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Amenability vs. injectivity (in the group setting)

Amenability ... needs no introduction here.
Recall:

Definition

vN algebra M C B(H) injective < 3 cond. exp. E : B(H) - M

For LC group G, consider £(G) = {L | g € G} C B(L2(9)).
@ G discrete (or inner-amenable): G amenable < L(G) injective
@ G LC: G amenable = L(G) injective

The converse does not hold in general:

Theorem (Connes/Dixmier '76)

G separable, connected LC group = L(G) injective

Question: L£(G) injective + ? = G amenable
We will answer this more generally for LC quantum groups.
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Hopf-von Neumann Algebras

Hopf-von Neumann algebra = (M,I)

@ M vN algebra

o [: M — MM co-multiplication:
normal unital isometric *~-hom., co-associative:

(id®lNol = (FT®id)ol

Examples:
o M=L(G)=L1(9)"
' = adjoint of convolution product
o M= L(G) = AG)

" = adjoint of pointwise product e
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Putting on weight

Non-commutative integration (Tomita—Takesaki):

Weight ¢ : Mt —[0,00] additive & positive homogeneous
M, :=lin {x € Mt | ¢(x) < oo}

Ny == {x € M| ¢(x*x) < oo}

Then ¢ extends to a lin. map on M, and N is a left ideal of M.

Given an nsf weight ¢ on M, N, equipped with (x, y) := p(y*x),
is a pre-Hilbert space; we denote by Ly(M, ¢) its completion.
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Locally compact quantum groups

Definition (Kustermans—Vaes '00)

LC Quantum Group G = (M,T,¢,v)
@ (M,T) Hopf-von Neumann algebra

@ o left invariant nsf weight on M:

o((f ®id)(Tx)) = f(1)e(x) (f € My, x € M)

@ 1 right invariant nsf weight on M:
P((id @ F)(Tx)) = F(1)Y(x) (f € My, x € My)

©, ¥ called left resp. right Haar weight
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Examples

o M= L(G); T'(f)(s,t) = f(st)

o and v given by left resp. right Haar measure

o M=L(G): T(L) =L ® Ly
© = 1) given by the Plancherel weight on £(G)
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Fundamental structure

Co-multiplication I' implemented by left fundamental unitary
W e B(L2(M7 QD) ® L2(M7 QD))

Nx)=W"1ox)W (xe M)

Examples:
o M= L(G): Wf(x,y)="F(x,xy)V f e LG xG)
o M= L(G): fundy W assigns to w € A(G) the function
x — (Ly,w) seen as an element of Lo(G)®RL(G)

Write Loo(G) := M and L;(G) := M,
~» L1(G) Banach algebra: f x g =T,(f ® g)
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Duality, |

Left regular representation A : L1(G) — B(L2(M, ¢)) given by
AMf) = (f®id)W

~> X injective c.c. homomorphism

N=TNF)  fem)”

is vN algebra on Ly(M, ).

F(x) = W*(1 @ x)W,

where W = o W*o.
We can identify Ly(M, @) 2 Ly(M, $), and we write L»(G).
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Duality, Il

Theorem (Kustermans—Vaes '00)

Example:
L(G) = L;(E) dual Kac algebras

... building on earlier work by Baaj—Skandalis, Effros—Ruan,
Enock—Schwartz, Kac—Vainerman, Takesaki, ...
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Quantum Groups
Left and right

What we did for the left Haar weight ¢ can of course also be done
for the right one, .

We have La(M, ) = Lry(M, p) = La(G).
Right fundamental unitary V gives:

MNx)=Vxo®l)V~.
Right regular representation p given by

p(f)=(id® )V e M.
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C*-version

Go(G) = {(d & W) [v € T(L(EN] ' < L(®)
Examples:
0 Loo(G) = Leo(G) ~ Go(G) = Go(9)
° Loo(G) = L(9) ~ C7(9)
e from Mathematical Physics: Woronowicz's SU,(2)
with deformation parameter g € (0, 1]

e SUy(2) =C(SU(2)) forg=1
o Non-commutative C*-algebra for g € (0,1)
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Representation for LC Quantum Groups

Recall:

Lo(G) =M Li(G) :== M,
L1(G) Banach algebra: fxg=T.(f®g)

MpL1(G) = {®: L1(G) — L1(G) | & CB & d(fxg) = f+d(g)}

Theorem (Junge—N—Ruan)

0: Mpli(G) = NCB (9’) (B(L2(G)))
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Duality = Commutation in 7 (L;(G))

Co-multiplications I and T extend to
B(L2(G)) — B(L2(G)) & B(L2(G))
~Te=m and T, =1 yield 2 dual products

T(L2(G)) & T(L2(G)) — T(L2(G))

Theorem (Kalantar—N)

On T(L2)@T(L2)®T(L2) we have

mo (M®id) = m o (m®id) o (id® o)

Here o(p ® 7) = 7 ® p is the flip.

Anti-Commutation Relation on Tensor Level!
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T(Ly(G)) as “Universal” Space

On T(L2(G)) we can compare
“convolution” and “pointwise product”!

‘(p*r)-w = (p-/(/))*T‘
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@ G compact if Co(G) unital (< 3 Haar state)
o G discrete if L1(G) unital
@ G co-amenable if L1(G) has BAI
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LUC(G) = lin B(L2(G)) * T(L2(G))

Proposition (Hu—N—-Ruan)

T (L2(G)) does not have LAl unless G trivial
T(L2(G)) has BRAI < G co-amenable
T(L2(G)) has right identity < G discrete

| \

Proposition (Hu—N—-Ruan)

G co-amenable. Then:

LUC(G) = LUC(G)*L1(G) = Loo(G)xL1(G) = B(L2(G))+T (L2(G))

v
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LUC(G) as a C*-algebra

Definition
Consider C(V) := {(id ® p)(aV) | p € T(L2(G))} € B(L2(G))

G regular [resp. semi-regular] if -
K(L2(G)) =linC(V) [resp. K(L2(G)) C linC(V)]

Examples:
Kac algebras, compact and discrete quantum groups are regular

Theorem (Hu—N-Ruan)

If G is semi-regular, then LUC(G) is unital C*-algebra.
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Theorem (Hu—N-Ruan)
TFAE:
o G is regular

e convolution in T (L2(G)) is w*-cont. on the left

Theorem (Hu—N-Ruan)

TFAE:

@ convolution in T (L2(G)) is w*-cont. on the right

e convolution in T (L2(G)) is separately w*-cont.

o G is discrete
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Theorem (Hu—N-Ruan)

G bi-amenable with L1(G) separable. TFAE:
o T(L2(G)) is Arens Regular
e T(L2(G)) is Strongly Arens Irregular (SAl)
o G is finite
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Amenability and Co-amenability, |

Definition
G amenable if 3 state F € Lo(G)* s.t. (F,hxg)={(g,1) (F,h)
V helo(G), g € Li(G)

Examples — amenability:
o G = L(G) amenable <& G amenable
e G = £(G) amenable for all G
Examples — co-amenability:
o G = L(G) co-amenable for all G
@ G = L(G) co-amenable < G amenable (Leptin)
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Theorem (Bédos—Tuset '03; Tomatsu '06)

G co-amenable = G amenable.
The converse holds if G is discrete.

Theorem (Hu—N-Ruan)
G amenable and co-amenable < L1(G)o has BAI

The following is a quantum group version of Hulanicki's
amenability criterion.

Proposition (Kalantar—N)
Let G be co-amenable. TFAE:
o G co-amenable
o \: L1(G) = Loo(G) isometry on L1(G)*
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Amenability and Injectivity, |

Recall:
@ For G discrete: G amenable < £(G) injective
@ For G LC: G amenable = L(G) injective

The converse does not hold in general (Connes/Dixmier '76).

We get equivalence if we take into account action by 7 (Ly(G))!
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Products on 7 (Ly(G))

V induces extended co-multiplication
I B(L(G)) 3 x+— V(x®1)V* € B(L2(G))®B(L2(G))

~» c.c. product > on T (L2(G))

W analogously induces extended co-multiplication
M B(L2(G)) 3 x = W*(1 @ x)W € B(La(G))RB(L2(G))

~» c.c. product < on T(L2(G))
Both > and < yield 7 (L2(G))-actions on B(Lz(G))
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Amenability and Injectivity, Il

Theorem (Crann—-N)

G LC quantum group. A
G amenable < 3 conditional expectation E : B(L2(G)) — Loo(G)
commuting with right T (L2(G))-action

In other words:

LC quantum group G amenable < L,o(G) covariantly injective

Corollary (Crann—N)
LC group G amenable < L(G) covariantly injective
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Idea of Proof

Since LUC(G) — L(G), the quotient map Loo(G)* — LUC(G)*
transports 1st Arens product

~» Banach algebra LUC(G)*
~> right inv. means in LUC(G)* are idempotent states

~> these give rise to cond. exp.'s when acting on B(L2(G))

Key tool = non-normal version of our rep. of cb-multipliers:

Theorem (Hu—N-Ruan)

LC quantum group G. We have w*-cont. compl. contr.

representation LUC(G)* — CB7.(B(L2)) N CBt“((g;(B(Lz))

Here, m € LUC(G)* acts via

(©(m)(T),p) =(m, Tp)VTeB(LAG)), pe T(LAG))
€LUC(G)
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Cond. expectations from invariant means

(Crann—N)

Question: For amenable G, is every cond. exp.

E : B(L2(G)) — L(G) covariant?

No! Let G = Sf : (countable discrete) amenable ICC group

= R(G) is the injective Il factor with sep. predual

= U(R(G)) is extremely amenable (Giordano—Pestov '07):

3 multiplicative RIM m on LUC(U(R(G)))

~> cond. exp. Ep, : B(L2(G)) — L(G) (Paterson '92)

Restriction r : LUC(U(R(G))) — LUC(G) is surjective

= cov. would give E,, = ©(n) for some mult. RIM n € LUC(G)*
= G = {e} (Garnirer-Lau '71)
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Amenability and Injectivity, Il

Theorem (Crann—N)

G LC quantum group. TFAE:
@ 3 right invariant mean on L.(G), i.e., G amenable
e 3 right invariant mean on LUC(G)

o Loo(G) covariantly injective

The first equivalence answers a question of Bédos—Tuset ('03),
generalizing a result by Volker:

G amenable < Jright inv. mean on M((y(G))

(cf. also Zobeidi '12)

Corollary (Crann—N)

G LC quantum group. TFAE:
o G compact

o Lo(G) covariantly injective via normal conditional expectation
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Discreteness vs. RNP

The last result can be reformulated as

G LC quantum group. TFAE:
e I normal conditional expectation E : B(L2(G)) — Loo(G) s.t.

fTocE=(E®id)ol"

o G discrete

Compare with the following

Proposition (Kalantar—N)

G LC quantum group. TFAE:
@ 3 normal conditional expectation E : B(L2(G)) = Loo(G)
o L1(G) has RNP

Recall: L1(G) has RNP < G discrete
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Theorem (Crann—N)

G LC quantum group. TFAE:
o 3 cond. exp. E : B(L2(G)) — Loo(G) in CB1 (B(L2(G)))
o Loo(G) injective

Idea of proof: Tomiyama says E € CBLOO(@)(B(LQ(G)))

A

~> approximate E (w*) by normal c.b. Lo (G)-bimodule maps
(Effros—Kishimoto/May—Neuhardt-Wittstock)

Theorem (Crann—N)

G LC quantum group. TFAE:
o 3 cond. exp. E : B(L2(G)) = Loo(G) in 7-,CB(B(L2(G)))
o G co-commutative, i.e., Loo(G) = L(G) for some LC group G
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Theorem (Crann—N)

G LC quantum group. TFAE:
o G is amenable
o Loo(G) is injective in mod — T(La(G))
o Loo(G) is injective in T(Lz(G)) — mod

4

Theorem (Crann—N)

G LC quantum group. TFAE:
@ G is amenable
o B(L2(G)) is injective in T (L2(G)) — mod
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Injective 7 (Ly(G))-modules, 1l

G LC quantum group. TFAE:
o G is compact
o B(L2(G)) is injective in T(L2(G)) — nmod
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Definition (Kalantar—N—Ruan)

Let o be a reasonable cross norm, i.e., e < a < 7. Let G be a
discrete group.

We say that £(G) has the a-w*CBAP if there is a net T; in
L(G) @a A(G) st. Tj — idg(gy point-w* and sup; || Til|ep < 0.

Theorem (Kalantar—N—-Ruan)

Let d» < oo < 7(= dy) where dp, is the Chevet-Saphar tensor norm.
TFAE:

@ L(G) has the a-w*CBAP [P]

@ G is weakly amenable [amenable]
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A new look at approximation properties, |l

Proposition (Kalantar—N—Ruan)
The map L(G) ®q, A(G) — L2, T +— 7(A -1 T(\)) is surjective.

Theorem (Kalantar—N—Ruan)
L(G) has the e-w*CBAP [P] < G is weak Haagerup [Haagerup]
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Injective modules: generalities

@ A c.c. Banach algebra
@ mod — A = c.c. right A-modules & c.c. module maps

@ Monomorphism ¢ admissible if ® complete isometry with c.c.
left inverse

@ X € mod — A injective if
VY,Z € mod — A, admissible monomorphism ¢ : Y — Z,

morphism V : Y — X
3 morphism V:Z - Xsuchthat Vod =W

Z

TN\
>y
AN
Y —v— X
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Regularity

Theorem (Hu—N-Ruan)
lin K(L2(G)) > T(L2(G)) = Go(G)

Consider K.(L2(G)) :=lin T(L2(G)) > K(L2(G)).
Theorem (Hu—N-Ruan)

o G regular & K(L2(G)) = K.(L2(G))
o G semi-regular & K(L2(G)) C Ki(L2(G))
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Regularity and Invariance

Theorem (Hu—N-Ruan)

TFAE:
o G regular
@ each map in (L1(G)) has K(L2(G)) as invariant subspace
@ each map in (M, L1(G)) has K(L2(G)) as invariant subspace

Theorem (Hu—N-Ruan)

MeL1(G) = NCBY (B(La(G)))
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Recall: Tin B(Lo(G)) & T(La(G)) = LUC(G) C Loo(G)
Consider Tin T(L2(G)) > B(L2(G)) = X(L2(G))

Theorem (Hu—N-Ruan)

o K.(L2(G)) URUC(G) U Loo(G) € X(L2(G))
o If G discrete, then X(L2(G)) = B(L ( )
@ If G co-amenable, then X(L2(G)) N Loo(G) = RUC(G)
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G-continuous operators, |l

Theorem (Hu—N-Ruan)

Let G be co-amenable with L1(G) separable. TFAE:
o X(L2(G)) = B(L(G))
° Lo € X(L2(G))

o G discrete

Theorem (Hu—N-Ruan)

Let G be semi-regular. Then X(L2(G)) is a unital C*-subalgebra
of B(L2(G)).
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Amenability & Co.

Woronowicz’s SU (2)

C*-algebra generated by a and b with

b*b = bb*
a*a+b*h = 1
ab = q ba
ab* = g b*a
aa* + g% bb* = 1
Co-multiplication:
Na) = a®a—qgb"®b

M) = b®a+a"®b
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