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Arens products: Algebraic description

A Banach algebra; as Banach space: A ↪→ A∗∗

∃ 2 canonical extensions of product to A∗∗ (Arens ’51)

X ,Y ∈ A∗∗, f ∈ A∗, a, b ∈ A

〈X2Y , f 〉 = 〈X ,Y2f 〉
〈Y2f , a〉 = 〈Y , f2a〉
〈f2a, b〉 = 〈f , a · b〉

. . . and the other way around:

〈X 4 Y , f 〉 = 〈Y , f 4 X 〉
〈f 4 X , a〉 = 〈X , a4 f 〉
〈a4 f , b〉 = 〈f , b · a〉

A comm.e ⇔ X2Y = Y 4 X ∀ X ,Y ∈ A∗∗
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Arens products: Topological description

A 3 xi −→ X ∈ A∗∗ (w∗)

A 3 yj −→ Y ∈ A∗∗ (w∗)

X2Y = limi limj xi · yj
X 4 Y = limj limi xi · yj

2 = 4 ⇔: A Arens regular (e.g., operator algebras)

But for algebras closest to the heart of harmonic analysts:

X2Y 6= X 4 Y

; How to measure the degree of non-regularity?
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Topological centres

Z`(A∗∗) := { X | X2Y = X 4 Y ∀ Y }
= { X | Y 7→ X2Y w∗-cont. }

Zr (A∗∗) := { X | Y2X = Y 4 X ∀ Y }
= { X | Y 7→ Y 4 X w∗-cont. }

A Arens regular :⇔ Z` = Zr = A∗∗

Definition (Dales–Lau ’05)

A Left Strongly Arens Irregular (LSAI) :⇔ Z` = A
A Right Strongly Arens Irregular (RSAI) :⇔ Zr = A
A Strongly Arens Irregular (SAI) :⇔ Z` = Zr = A

A comm.e ⇒ Z` = Zr = alg. centre of A∗∗ (w.r.t. either product)
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Fundamental example

Group algebra
L1(G) = L1(G, λ)

with convolution product:

(f ∗ g)(x) =

∫
G
f (y) g(y−1x) dλ(y)

Theorem (Lau–Losert ’88)

L1(G) is SAI for any locally compact group G.
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Asymmetries

Obviously: Z` = A∗∗ ⇔ Zr = A∗∗
However: Z` = A 6⇒ Zr = A
Consider the space of trace class operators T (L2(G)).

Proposition (Dales–Lau ’05; N)

LSAI 6⇒ RSAI

Example convolution algebra T (G) = (T (L2(G)), ∗)

ρ ∗ τ :=

∫
G
LxρLx−1π(τ)(x) dx

G non-compact, second countable ⇒ T (G) LSAI but not RSAI
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Arens products & Kadison–Singer Problem

Last summer the famous Kadison–Singer Problem (’59) was solved:

Theorem (Marcus–Spielman–Srivastava ’13)

Any m ∈ βZ ⊆ `∞(Z)∗ extends uniquely to pure state on B(`2(Z))

Theorem (Equivalent statement: Weaver ’04)

∃ M ≥ 2 and ε > 0 such that:
given x1, . . . , xn ∈ Ck (n ≥ 2) with `2-norm ≤ 1 and∑

i

|〈xi , y〉|2 ≤ M ∀ unit vector y ∈ Ck

⇒ ∃ partition A1, . . . ,A` (` ≥ 2) of {1, . . . , n} with∑
i∈Aj

|〈xi , y〉|2 ≤ M − ε ∀ unit vector y ∈ Ck , ∀ j
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Kadison–Singer & T (G)

Proposition (N)

Kadison–Singer for countable discrete G
⇒ the map

βG 3 m 7→ m̃ ∈ T (G)∗∗

is multiplicative w.r.t. convolution

Transfer of topological dynamics!
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The Ghahramani–Lau Conjecture

Recall:

Theorem (Lau–Losert ’88)

L1(G) is SAI for any LC group G.

Now consider the measure algebra:

M(G) = complex (finite) Radon measures

with convolution product

Note: L1(G) = absolutely continuous measures in M(G)

Conjecture (Lau ’94 & Ghahramani–Lau ’95)

M(G) is SAI for any LC group G.
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First results

Theorem (N)

The conjecture holds for all non-compact groups G s.t.
G has non-measurable cardinality OR k(G) ≥ 2χ(G)

One cannot prove in ZFC the existence of measurable cardinals
(Ulam ’30).

Theorem (Losert ’09)

The second condition can be weakened to k(G) ≥ χ(G) .
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Key technique: Factorization

Definition (N)

A Banach algebra, κ ≥ ℵ0.

1 A has factorization property of level κ (Fκ) if

∀ (hi )i∈I ⊆ B1A∗, |I | ≤ κ
∃ (Xi )i∈I ⊆ B1A∗∗ ∃ h ∈ A∗

hi = Xi2h (i ∈ I )

2 A has Mazur’s property of level κ (Mκ) if
any X ∈ A∗∗ which is w∗-κ-continuous on A∗, lies in A.

Theorem (N)

A has Fκ and Mκ for some κ ≥ ℵ0 ⇒ A is SAI

Theorem (N; Hu–N)

M(G) has Fk(G) (for non-compact G) and M|G|.
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The Ghahramani–Lau Conjecture is always true

Theorem (Losert–N–Pachl–Steprāns)

M(G) is SAI for any LC group.

Idea of proof: Factorization in the dual of singular measures!

; Distinction between cases |G| ≤ c and |G| > c

We only sketch the first case below (with G non-discrete).
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Thinness: separation of singular measures

Definition (L–N–P–S)

Let κ be a cardinal. Then µ ∈ M(G) is κ-thin if ∃ P ⊆ G s.t.
|P| = κ and µ ∗ p ⊥ µ ∗ p′ ∀ p 6= p′ in P.

The following generalizes a result by Prokaj (’03) for G = R.

Theorem (L–N–P–S)

Every µ ∈ Ms(G) is c-thin.

Corollary (Separation)

(Fα)α∈I family of finite subsets of Ms(G) with |I | ≤ c
⇒ ∃ (xα) ⊆ G s.t. (Fα ∗ xα) ⊥ (Fβ ∗ xβ) if α 6= β in I
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Factorization in the dual of singular measures

Factorization theorem (L–N–P–S)

∃ h ∈ B1Ms(G)∗ s.t. δG
w∗

2h = B1Ms(G)∗

The key to construct h is the Separation Lemma.
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The conclusion

Theorem (L–N–P–S)

M(G) is SAI.

Proof.

Let m ∈ Z`(M(G)∗∗)

⇒ ms := m |Ms(G)∗ is w∗-cont. on any set of the form

δG
w∗

2h ⊆ Ms(G)∗ where h ∈ Ms(G)∗

Factorization theorem ⇒ ms is w∗-cont. on B1Ms(G)∗

⇒ ms ∈ M(G)

ma := m |L1(G)∗∈ L1(G)∗∗ satisfies ma = m −ms ∈ Z`(M(G)∗∗)

⇒ ma ∈ Z`(L1(G)∗∗) = L1(G), and m = ma + ms ∈ M(G) .
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Ghahramani–Lau beyond local compactness

Theorem (L–N–P–S)

Let G be any Polish group. Then M(G) is SAI.

Ingredients of proof:

Theorem (Mycielski ’64)

Let G be a Polish group and ∅ 6= Z ⊆ G a meagre subset. Then
there is a perfect set P ⊆ G s.t. xy−1 /∈ Z for all x 6= y in P.

Lemma (Well-known)

If a Polish group G contains a non-meagre, σ-compact Borel set,
then G is LC.

Theorem (L–N–P–S)

If G is a Polish, non-LC group, every measure in M(G ) is c-thin.
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More on life beyond local compactness

G any topological group

LUC(G) = Left Uniformly Continuous bounded functions on G
LUC(G)∗ has convolution algebra structure:

for X ,Y ∈ LUC(G)∗ and f ∈ LUC(G)

〈X2Y , f 〉 := 〈X ,Y2f 〉

where (Y2f )(x) := 〈Y , Lx f 〉 (x ∈ G)

; LUC-Compactification

GLUC = spectrum of (commutative C ∗-algebra) LUC(G)

is compact right topological semigroup

Topological centres

Zt(LUC(G)∗) := {X ∈ LUC(G)∗ | LUC(G)∗ 3 Y 7→ X2Y w∗-cont.}

Zt(GLUC) := {X ∈ GLUC | GLUC 3 Y 7→ X2Y cont.}
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Csiszár’s Conjecture

Conjecture (Csiszár ’71)

Zt(LUC(G)∗)
?
= algebra of uniform measures Mu(G) ⊆ LUC(G)

X ∈ Mu(G) ⇔ if (fi ) ⊆ B1LUC(G) equi-LUC net s.t. fi → 0 ptw.

then〈X , fi 〉 → 0

Mu(G) = M(G) if G LC, or complete metric

Mu(G) = M(G) if G second countable

Theorem (Lau ’86)

YES to Csiszár if G is LC

Theorem (Ferri–N)

YES to Csiszár if G is separable

Pachl has generalized this to all ambitable groups.
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DTC sets beyond local compactness

Definition

A set D ⊆ LUC(G)∗ is Determining for the Topological Centre if
we have:
m ∈ LUC(G)∗ lies in Zt(LUC(G)∗)
whenever left mult. by m is w∗-cont. at all points of D.

Recall: κ ≥ ℵ0 cardinal; G is κ-bounded if for every open nhd. U of
eG there is a set A ⊆ G with |A| ≤ κ such that G = UA.

Denote by BG the least such cardinal.

The following answers partially a question of Dales (’07), and
generalizes a result by Budak–Işik–Pym (’11) in the LC case:

Theorem (Ferri–N–Pachl)

Assume that G is LC, or BG is ℵ0, or a successor cardinal.
Then Csiszár’s conjecture holds – with a 1 point DTC set!
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Applications to GLUC

Theorem (Lau–Pym ’95)

G LC ⇒ Zt(GLUC) = G

Theorem (Ferri–N–Pachl)

Assume that G is LC, or BG is ℵ0, or a successor cardinal.
Let S ⊆ LUC(G)∗ be a subsemigroup containing GLUC \ G.
Then Zt(S) = Mu(G) ∩ S – with a 1 point DTC set!

Idea of proof: Factorization in LUC(G) via GLUC-action

Corollary

G separable. TFAE:

G is precompact

∃ mean on LUC(G) invariant under GLUC-action
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The dual setting

Problem (Cechini–Zappa ’81)

Consider the Fourier algebra A(G) = {〈L(·)ξ, η〉 | ξ, η ∈ L2(G)}.
Is A(G) SAI?

Theorem (Lau–Losert ’93)

Yes for large classes of amenable groups.

Theorem (Losert ’02 & ’04)

No for G = F2 and also for G = SU(3) !

Theorem (Filali–Monfared–N)

Yes for any compact group that is sufficiently non-metrizable
(χ(G) has uncountable cofinality); e.g., SU(3)ℵ1 and SU(3)c

Theorem (Lau–Losert ’05)

Yes for SU(3)ℵ0
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(χ(G) has uncountable cofinality); e.g., SU(3)ℵ1 and SU(3)c

Theorem (Lau–Losert ’05)

Yes for SU(3)ℵ0
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Method of proof:
Factorization & Mazur’s property for A(G)

Theorem (Filali–Monfared–N)

G compact s.t. χ(G) has uncountable cofinality. Then:

∀ (Tα)α∈I ⊆ B1L(G) with |I | ≤ χ(G)

∃ (X k
α )α∈I ⊆ B1L(G)∗ (k = 1, . . . , n)

∃ T k ∈ L(G) (k = 1, . . . , n) s.t.

Tα =
n∑

k=1

X k
α 2 T k

So A(G) has (a slightly weakened form of) Fχ(G).

Theorem (Hu–N)

A(G) has Mχ(G)·ℵ0 .
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Lau–Wong’s Conjecture, I

Recall: L1(G) Arens regular ⇒ G finite

Conjecture (Lau–Wong ’89)

A(G) Arens regular ⇒ G finite

Theorem (Forrest ’91)

A(G) Arens regular ⇒ G discrete
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Lau–Wong’s Conjecture, II

Theorem (Lau–Wong ’89)

Conjecture true if G is amenable

Theorem (Forrest ’93)

Conjecture true if G has infinite abelian subgroup

Generalizing both results, we have:

Theorem (N–Poulin)

Conjecture true if G has infinite weakly amenable subgroup

We know of no group outside of our class – is Olshanskii’s group
weakly amenable?
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Topological centres and multipliers

Problem (Lau–Ülger ’96)

A Banach algebra with BAI s.t. A∗ vN algebra. Let X ∈ Zr (A∗∗) .
Consider X2 : A∗ 3 h 7→ X2h ∈ A∗ .
Are Ker(X2) and X2(B1A∗) w∗-closed?

Theorem (Hu–N–Ruan)

No for A = A(SU(3))

Proof: Combine Losert’s result Z (A∗∗) 6= A with the following

Theorem (Hu–N–Ruan)

Assume A separable. Then, for X ∈ Zr (A∗∗):

X ∈ A ⇔ Ker(X2) and X2(B1A∗) are w∗-closed

This uses work by Godefroy–Talagrand ’89 and N
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A natural new notion: metric Arens irregularity

Definition (Hu–N–Ruan)

For any Banach algebra A, consider

g(A) := sup
m,n∈B1A∗∗

‖m2n −m4 n‖

Obviously:

g is an isometric invariant

g(A) ∈ [0, 2]

g(A) = 0 ⇔ A is Arens regular

g decreases when passing to sub- or quotient algebras

Definition (Hu–N–Ruan)

We call a Banach algebra A with g(A) = 2 metrically SAI.
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Examples, I

Theorem (Hu–N–Ruan)

Let G be amenable, and either

non-compact σ-compact, or

uncountable discrete.

Then L1(G) is metrically SAI.

Corollary

If there is infinite discrete G with g(`1(G)) 6= 2, then G is a
counter-example to von Neumann’s problem, such as Olshanskii’s
group (in fact, G admits no infinite amenable subgroups).
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Examples, II

Theorem (Hu–N–Ruan)

Let G be (infinite LC) amenable. Then M(G) is metrically SAI.

For the case G compact, we use Zelmanov’s theorem that G
contains a closed infinite abelian subgroup, and our L1 result.

Theorem (Hu–N–Ruan)

Let G be any non-discrete (LC) group.
Then A(G) and B(G) are both metrically SAI.

Corollary

A(SU(3)) is not SAI (Losert), but metrically SAI!

Question: Which values can g(A) take?
; calculate g(A) for Beurling algebras, T (G), . . .
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Group actions and invariant means

Solution to the Banach–Ruziewicz Problem (Banach ’23;
Margulis/Sullivan ’80/’81; Drinfeld ’84)

Except for n = 1, Lebesgue measure is the only invariant mean on
L∞(Sn) for the O(n + 1)-action.

What about the discrete situation?

Of course, for G y G: ∃! inv. mean on `∞(G) ⇔ G finite

Quick proof using topological centres (Lau ’86):

unique inv. mean M

⇒ M ∈ Z`(`∞(G)∗) = `1(G)

⇒ M finite Haar measure, so G finite!

What about general actions G y X ?
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An independence result for general actions

Theorem (Foreman ’94)

The statement “∃ locally finite group G of permutations of N with
a unique invariant mean on `∞(N)” is independent of ZFC!

Theorem (Foreman ’94)

CH ⇒ ∃ locally finite group of permutations of N, of size c,
with a unique invariant mean on `∞(N)

Theorem (Rosenblatt–Talagrand ’81)

Infinite countable groups never admit a unique invariant mean.

How many?

Theorem (N–Pachl–Steprāns)

G y X with G,X infinite countable.
G amenable ⇒ ∃ 2c many invariant means on `∞(X )
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G y X with G,X infinite countable.
G amenable ⇒ ∃ 2c many invariant means on `∞(X )



Topological centre basics Topological centre problems Topological centres as a tool

Arens type product and topological centre
for group actions

Definition

G y X .

1 For n ∈ `∞(X )∗ and h ∈ `∞(X ) define n2h ∈ `∞(G) by

(n2h)(g) := 〈n, hg〉

2 Define a “convolution” `∞(G)∗ × `∞(X )∗ → `∞(X )∗ by

〈m2n, h〉 := 〈m, n2h〉

Definition

Zt(G,X ) := { m ∈ `∞(G)∗ | `∞(X )∗ 3 n 7→ m2n w∗-cont. }
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The topological centre of Foreman’s group F

Theorem (N–Pachl–Steprāns)

G y X with G amenable and Zt(G,X ) = `1(G).
If the number of inv. means on `∞(X ) is finite, then G is finite.

Corollary (N–Pachl–Steprāns)

CH ⇒ Zt(F ,N) 6= `1(F)

By using work of Erdös and Shelah, we even obtain:

Theorem (N–Pachl–Steprāns)

CH ⇒ `1(F) $ Zt(F ,N) $ `1(F)∗∗
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G y X with G amenable and Zt(G,X ) = `1(G).
If the number of inv. means on `∞(X ) is finite, then G is finite.

Corollary (N–Pachl–Steprāns)
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G y X with G amenable and Zt(G,X ) = `1(G).
If the number of inv. means on `∞(X ) is finite, then G is finite.

Corollary (N–Pachl–Steprāns)

CH ⇒ Zt(F ,N) 6= `1(F)

By using work of Erdös and Shelah, we even obtain:

Theorem (N–Pachl–Steprāns)
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Ghahramani–Farhadi’s multiplier problem

Problem (Duncan–Hosseiniun ’79)

G LC group. Does the involution on L1(G) extend to an involution
on its bidual?

Proposition (Farhadi–Ghahramani ’07)

1 This fails for non-discrete groups.

2 It also fails for all groups with the following property (∗):
Consider any Φ : L∞(G)∗∗ → L∞(G)∗∗ normal & surjective;
if Φ commutes with L1(G), then also with L1(G)∗∗.

Problem (Farhadi–Ghahramani ’07)

Does every group G satisfy (∗) ?
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Solution to the multiplier problem

Theorem (N)

The problem has a negative answer for all infinite countable
discrete abelian groups.

For the proof, consider βG ⊆ `1(G)∗∗ :

compact right topological semigroup with first Arens product

Remainder/Corona/Growth:

G∗ := βG \ G

⇒ G∗ compact right topological semigroup
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Module maps

m ∈ βG is called left cancellable if λm is injective on βG

Proposition (Dales–Lau–Strauss ’08)

m ∈ βG left cancellable ⇒ λm : `1(G)∗∗ → `1(G)∗∗ isometry

Write A := `1(G)∗∗.

∃ m ∈ G∗ ⊆ A such that m is left cancellable in βG
Proposition ⇒ Φ := λ∗m : A∗ → A∗ (normal &) surjective

Need to show:

1 Φ is a right `1(G)-module map

2 Φ is not a right `1(G)∗∗-module map
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Φ = λ∗m is a right `1(G)-module map

Recall: A = `1(G)∗∗

∀ H ∈ A∗, a ∈ `1(G) ⊆ A, b ∈ A

〈Φ(H2a), b〉 = 〈H, a ∗m ∗ b〉

But a ∈ `1(G) = Z (A), so a commutes with m ∈ G∗ ⊆ A :

〈Φ(H2a), b〉 = 〈H,m ∗ a ∗ b〉 = 〈Φ(H)2a, b〉

as desired.
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Φ = λ∗m is not a right `1(G)∗∗-module map

Recall: A = `1(G)∗∗

Suppose Φ is a right A-module map

⇒ ∀ H ∈ A∗, a, b ∈ A

〈H, a ∗m ∗ b〉 = 〈Φ(H2a), b〉 = 〈Φ(H)2a, b〉 = 〈H,m ∗ a ∗ b〉

⇒ a ∗m ∗ b = m ∗ a ∗ b ∀ a, b ∈ A
⇒ (with b = δe) m ∈ Z (A) = `1(G)

This contradicts m ∈ G∗.
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Topological centres for quantum group algebras

Definition

Hopf–von Neumann algebra (M, Γ)

M von Neumann algebra

Γ : M → M⊗̄M co-multiplication

Examples

M = L∞(G) = L1(G)∗

Γ = adjoint of convolution product ∗

M = L(G) = A(G)∗

Γ = adjoint of pointwise product •
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Locally compact quantum groups

Non-commutative integration

N.s.f. weight λ : M+ → [0,∞]

Mλ := lin { x ∈ M+ | λ(x) <∞ }

Definition (Kustermans–Vaes ’00)

LC Quantum Group G = (M, Γ, λ, ρ)

λ left Haar weight on M:

λ((f ⊗ id)Γx) = 〈f , 1〉 λ(x) ∀ f ∈ M∗ , x ∈ Mλ

ρ right Haar weight on M:

ρ((id⊗ f )Γx) = 〈f , 1〉 ρ(x) ∀ f ∈ M∗ , x ∈ Mρ

Theorem (Kustermans–Vaes ’00)

“Pontryagin duality”
̂̂G ∼= G
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LUC(G) := lin L∞(G)2L1(G) ⊆ L∞(G)

WAP(G) := { T ∈ L∞(G) | L1(G) 3 f 7→ T2f weakly compact }
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Characterization of compact quantum groups

Since LUC(G) ⊆ L∞(G) we have

LUC(G)∗ ←− L1(G)∗∗

; Transport of left Arens product ; LUC(G)∗ Banach algebra

Zt(LUC(G)∗) := { X ∈ LUC(G)∗ | Y 7→ X2Y w∗-cont. }

Theorem (Hu–N–Ruan)

TFAE:

G compact (i.e., has finite Haar weight)

LUC(G) ⊆WAP(G) and Zt(LUC(G)∗) = M(G)

Question G = L(G) with G discrete
?⇒ WAP(G) ⊆ LUC(G)

If yes, then there is NO infinite G with A(G) Arens regular!
Open for Olshanskii group . . .
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Characterizations using invariant means
on quantum groups

Definition

G amenable :⇔ ∃ mean on L∞(G) s.t.

f2M = 〈f , 1〉 M ∀ f ∈ L1(G)

Theorem (Hu–N–Ruan)

Let G be amenable with L1(G) separable or SAI.
Then: G uniquely amenable ⇔ G compact

Theorem (Hu–N–Ruan)

Let G be amenable & co-amenable, with L1(G) separable.
Then: L1(G) Arens regular ⇔ G finite
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Uniform continuity

G LC group. Then f ∈ L∞(G) is LUC ⇔ ∀ε > 0 ∃U ∈ U(e) s.t.

‖`x f − f ‖∞ < ε ∀x ∈ U

By Cohen: LUC (G) = L∞(G) ∗ L1(G)

Definition

G LC quantum group. Then LUC(G) := lin L∞(G) ∗ L1(G)

If G is co-amenable: LUC(G) = L∞(G) ∗ L1(G)

What about equi uniform continuity?

Recall: (fα) ⊆ B1LUC(G) is equi-LUC if ∀ε > 0 ∃U ∈ U(e) s.t.

‖`x fα − fα‖∞ < ε ∀x ∈ U ∀α
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Equi uniform continuity

Theorem (N–Pachl–Salmi)

G LC group. For bounded (fα) ⊆ LUC(G) TFAE:

(fα) is equi-LUC

∃g ∈ L1(G) ∃ bounded (hα) ⊆ LUC(G) s.t. fα = hα ∗ g

Proof.

• G non-compact
Then: B1LUC(G) = B1LUC(G)∗2B1LUC(G). Now:

fα = ψα2f = ψα2(h ∗ g) = (ψα2h) ∗ g = hα ∗ g .

• G compact
General result: A Banach algebra with BAI for action on Banach
A-module X ; if K ⊆ X norm-compact, then ∃a ∈ A s.t. K ⊆ X ∗ a.
Apply this with A = L1(G), X = LUC(G), K = {fα}.
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Equi-LUC and uniform measures

Definition (N–Pachl–Salmi)

Bounded (fα) ⊆ LUC(G) is equi-LUC ⇔
∃g ∈ L1(G) ∃ bounded (hα) ⊆ LUC(G) s.t. fα = hα ∗ g
m ∈ LUC(G)∗ is uniform measure, written m ∈ U(G) ⇔
∀ (fα) equi-LUC with fα → 0 (w∗) we have 〈m, fα〉 → 0

Theorem (Berezanskǐı ’68)

G LC group. Then U(L∞(G)) = M(G).

Theorem (N–Pachl–Salmi)

G co-amenable LC quantum group. Then U(G) = M(G).
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G LC group. Then U(L∞(G)) = M(G).

Theorem (N–Pachl–Salmi)

G co-amenable LC quantum group. Then U(G) = M(G).



Topological centre basics Topological centre problems Topological centres as a tool

Equi-LUC and uniform measures

Definition (N–Pachl–Salmi)

Bounded (fα) ⊆ LUC(G) is equi-LUC ⇔
∃g ∈ L1(G) ∃ bounded (hα) ⊆ LUC(G) s.t. fα = hα ∗ g
m ∈ LUC(G)∗ is uniform measure, written m ∈ U(G) ⇔
∀ (fα) equi-LUC with fα → 0 (w∗) we have 〈m, fα〉 → 0

Theorem (Berezanskǐı ’68)
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Theorem (Kalantar–N)

The functor G→ G̃ preserves

local compactness

compactness

discreteness

(hence) finiteness



Topological centre basics Topological centre problems Topological centres as a tool

Semigroup compactifications from quantum groups
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The embedding G̃ ⊆McbL1(G) in LUC(G)∗ gives rise to

GLUC := G̃
w∗

Then GLUC is a compact right topological semigroup.

Note: G = L∞(G) for a LC group G ⇒ GLUC = GLUC
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Structure of G̃

Theorem (Kalantar–N)

G compact matrix pseudogroup (Woronowicz ’87)
⇒ G̃ is a compact Lie group

Example Woronowicz’s SUq(2) with deformation parameter
q ∈ (0, 1]

SUq(2) = C (SU(2)) for q = 1

Non-commutative C ∗-algebra for q ∈ (0, 1)

S̃Uq(2) ∼= SU(2) for q = 1

S̃Uq(2) ∼= T for q 6= 1

Theorem (Kalantar–N)

G compact, non-Kac with L1(G) separable ⇒ G̃ uncountable
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Heisenberg relation for quantum groups

G abelian. For s ∈ G and γ ∈ Ĝ

Ls Mγ = 〈γ, s〉︸ ︷︷ ︸
∈T

Mγ Ls

We obtain a generalization to quantum groups, using a
commutation result by Junge–N–Ruan:

Theorem: Non-commutative Torus (Kalantar–N)

g ∈ G̃, ĝ ∈ ˜̂G ⇒ ∃ 〈ĝ , g〉 ∈ T s.t.

g ĝ = 〈ĝ , g〉 ĝ g〈˜̂G, G̃〉 =: G0 is a subgroup of T .

Example SUq(2)0 = T (q 6= 1)
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Unification via T (L2(G))

Co-multiplications Γ and Γ̂ extend to

B(L2(G)) → B(L2(G)) ⊗̄ B(L2(G))

⇒ Γ∗ = m and Γ̂∗ = m̂ yield 2 dual products

T (L2(G)) ⊗̂ T (L2(G)) → T (L2(G))

Theorem (Kalantar–N)

m ◦ (m̂⊗ id) = m̂ ◦ (m⊗ id) ◦ (id⊗ σ)

Here, σ(ϕ⊗ τ) = τ ⊗ ϕ is the flip.

Duality = Anti-Commutation Relation on tensor level
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T (L2(G))
as a home for convolution and pointwise product

T (L2(G)) ∼= T (L2(Ĝ))

L1(G) L1(Ĝ)

∗ •

On T (L2(G)) we can compare
“convolution” and “pointwise product”!

(ϕ ∗ τ) • ψ = (ϕ • ψ) ∗ τ
(Kalantar–N)
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∗ •

On T (L2(G)) we can compare
“convolution” and “pointwise product”!

(ϕ ∗ τ) • ψ = (ϕ • ψ) ∗ τ
(Kalantar–N)



Topological centre basics Topological centre problems Topological centres as a tool

T (L2(G))
as a home for convolution and pointwise product

T (L2(G)) ∼= T (L2(Ĝ))
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∗ •

On T (L2(G)) we can compare
“convolution” and “pointwise product”!

(ϕ ∗ τ) • ψ = (ϕ • ψ) ∗ τ
(Kalantar–N)



Topological centre basics Topological centre problems Topological centres as a tool

Some cohomology for LC quantum groups

The following generalizes results by Pirkovskii on (T (L2(G)), ∗) to
quantum groups.

Theorem (Kalantar–N)

L1(G) is projective in mod–T (L2(G))

⇔ L1(G) has the Radon–Nikodým Property

Theorem (Kalantar–N)

C is projective in mod–T (L2(G))

⇔ G is compact
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Woronowicz’s SUq(2)

C ∗-algebra generated by a and b with

b∗b = bb∗

a∗a + b∗b = 1

ab = q ba

ab∗ = q b∗a

aa∗ + q2 bb∗ = 1

Co-multiplication:

Γ(a) = a⊗ a− q b∗ ⊗ b

Γ(b) = b ⊗ a + a∗ ⊗ b
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Compact matrix pseudogroups

Definition (Woronowicz ’87)

Given A unital C ∗-algebra, u ∈ Mn(A)inv.

G = (A, u) compact matrix pseudogroup if

• ∗-subalgebra A generated by uij is dense in A

• ∃ co-multiplication Γ on A

• ∃ κ : A → A anti-multiplicative, κ(κ(a∗)∗) = a (a ∈ A),

(id⊗ κ)u = u−1

; For SUq(2): u =

(
a −q b∗

b a∗

)
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