G}))$$

 $\underline{\text{Question:}} \ \, \text{For amenable} \, \, \mathcal{G}, \, \, \text{is every cond. exp.}$

 $E: \mathcal{B}(L_2(\mathcal{G})) \to \mathcal{L}(\mathcal{G})$ covariant?

Question: For amenable \mathcal{G} , is every cond. exp.

 $\overline{E:\mathcal{B}(L_2(\mathcal{G}))} \to \mathcal{L}(\mathcal{G})$ covariant?

No! Let $\mathcal{G} = S^f_{\mathbb{N}}$: (countable discrete) amenable ICC group

Question: For amenable \mathcal{G} , is every cond. exp.

 $\overline{E:\mathcal{B}(L_2(\mathcal{G}))} o \mathcal{L}(\mathcal{G})$ covariant?

No! Let $\mathcal{G} = S^f_{\mathbb{N}}$: (countable discrete) amenable ICC group

 $\Rightarrow \mathcal{R}(\mathcal{G})$ is the injective II_1 factor with sep. predual

Question: For amenable G, is every cond. exp.

 $\overline{E:\mathcal{B}(L_2(\mathcal{G}))} o \mathcal{L}(\mathcal{G})$ covariant?

No! Let $\mathcal{G} = S^f_{\mathbb{N}}$: (countable discrete) amenable ICC group

 $\Rightarrow \mathcal{R}(\mathcal{G})$ is the injective II_1 factor with sep. predual

 $\Rightarrow U(\mathcal{R}(\mathcal{G}))$ is extremely amenable (Giordano–Pestov '07):

 $\underline{\text{Question:}} \ \text{For amenable} \ \mathcal{G}, \ \text{is every cond. exp.}$

$$\overline{E:\mathcal{B}(L_2(\mathcal{G}))} \to \mathcal{L}(\mathcal{G})$$
 covariant?

No! Let $\mathcal{G} = S^f_{\mathbb{N}}$: (countable discrete) amenable ICC group

 $\Rightarrow \mathcal{R}(\mathcal{G})$ is the injective II_1 factor with sep. predual

 $\Rightarrow U(\mathcal{R}(\mathcal{G}))$ is extremely amenable (Giordano–Pestov '07):

 \exists multiplicative RIM m on LUC($U(\mathcal{R}(\mathcal{G}))$)

```
\underline{\text{Question:}} \ \text{For amenable} \ \mathcal{G}, \ \text{is every cond. exp.}
```

$$E: \mathcal{B}(L_2(\mathcal{G})) \to \mathcal{L}(\mathcal{G})$$
 covariant?

No! Let $\mathcal{G} = S^f_{\mathbb{N}}$: (countable discrete) amenable ICC group

 $\Rightarrow \mathcal{R}(\mathcal{G})$ is the injective II_1 factor with sep. predual

 \Rightarrow $U(\mathcal{R}(\mathcal{G}))$ is extremely amenable (Giordano–Pestov '07):

 \exists multiplicative RIM m on LUC($U(\mathcal{R}(\mathcal{G}))$)

 \sim cond. exp. $E_m: \mathcal{B}(L_2(\mathcal{G})) \to \mathcal{L}(\mathcal{G})$ (Paterson '92)

 $\underline{\text{Question:}} \ \text{For amenable} \ \mathcal{G}, \ \text{is every cond. exp.}$

 $E: \mathcal{B}(L_2(\mathcal{G})) \to \mathcal{L}(\mathcal{G})$ covariant?

No! Let $\mathcal{G} = \mathcal{S}^f_{\mathbb{N}}$: (countable discrete) amenable ICC group

 $\Rightarrow \mathcal{R}(\mathcal{G})$ is the injective II_1 factor with sep. predual

 $\Rightarrow U(\mathcal{R}(\mathcal{G}))$ is extremely amenable (Giordano–Pestov '07):

 \exists multiplicative RIM m on LUC($U(\mathcal{R}(\mathcal{G}))$)

 \sim cond. exp. $E_m: \mathcal{B}(L_2(\mathcal{G})) \to \mathcal{L}(\mathcal{G})$ (Paterson '92)

Restriction $r : LUC(U(\mathcal{R}(\mathcal{G}))) \to LUC(\mathcal{G})$ is surjective

```
\underline{\text{Question:}} \ \text{For amenable} \ \mathcal{G}, \ \text{is every cond. exp.}
```

$$E: \mathcal{B}(L_2(\mathcal{G})) \to \mathcal{L}(\mathcal{G})$$
 covariant?

No! Let $\mathcal{G} = S^f_{\mathbb{N}}$: (countable discrete) amenable ICC group

 $\Rightarrow \mathcal{R}(\mathcal{G})$ is the injective II_1 factor with sep. predual

 \Rightarrow $U(\mathcal{R}(\mathcal{G}))$ is extremely amenable (Giordano–Pestov '07):

 \exists multiplicative RIM m on LUC($U(\mathcal{R}(\mathcal{G}))$)

 \sim cond. exp. $E_m: \mathcal{B}(L_2(\mathcal{G})) \to \mathcal{L}(\mathcal{G})$ (Paterson '92)

Restriction $r : LUC(U(\mathcal{R}(\mathcal{G}))) \to LUC(\mathcal{G})$ is surjective

 \Rightarrow cov. would give $E_m = \Theta(n)$ for some mult. RIM $n \in LUC(\mathcal{G})^*$

```
Question: For amenable \mathcal{G}, is every cond. exp.
E: \mathcal{B}(L_2(\mathcal{G})) \to \mathcal{L}(\mathcal{G}) covariant?
No! Let \mathcal{G} = S_{\mathbb{N}}^f: (countable discrete) amenable ICC group
\Rightarrow \mathcal{R}(\mathcal{G}) is the injective II_1 factor with sep. predual
\Rightarrow U(\mathcal{R}(\mathcal{G})) is extremely amenable (Giordano-Pestov '07):
\exists multiplicative RIM m on LUC(U(\mathcal{R}(\mathcal{G})))
\sim cond. exp. E_m: \mathcal{B}(L_2(\mathcal{G})) \to \mathcal{L}(\mathcal{G}) (Paterson '92)
Restriction r : LUC(U(\mathcal{R}(\mathcal{G}))) \to LUC(\mathcal{G}) is surjective
\Rightarrow cov. would give E_m = \Theta(n) for some mult. RIM n \in LUC(\mathcal{G})^*
```

 $\Rightarrow \mathcal{G} = \{e\}$ (Garnirer-Lau '71)

Theorem (Crann-N)

Theorem (Crann–N)

G LC quantum group. TFAE:

ullet \exists right invariant mean on $L_{\infty}(\mathbb{G})$, i.e., \mathbb{G} amenable

Theorem (Crann-N)

- ullet \exists right invariant mean on $L_{\infty}(\mathbb{G})$, i.e., \mathbb{G} amenable
- ullet \exists right invariant mean on LUC(\mathbb{G})

Theorem (Crann–N)

- ullet \exists right invariant mean on $L_{\infty}(\mathbb{G})$, i.e., \mathbb{G} amenable
- ullet \exists right invariant mean on LUC($\mathbb G$)
- $L_{\infty}(\hat{\mathbb{G}})$ covariantly injective

Theorem (Crann-N)

G LC quantum group. TFAE:

- ullet \exists right invariant mean on $L_{\infty}(\mathbb{G})$, i.e., \mathbb{G} amenable
- ullet \exists right invariant mean on LUC($\mathbb G$)
- $L_{\infty}(\hat{\mathbb{G}})$ covariantly injective

The first equivalence answers a question of Bédos–Tuset ('03), generalizing a result by Volker:

Theorem (Crann-N)

G LC quantum group. TFAE:

- ullet \exists right invariant mean on $L_{\infty}(\mathbb{G})$, i.e., \mathbb{G} amenable
- \exists right invariant mean on LUC(\mathbb{G})
- $L_{\infty}(\hat{\mathbb{G}})$ covariantly injective

The first equivalence answers a question of Bédos–Tuset ('03), generalizing a result by Volker:

```
\mathbb{G} amenable \Leftrightarrow \exists right inv. mean on M(C_0(\mathbb{G})) (cf. also Zobeidi '12)
```

Appetizer Quantum Groups $\mathcal{T}(L_2(\mathbb{G}))$ Amenability & Co.

Amenability and Injectivity, III

Theorem (Crann-N)

G LC quantum group. TFAE:

- ullet \exists right invariant mean on $L_{\infty}(\mathbb{G})$, i.e., \mathbb{G} amenable
- ∃ right invariant mean on LUC(ℂ)
- $L_{\infty}(\hat{\mathbb{G}})$ covariantly injective

The first equivalence answers a question of Bédos–Tuset ('03), generalizing a result by Volker:

 \mathbb{G} amenable $\Leftrightarrow \exists$ right inv. mean on $M(C_0(\mathbb{G}))$ (cf. also Zobeidi '12)

Corollary (Crann-N)

- G compact
- $L_{\infty}(\hat{\mathbb{G}})$ covariantly injective via normal conditional expectation

The last result can be reformulated as

Theorem

The last result can be reformulated as

Theorem

G LC quantum group. TFAE:

ullet \exists normal conditional expectation $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\mathbb{G})$ s.t.

$$\Gamma \circ E = (E \otimes \mathsf{id}) \circ \Gamma^r$$

• G discrete

The last result can be reformulated as

Theorem

G LC quantum group. TFAE:

ullet \exists normal conditional expectation $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\mathbb{G})$ s.t.

$$\Gamma \circ E = (E \otimes \mathsf{id}) \circ \Gamma^r$$

G discrete

Compare with the following

Proposition (Kalantar-N)

- \exists normal conditional expectation $E: \mathcal{B}(L_2(\mathbb{G})) \to L_{\infty}(\mathbb{G})$
- $L_1(\mathbb{G})$ has RNP

The last result can be reformulated as

Theorem

G LC quantum group. TFAE:

ullet \exists normal conditional expectation $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\mathbb{G})$ s.t.

$$\Gamma \circ E = (E \otimes \mathsf{id}) \circ \Gamma^r$$

G discrete

Compare with the following

Proposition (Kalantar–N)

G LC quantum group. TFAE:

- \exists normal conditional expectation $E: \mathcal{B}(L_2(\mathbb{G})) \to L_{\infty}(\mathbb{G})$
- $L_1(\mathbb{G})$ has RNP

Recall: $L_1(\mathcal{G})$ has RNP $\Leftrightarrow \mathcal{G}$ discrete

Recall:

Theorem (Crann-N)

- ullet \exists cond. exp. $E: \mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $\mathcal{CB}_{\mathcal{T}_{\rhd}}(\mathcal{B}(L_2(\mathbb{G})))$
- G amenable

Recall:

Theorem (Crann-N)

G LC quantum group. TFAE:

- ullet \exists cond. exp. $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $\mathcal{CB}_{\mathcal{T}_\rhd}(\mathcal{B}(L_2(\mathbb{G})))$
- G amenable

Theorem (Crann-N)

G LC quantum group. TFAE:

ullet \exists cond. exp. $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $_{\mathcal{T}_\rhd}\mathcal{CB}(\mathcal{B}(L_2(\mathbb{G})))$

Recall:

Theorem (Crann-N)

G LC quantum group. TFAE:

- ullet \exists cond. exp. $E: \mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $\mathcal{CB}_{\mathcal{T}_{\rhd}}(\mathcal{B}(L_2(\mathbb{G})))$
- G amenable

Theorem (Crann-N)

- ullet \exists cond. exp. $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $\mathcal{T}_{\rhd}\mathcal{CB}(\mathcal{B}(L_2(\mathbb{G})))$
- G amenable

Theorem (Crann–N)

G LC quantum group. TFAE:

ullet \exists cond. exp. $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $\mathcal{CB}_{\mathcal{T}_{\lhd}}(\mathcal{B}(L_2(\mathbb{G})))$

Theorem (Crann–N)

- ullet \exists cond. exp. $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $\mathcal{CB}_{\mathcal{T}_{\lhd}}(\mathcal{B}(L_2(\mathbb{G})))$
- $L_{\infty}(\hat{\mathbb{G}})$ injective

Theorem (Crann-N)

G LC quantum group. TFAE:

- ullet \exists cond. exp. $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $\mathcal{CB}_{\mathcal{T}_{\lhd}}(\mathcal{B}(L_2(\mathbb{G})))$
- $L_{\infty}(\hat{\mathbb{G}})$ injective

Idea of proof: Tomiyama says $E \in \mathcal{CB}_{L_{\infty}(\hat{\mathbb{G}})}(\mathcal{B}(L_2(\mathbb{G})))$

Theorem (Crann–N)

G LC quantum group. TFAE:

- ullet \exists cond. exp. $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $\mathcal{CB}_{\mathcal{T}_{\lhd}}(\mathcal{B}(L_2(\mathbb{G})))$
- $L_{\infty}(\hat{\mathbb{G}})$ injective

Idea of proof: Tomiyama says $E \in \mathcal{CB}_{L_{\infty}(\hat{\mathbb{G}})}(\mathcal{B}(L_2(\mathbb{G})))$ \rightsquigarrow approximate E (w^*) by normal c.b. $L_{\infty}(\hat{\mathbb{G}})$ -bimodule maps (Effros–Kishimoto/May–Neuhardt–Wittstock)

Theorem (Crann-N)

G LC quantum group. TFAE:

- ullet \exists cond. exp. $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $\mathcal{CB}_{\mathcal{T}_{\lhd}}(\mathcal{B}(L_2(\mathbb{G})))$
- $L_{\infty}(\hat{\mathbb{G}})$ injective

Idea of proof: Tomiyama says $E \in \mathcal{CB}_{L_{\infty}(\hat{\mathbb{G}})}(\mathcal{B}(L_2(\mathbb{G})))$ \rightarrow approximate E (w^*) by normal c.b. $L_{\infty}(\hat{\mathbb{G}})$ -bimodule maps (Effros–Kishimoto/May–Neuhardt–Wittstock)

Theorem (Crann-N)

G LC quantum group. TFAE:

ullet \exists cond. exp. $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $_{\mathcal{T}_{\sim}}\mathcal{CB}(\mathcal{B}(L_2(\mathbb{G})))$

Theorem (Crann-N)

G LC quantum group. TFAE:

- ullet \exists cond. exp. $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in $\mathcal{CB}_{\mathcal{T}_{\lhd}}(\mathcal{B}(L_2(\mathbb{G})))$
- $L_{\infty}(\hat{\mathbb{G}})$ injective

Idea of proof: Tomiyama says $E \in \mathcal{CB}_{L_{\infty}(\hat{\mathbb{G}})}(\mathcal{B}(L_2(\mathbb{G})))$ \rightsquigarrow approximate E (w^*) by normal c.b. $L_{\infty}(\hat{\mathbb{G}})$ -bimodule maps (Effros–Kishimoto/May–Neuhardt–Wittstock)

Theorem (Crann-N)

- ullet \exists cond. exp. $E:\mathcal{B}(L_2(\mathbb{G})) o L_\infty(\hat{\mathbb{G}})$ in ${}_{\mathcal{T}_{\lhd}}\mathcal{CB}(\mathcal{B}(L_2(\mathbb{G})))$
- ullet $\Bbb G$ co-commutative, i.e., $L_\infty(\Bbb G)=\mathcal L(\mathcal G)$ for some LC group $\mathcal G$

Theorem (Crann-N)

G LC quantum group. TFAE:

• G is amenable

Theorem (Crann–N)

- G is amenable
- $L_{\infty}(\hat{\mathbb{G}})$ is injective in $\mathbf{mod} \mathcal{T}(L_2(\mathbb{G}))$
- $L_{\infty}(\hat{\mathbb{G}})$ is injective in $\mathcal{T}(L_2(\mathbb{G}))$ \mathbf{mod}

Theorem (Crann-N)

G LC quantum group. TFAE:

- G is amenable
- $L_{\infty}(\hat{\mathbb{G}})$ is injective in $\mathbf{mod} \mathcal{T}(L_2(\mathbb{G}))$
- $L_{\infty}(\hat{\mathbb{G}})$ is injective in $\mathcal{T}(L_2(\mathbb{G}))-\mathsf{mod}$

Theorem (Crann-N)

G LC quantum group. TFAE:

• G is amenable

Theorem (Crann-N)

G LC quantum group. TFAE:

- G is amenable
- $L_{\infty}(\hat{\mathbb{G}})$ is injective in $\mathbf{mod} \mathcal{T}(L_2(\mathbb{G}))$
- $L_{\infty}(\hat{\mathbb{G}})$ is injective in $\mathcal{T}(L_2(\mathbb{G}))$ \mathbf{mod}

Theorem (Crann-N)

- G is amenable
- $\mathcal{B}(L_2(\mathbb{G}))$ is injective in $\mathcal{T}(L_2(\mathbb{G}))$ **mod**

Corollary

G LC quantum group. TFAE:

• G is compact

Corollary

- G is compact
- $\mathcal{B}(L_2(\mathbb{G}))$ is injective in $\mathcal{T}(L_2(\mathbb{G}))$ nmod

Definition (Kalantar-N-Ruan)

Let α be a reasonable cross norm, i.e., $\varepsilon \leq \alpha \leq \pi$. Let $\mathcal G$ be a discrete group.

Definition (Kalantar–N–Ruan)

Let α be a reasonable cross norm, i.e., $\varepsilon \leq \alpha \leq \pi$. Let $\mathcal G$ be a discrete group.

We say that $\mathcal{L}(\mathcal{G})$ has the α - w^* CBAP if there is a net T_i in $\mathcal{L}(\mathcal{G}) \otimes_{\alpha} A(\mathcal{G})$ s.t. $T_i \to \mathrm{id}_{\mathcal{L}(\mathcal{G})}$ point- w^* and $\sup_i \|T_i\|_{cb} < \infty$.

Definition (Kalantar-N-Ruan)

Let α be a reasonable cross norm, i.e., $\varepsilon \leq \alpha \leq \pi$. Let \mathcal{G} be a discrete group.

We say that $\mathcal{L}(\mathcal{G})$ has the α - w^* CBAP if there is a net T_i in $\mathcal{L}(\mathcal{G}) \otimes_{\alpha} A(\mathcal{G})$ s.t. $T_i \to \mathrm{id}_{\mathcal{L}(\mathcal{G})}$ point- w^* and $\sup_i \|T_i\|_{cb} < \infty$.

Theorem (Kalantar-N-Ruan)

Let $d_2 \le \alpha \le \pi (=d_1)$ where d_p is the Chevet–Saphar tensor norm. TFAE:

• $\mathcal{L}(\mathcal{G})$ has the α -w*CBAP [P]

Definition (Kalantar–N–Ruan)

Let α be a reasonable cross norm, i.e., $\varepsilon \leq \alpha \leq \pi$. Let \mathcal{G} be a discrete group.

We say that $\mathcal{L}(\mathcal{G})$ has the α - w^* CBAP if there is a net T_i in $\mathcal{L}(\mathcal{G}) \otimes_{\alpha} A(\mathcal{G})$ s.t. $T_i \to \mathrm{id}_{\mathcal{L}(\mathcal{G})}$ point- w^* and $\sup_i \|T_i\|_{cb} < \infty$.

Theorem (Kalantar-N-Ruan)

Let $d_2 \le \alpha \le \pi (= d_1)$ where d_p is the Chevet–Saphar tensor norm. TFAE:

- $\mathcal{L}(\mathcal{G})$ has the α -w*CBAP [P]
- G is weakly amenable [amenable]

Proposition (Kalantar-N-Ruan)

The map $\mathcal{L}(\mathcal{G}) \otimes_{d_2} A(\mathcal{G}) \to \ell_2$, $T \mapsto \tau(\lambda_{x^{-1}} T(\lambda_x))$ is surjective.

Proposition (Kalantar-N-Ruan)

The map $\mathcal{L}(\mathcal{G}) \otimes_{d_2} A(\mathcal{G}) \to \ell_2$, $T \mapsto \tau(\lambda_{\mathsf{X}^{-1}} T(\lambda_{\mathsf{X}}))$ is surjective.

Theorem (Kalantar–N–Ruan)

 $\mathcal{L}(\mathcal{G})$ has the ε -w*CBAP [P] $\Leftrightarrow \mathcal{G}$ is weak Haagerup [Haagerup]

ullet ${\cal A}$ c.c. Banach algebra

- ullet ${\cal A}$ c.c. Banach algebra
- mod A = c.c. right A-modules & c.c. module maps

- ullet ${\cal A}$ c.c. Banach algebra
- mod A = c.c. right A-modules & c.c. module maps
- Monomorphism Φ admissible if Φ complete isometry with c.c. left inverse

- ullet ${\cal A}$ c.c. Banach algebra
- mod A = c.c. right A-modules & c.c. module maps
- Monomorphism Φ admissible if Φ complete isometry with c.c. left inverse
- $X \in \mathbf{mod} \mathcal{A}$ injective if $\forall \ Y, Z \in \mathbf{mod} \mathcal{A}$, admissible monomorphism $\Phi : Y \to Z$, morphism $\Psi : Y \to X$ \exists morphism $\widetilde{\Psi} : Z \to X$ such that $\widetilde{\Psi} \circ \Phi = \Psi$

Theorem (Hu-N-Ruan)

$$\overline{\text{lin}} \ \mathcal{K}(L_2(\mathbb{G})) \rhd \mathcal{T}(L_2(\mathbb{G})) = C_0(\mathbb{G})$$

Theorem (Hu-N-Ruan)

$$\overline{\operatorname{lin}} \ \mathcal{K}(L_2(\mathbb{G})) \rhd \mathcal{T}(L_2(\mathbb{G})) = C_0(\mathbb{G})$$

Consider $\mathcal{K}_*(L_2(\mathbb{G})) := \overline{\text{lin}} \ \mathcal{T}(L_2(\mathbb{G})) \rhd \mathcal{K}(L_2(\mathbb{G}))$.

Theorem (Hu-N-Ruan)

$$\overline{\text{lin}} \ \mathcal{K}(L_2(\mathbb{G})) \rhd \mathcal{T}(L_2(\mathbb{G})) = C_0(\mathbb{G})$$

Consider $\mathcal{K}_*(L_2(\mathbb{G})) := \overline{\text{lin}} \ \mathcal{T}(L_2(\mathbb{G})) \rhd \mathcal{K}(L_2(\mathbb{G})).$

Theorem (Hu–N–Ruan)

•
$$\mathbb{G}$$
 regular $\Leftrightarrow \mathcal{K}(L_2(\mathbb{G})) = \mathcal{K}_*(L_2(\mathbb{G}))$

Theorem (Hu-N-Ruan)

$$\overline{\text{lin}} \ \mathcal{K}(L_2(\mathbb{G})) \rhd \mathcal{T}(L_2(\mathbb{G})) = C_0(\mathbb{G})$$

Consider $\mathcal{K}_*(L_2(\mathbb{G})) := \overline{\text{lin}} \ \mathcal{T}(L_2(\mathbb{G})) \rhd \mathcal{K}(L_2(\mathbb{G})).$

Theorem (Hu-N-Ruan)

- \mathbb{G} regular $\Leftrightarrow \mathcal{K}(L_2(\mathbb{G})) = \mathcal{K}_*(L_2(\mathbb{G}))$
- \mathbb{G} semi-regular $\Leftrightarrow \mathcal{K}(L_2(\mathbb{G})) \subseteq \mathcal{K}_*(L_2(\mathbb{G}))$

Regularity and Invariance

Regularity and Invariance

Theorem (Hu–N–Ruan)

TFAE:

- G regular
- ullet each map in $heta(L_1(\mathbb{G}))$ has $\mathcal{K}(L_2(\mathbb{G}))$ as invariant subspace
- each map in $\theta(\mathfrak{M}_{\mathsf{cb}}L_1(\mathbb{G}))$ has $\mathcal{K}(L_2(\mathbb{G}))$ as invariant subspace

Regularity and Invariance

Theorem (Hu-N-Ruan)

TFAE:

- G regular
- ullet each map in $heta(L_1(\mathbb{G}))$ has $\mathcal{K}(L_2(\mathbb{G}))$ as invariant subspace
- each map in $\theta(\mathfrak{M}_{\mathsf{cb}}\mathsf{L}_1(\mathbb{G}))$ has $\mathcal{K}(\mathsf{L}_2(\mathbb{G}))$ as invariant subspace

Theorem (Hu-N-Ruan)

$$\mathfrak{M}_{\mathsf{cb}} L_1(\mathbb{G}) \cong \mathcal{NCB}^{\mathcal{K}_*}_{\mathcal{T}}(\mathcal{B}(L_2(\mathbb{G})))$$

Recall: $\overline{\text{lin}} \ \mathcal{B}(L_2(\mathbb{G})) \rhd \mathcal{T}(L_2(\mathbb{G})) = \text{LUC}(\mathbb{G}) \subseteq L_{\infty}(\mathbb{G})$

Recall: $\overline{\text{lin}} \ \mathcal{B}(L_2(\mathbb{G})) \rhd \mathcal{T}(L_2(\mathbb{G})) = \text{LUC}(\mathbb{G}) \subseteq L_\infty(\mathbb{G})$ Consider $\overline{\text{lin}} \ \mathcal{T}(L_2(\mathbb{G})) \rhd \mathcal{B}(L_2(\mathbb{G})) =: X(L_2(\mathbb{G}))$

Recall:
$$\overline{\text{lin}} \ \mathcal{B}(L_2(\mathbb{G})) \rhd \mathcal{T}(L_2(\mathbb{G})) = \text{LUC}(\mathbb{G}) \subseteq L_{\infty}(\mathbb{G})$$

Consider
$$\overline{\operatorname{lin}} \ \mathcal{T}(L_2(\mathbb{G})) \rhd \mathcal{B}(L_2(\mathbb{G})) =: X(L_2(\mathbb{G}))$$

Theorem (Hu–N–Ruan)

•
$$\mathcal{K}_*(L_2(\mathbb{G})) \cup \mathsf{RUC}(\mathbb{G}) \cup L_\infty(\hat{\mathbb{G}}) \subseteq X(L_2(\mathbb{G}))$$

Recall:
$$\overline{\text{lin}} \ \mathcal{B}(L_2(\mathbb{G})) \rhd \mathcal{T}(L_2(\mathbb{G})) = \text{LUC}(\mathbb{G}) \subseteq L_\infty(\mathbb{G})$$

Consider $\overline{\text{lin}} \ \mathcal{T}(L_2(\mathbb{G})) \rhd \mathcal{B}(L_2(\mathbb{G})) =: X(L_2(\mathbb{G}))$

Theorem (Hu-N-Ruan)

- $\mathcal{K}_*(L_2(\mathbb{G})) \cup \mathsf{RUC}(\mathbb{G}) \cup L_\infty(\hat{\mathbb{G}}) \subseteq X(L_2(\mathbb{G}))$
- If \mathbb{G} discrete, then $X(L_2(\mathbb{G})) = \mathcal{B}(L_2(\mathbb{G}))$

$$\mathsf{Recall} \colon \overline{\mathsf{lin}} \ \mathcal{B}(L_2(\mathbb{G})) \rhd \mathcal{T}(L_2(\mathbb{G})) = \mathsf{LUC}(\mathbb{G}) \subseteq L_\infty(\mathbb{G})$$

Consider
$$\overline{\operatorname{lin}} \ \mathcal{T}(L_2(\mathbb{G})) \rhd \mathcal{B}(L_2(\mathbb{G})) =: X(L_2(\mathbb{G}))$$

Theorem (Hu–N–Ruan)

- $\mathcal{K}_*(L_2(\mathbb{G})) \cup \mathsf{RUC}(\mathbb{G}) \cup L_\infty(\hat{\mathbb{G}}) \subseteq X(L_2(\mathbb{G}))$
- If \mathbb{G} discrete, then $X(L_2(\mathbb{G})) = \mathcal{B}(L_2(\mathbb{G}))$
- If $\mathbb G$ co-amenable, then $X(L_2(\mathbb G))\cap L_\infty(\mathbb G)=\mathsf{RUC}(\mathbb G)$

Theorem (Hu-N-Ruan)

Let \mathbb{G} be co-amenable with $L_1(\mathbb{G})$ separable. TFAE:

Theorem (Hu-N-Ruan)

Let \mathbb{G} be co-amenable with $L_1(\mathbb{G})$ separable. TFAE:

- $X(L_2(\mathbb{G})) = \mathcal{B}(L_2(\mathbb{G}))$
- $L_{\infty} \subseteq X(L_2(\mathbb{G}))$
- G discrete

Theorem (Hu-N-Ruan)

Let \mathbb{G} be co-amenable with $L_1(\mathbb{G})$ separable. TFAE:

- $X(L_2(\mathbb{G})) = \mathcal{B}(L_2(\mathbb{G}))$
- $L_{\infty} \subseteq X(L_2(\mathbb{G}))$
- G discrete

Theorem (Hu–N–Ruan)

Let \mathbb{G} be semi-regular. Then $X(L_2(\mathbb{G}))$ is a unital C^* -subalgebra of $\mathcal{B}(L_2(\mathbb{G}))$.

Woronowicz's $SU_q(2)$

Woronowicz's $SU_q(2)$

 C^* -algebra generated by a and b with

$$b^*b = bb^*$$

$$a^*a + b^*b = 1$$

$$ab = q ba$$

$$ab^* = q b^*a$$

$$aa^* + q^2 bb^* = 1$$

Woronowicz's $SU_q(2)$

 C^* -algebra generated by a and b with

$$b^*b = bb^*$$

$$a^*a + b^*b = 1$$

$$ab = q ba$$

$$ab^* = q b^*a$$

$$aa^* + q^2 bb^* = 1$$

Co-multiplication:

$$\Gamma(a) = a \otimes a - q b^* \otimes b$$

 $\Gamma(b) = b \otimes a + a^* \otimes b$