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3 2 canonical extensions of product to A** (Arens '51)
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(XOv,f)

(YOf, a)
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...and the other way around:
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(f A X, a)
(a/\f,b)

(X, Yar)
(Y, fOa)
(f,a-b)

(Y, fAX)
(X,aAf)
(f,b-a)

Acomme & XOY=YAX V X, Y& A
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Arens products: Topological description

A3 x — XeA™ (w")
Asy; — YeA™ (w")

XO0Y = lim; lim; x;-y;
XAY = lim; lim; x;-y;
O=A &: A Arens regular (e.g., operator algebras)
But for algebras closest to the heart of harmonic analysts:
XOY # XAY

~» How to measure the degree of non-regularity?
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Topological centres

Z(A™) = [X | XOY = XAY YY)}
= {X | Y~ XOY w*-cont. }

Z(A™) == {X | YOX = YAX YY)}
= {X ]| Y= YAX w"cont. }

A Arens regular & Z,=Z, = A™

Definition (Dales—Lau ’05)

A Left Strongly Arens Irregular (LSAl) & Z, = A
A Right Strongly Arens Irregular (RSAl) & Z, = A
A Strongly Arens Irregular (SAl) & Z, =2, =A

A comm.e = Z; = Z, = alg. centre of A** (w.r.t. either product)
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Group algebra
Li(G) = Li(G,N)

with convolution product:

(Fg)(x) = /g Fy) gly~1x) dA(y)

Theorem (Lau-Losert '88)
L1(G) is SAI for any locally compact group G.
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Asymmetries

Obviously: Zy = A < Z, = A
However: Zy,=A A Z, = A
Consider the space of trace class operators T (L2(G)).

Proposition (Dales—Lau ’'05; N)
LSAI % RSAI

Example convolution algebra T(G) = (T (L2(G)), *)

pERT = / LypL—1m(T)(x) dx
g

G non-compact, second countable = T(G) LSAI but not RSAI

v
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Arens products & Kadison—Singer Problem

Last summer the famous Kadison—Singer Problem ('59) was solved:

Theorem (Marcus—Spielman—Srivastava '13)

Any m € BZ C ls(Z)* extends uniquely to pure state on B({2(Z))

Theorem (Equivalent statement: Weaver '04)

A M > 2 and e > 0 such that:
given x1,...,x, € CK (n > 2) with f-norm < 1 and

Z l(xi,y)|> <M ¥ unit vector y € CX
i

= 3 partition A1,...,Ar (€ >2) of {1,...,n} with

Z |<x,-,y>|2 <M —¢ VY unitvectory € CK, V
iEAj
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Topological centre basics

Kadison—Singer & 7(G)

Proposition (N)

Kadison—Singer for countable discrete G

= the map
BG>m — meT(G)*

is multiplicative w.r.t. convolution

Transfer of topological dynamics!
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The Ghahramani—Lau Conjecture

Recall:

Theorem (Lau—Losert '88)

L1(G) is SAl for any LC group G.

Now consider the measure algebra:
M(G) = complex (finite) Radon measures

with convolution product

Note: L1(G) = absolutely continuous measures in M(G)

Conjecture (Lau '94 & Ghahramani-Lau '95)

M(G) is SAI for any LC group G.
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First results

The conjecture holds for all non-compact groups G s.t.
G has non-measurable cardinality OR k(G) > 2X(9)

One cannot prove in ZFC the existence of measurable cardinals
(Ulam '30).

Theorem (Losert '09)
The second condition can be weakened to k(G) > x(G) .
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Topological centre problems

Key technique: Factorization

Definition (N)

A Banach algebra, k > .
© A has factorization property of level k (F,) if
YV (hi)ies CB1A* || <k
3 (Xi)ie1 CB1A™ I he A
hi = X;Oh (i €1)

@ A has Mazur's property of level x (M,) if
any X € A which is w*-k-continuous on A*, lies in A.

v

A has F,, and M, for some k > Ry = A is SAl

Theorem (N; Hu-N)
M(G) has Fy gy (for non-compact G) and Mg,.
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The Ghahramani—Lau Conjecture is always true

Theorem (Losert—N—Pachl-Steprans)
M(G) is SAI for any LC group.

Idea of proof: Factorization in the dual of singular measures!
~» Distinction between cases |G| < ¢ and |G| > ¢

We only sketch the first case below (with G non-discrete).
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Thinness: separation of singular measures

Definition (L-N-P-S)
Let x be a cardinal. Then u € M(G) is k-thin if 3 P C G s.t.
|Pl=rkand pxp Luxp' Vp#p inP.

The following generalizes a result by Prokaj ('03) for G = R.

Theorem (L-N-P-S)
Every 11 € Ms(G) is c-thin.

Corollary (Separation)

(Fo)aer family of finite subsets of Ms(G) with |I| < ¢
= 3 (xa) € G st. (Faxxa) L(Fgxxg)ifa#Binl
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Factorization in the dual of singular measures

Factorization theorem (L-N-P-S)

3 he BiMs(G)* s.t. 5" Oh=BiMs(G)"*

The key to construct h is the Separation Lemma.
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Topological centre problems
The conclusion

Theorem (L-N-P-S)

M(G) is SAL.

Proof.
Let m € Z,(M(G)™)

= ms 1= m |p,(g)- is w*-cont. on any set of the form

5" Oh C My(G)*  where h € My(G)*

Factorization theorem = myg is w*-cont. on By Ms(G)*

= ms € M(G)

my :=m | gy € L1(G)™ satisfies m, = m — ms € Z,(M(G)™)

= m, € Z;(L1(G)**) = L1(G), and m = m, + ms € M(G) . 0
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Theorem (L-N-P-S)

Let G be any Polish group. Then M(G) is SAI.

Ingredients of proof:

Theorem (Mycielski '64)

Let G be a Polish group and @ + Z C G a meagre subset. Then
there is a perfect set P C G s.t. xy~1 ¢ Z for all x # y in P.

Lemma (Well-known)

If a Polish group G contains a non-meagre, o-compact Borel set,
then G is LC.

Theorem (L-N-P-S)

If G is a Polish, non-LC group, every measure in M(G) is c-thin.
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Commercial Break 1

For further structural results on M(G)** :

H.G. Dales, A.T.-M. Lau & D. Strauss
Second duals of measure algebras

Dissertationes Mathematicae (2011)



Topological centre problems

More on life beyond local compactness



Topological centre problems

More on life beyond local compactness

G any topological group



Topological centre problems

More on life beyond local compactness

G any topological group
LUC(G) = Left Uniformly Continuous bounded functions on G



Topological centre problems

More on life beyond local compactness

G any topological group
LUC(G) = Left Uniformly Continuous bounded functions on G

LUC(G)* has convolution algebra structure:



Topological centre problems
More on life beyond local compactness

G any topological group
LUC(G) = Left Uniformly Continuous bounded functions on G
LUC(G)* has convolution algebra structure:
for X, Y € LUC(G)* and f € LUC(G)
(Xay, f) = (X, Yof)
where (YOf)(x) := (Y, Lif) (x €G)



Topological centre problems
More on life beyond local compactness

G any topological group
LUC(G) = Left Uniformly Continuous bounded functions on G
LUC(G)* has convolution algebra structure:

for X, Y € LUC(G)* and f € LUC(G)
(XOv,f) = (X, YOf)
where (YOf)(x) := (Y, Lif) (x €G)
~» LUC-Compactification
GLYC = spectrum of (commutative C*-algebra) LUC(G)

is compact right topological semigroup



Topological centre problems
More on life beyond local compactness

G any topological group
LUC(G) = Left Uniformly Continuous bounded functions on G
LUC(G)* has convolution algebra structure:

for X, Y € LUC(G)* and f € LUC(G)
(XOv,f) = (X, YOf)
where (YOf)(x) := (Y, Lif) (x €G)
~» LUC-Compactification
GLYC = spectrum of (commutative C*-algebra) LUC(G)

is compact right topological semigroup

Topological centres

Z,(LUC(G)") = {X eLUC(G)* | LUC(G)* > Y — XOY w*-cont.}



Topological centre problems
More on life beyond local compactness

G any topological group
LUC(G) = Left Uniformly Continuous bounded functions on G
LUC(G)* has convolution algebra structure:

for X, Y € LUC(G)* and f € LUC(G)
(XOv,f) = (X, YOf)
where (YOf)(x) := (Y, Lif) (x €G)
~» LUC-Compactification
GLYC = spectrum of (commutative C*-algebra) LUC(G)

is compact right topological semigroup

Topological centres
Z:(LUC(G)") = {X eLUC(g)" | LUC(G)" > Y — XOY w"-cont.}
Z:(GHY%) = {Xegt¥c | gtYC s v —» XOY cont.}
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Csiszar’s Conjecture

Conjecture (Csiszar '71)

Z:(LUC(G)*) Z algebra of uniform measures M,(G) C LUC(G)

X eMy(G) & if (f) CB1LUC(G) equi-LUC net s.t. f; — 0 ptw.
then(X,f;) =0
e My(G) = M(G) if G LC, or complete metric
@ My(G) = M(G) if G second countable
Theorem (Lau ’86)
YES to Csiszar if G is LC

Theorem (Ferri—-N)
YES to Csiszdr if G is separable

Pachl has generalized this to all ambitable groups.



Topological centre problems

DTC sets beyond local compactness



Topological centre problems

DTC sets beyond local compactness

Definition
A set D C LUC(G)* is Determining for the Topological Centre if

we have:
m € LUC(G)* lies in Z:(LUC(G)*)
whenever left mult. by m is w*-cont. at all points of D.




Topological centre problems

DTC sets beyond local compactness

Definition

A set D C LUC(G)* is Determining for the Topological Centre if
we have:

m € LUC(G)* lies in Z:(LUC(G)*)
whenever left mult. by m is w*-cont. at all points of D.

Recall: k > N cardinal; G is k-bounded if for every open nhd. U of
eg there is a set A C G with |A| < k such that G = UA.



Topological centre problems

DTC sets beyond local compactness

Definition

A set D C LUC(G)* is Determining for the Topological Centre if
we have:

m € LUC(G)* lies in Z:(LUC(G)*)

whenever left mult. by m is w*-cont. at all points of D.

Recall: k > N cardinal; G is k-bounded if for every open nhd. U of
eg there is a set A C G with |A| < k such that G = UA.

Denote by B¢ the least such cardinal.



Topological centre problems

DTC sets beyond local compactness

Definition

A set D C LUC(G)* is Determining for the Topological Centre if
we have:

m € LUC(G)* lies in Z:(LUC(G)*)

whenever left mult. by m is w*-cont. at all points of D.

Recall: k > N cardinal; G is k-bounded if for every open nhd. U of
eg there is a set A C G with |A| < k such that G = UA.

Denote by B¢ the least such cardinal.

The following answers partially a question of Dales ('07), and
generalizes a result by Budak—Isik=Pym ('11) in the LC case:



Topological centre problems

DTC sets beyond local compactness

Definition

A set D C LUC(G)* is Determining for the Topological Centre if
we have:

m € LUC(G)* lies in Z:(LUC(G)*)

whenever left mult. by m is w*-cont. at all points of D.

Recall: k > N cardinal; G is k-bounded if for every open nhd. U of
eg there is a set A C G with |A| < k such that G = UA.

Denote by B¢ the least such cardinal.

The following answers partially a question of Dales ('07), and
generalizes a result by Budak—Isik=Pym ('11) in the LC case:

Theorem (Ferri-N—Pachl)

Assume that G is LC, or Bg is Ng, or a successor cardinal.
Then Csiszar's conjecture holds — with a 1 point DTC set!
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Applications to G-U¢

Theorem (Lau—Pym ’95)

GLC= Z(GY) =g

Theorem (Ferri-N—Pachl)

Assume that G is LC, or *Bg is Wg, or a successor cardinal.
Let S C LUC(G)* be a subsemigroup containing G-V \ G.
Then Z:(S) = My(G) NS — with a 1 point DTC set!

Idea of proof: Factorization in LUC(G) via GYC action

G separable. TFAE:

@ G is precompact

e 3 mean on LUC(G) invariant under G-Y<-action
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Commercial Break 2

J. Pachl
Uniform Spaces and Measures

Fields Institute Monographs (2013)
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The dual setting

Problem (Cechini-Zappa '81)

Consider the Fourier algebra A(G) = {(Ly&,m) | &,m € L2(G)}-
Is A(G) SAI?

Theorem (Lau-Losert '93)

Yes for large classes of amenable groups.
Theorem (Losert '02 & '04)

No for G = F, and also for G = SU(3) !

Theorem (Filali-Monfared—N)

Yes for any compact group that is sufficiently non-metrizable
(x(G) has uncountable cofinality); e.g., SU(3)™ and SU(3)*

Theorem (Lau-Losert "05)
Yes for SU(3)™o
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Method of proof:

Factorization & Mazur’s property for A(G)

Theorem (Filali-Monfared—N)

G compact s.t. x(G) has uncountable cofinality. Then:
V (To)acr € B1L(G) with |1] < x(G)

3 (X¥)aer CBLL(G)* (k=1,...,n)

ITFeL(G) (k=1,...,n)st.

n
To =) XkoTk
k=1

So A(G) has (a slightly weakened form of) F, (g

N

Theorem (Hu—N)
A(g) has Mx(g)'No‘
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Recall: L1(G) Arens regular = G finite

Conjecture (Lau—Wong ’'89)
A(G) Arens regular = G finite

Theorem (Forrest "91)
A(G) Arens regular = G discrete
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Lau—Wong's Conjecture, |l

Theorem (Lau-Wong '89)

Conjecture true if G is amenable

Theorem (Forrest '93)

Conjecture true if G has infinite abelian subgroup

Generalizing both results, we have:

Theorem (N—Poulin)

Conjecture true if G has infinite weakly amenable subgroup

We know of no group outside of our class — is Olshanskii's group
weakly amenable?
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Topological centres and multipliers

Problem (Lau-Ulger "96)

A Banach algebra with BAI s.t. A* vN algebra. Let X € Z,(A*) .
Consider Xg : A* 2 h— XOh e A* .
Are Ker(Xn) and Xo(B1.A*) w*-closed?

Theorem (Hu—N-Ruan)
No for A = A(SU(3))

Proof: Combine Losert's result Z(A**) # A with the following
Theorem (Hu—N-Ruan)

Assume A separable. Then, for X € Z,(A**):

X eA & Ker(Xa) and Xo(B1.A*) are w*-closed

This uses work by Godefroy—Talagrand '89 and N
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A natural new notion: metric Arens irregularity

Definition (Hu—N—Ruan)

For any Banach algebra A, consider

g(A):= sup ||mOn—mA n|
m,neBj A**

Obviously:
@ g is an isometric invariant
° g(A)€0,2]
e g(A) =0« Ais Arens regular
@ g decreases when passing to sub- or quotient algebras

Definition (Hu—N-Ruan)
We call a Banach algebra A with g(.A) = 2 metrically SAL.
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Theorem (Hu—N-Ruan)

Let G be amenable, and either
@ non-compact o-compact, or
@ uncountable discrete.

Then L1(G) is metrically SAI.

Corollary

If there is infinite discrete G with g(¢1(G)) # 2, then G is a
counter-example to von Neumann's problem, such as Olshanskii’s
group (in fact, G admits no infinite amenable subgroups).

| A




Topological centre problems

Examples, Il




Topological centre problems
Examples, Il

Theorem (Hu—N-Ruan)

Let G be (infinite LC) amenable. Then M(G) is metrically SAI.




Topological centre problems

Examples, Il

Theorem (Hu—N-Ruan)
Let G be (infinite LC) amenable. Then M(G) is metrically SAI.

For the case G compact, we use Zelmanov's theorem that G
contains a closed infinite abelian subgroup, and our L result.



Topological centre problems
Examples, Il

Theorem (Hu—N-Ruan)

Let G be (infinite LC) amenable. Then M(G) is metrically SAI.

For the case G compact, we use Zelmanov's theorem that G
contains a closed infinite abelian subgroup, and our L result.

Theorem (Hu—N-Ruan)

Let G be any non-discrete (LC) group.
Then A(G) and B(G) are both metrically SAI.




Topological centre problems
Examples, Il

Theorem (Hu—N-Ruan)

Let G be (infinite LC) amenable. Then M(G) is metrically SAI.

For the case G compact, we use Zelmanov's theorem that G
contains a closed infinite abelian subgroup, and our L result.

Theorem (Hu—N-Ruan)

Let G be any non-discrete (LC) group.
Then A(G) and B(G) are both metrically SAI.

A(SU(3)) is not SAI (Losert), but metrically SAl!




Topological centre problems
Examples, Il

Theorem (Hu—N-Ruan)

Let G be (infinite LC) amenable. Then M(G) is metrically SAI.

For the case G compact, we use Zelmanov's theorem that G
contains a closed infinite abelian subgroup, and our L result.

Theorem (Hu—N-Ruan)

Let G be any non-discrete (LC) group.
Then A(G) and B(G) are both metrically SAI.

A(SU(3)) is not SAI (Losert), but metrically SAl!

Question: Which values can g(.A) take?



Topological centre problems
Examples, Il

Theorem (Hu—N-Ruan)

Let G be (infinite LC) amenable. Then M(G) is metrically SAI.

For the case G compact, we use Zelmanov's theorem that G
contains a closed infinite abelian subgroup, and our L result.

Theorem (Hu—N-Ruan)

Let G be any non-discrete (LC) group.
Then A(G) and B(G) are both metrically SAI.

A(SU(3)) is not SAI (Losert), but metrically SAl!

Question: Which values can g(.A) take?
~ calculate g(A) for Beurling algebras, 7(G), ...
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Group actions and invariant means

Solution to the Banach—Ruziewicz Problem (Banach ’23;
Margulis/Sullivan '80/°81; Drinfeld '84)

Except for n = 1, Lebesgue measure is the only invariant mean on
Loo(S™) for the O(n + 1)-action.

What about the discrete situation?

Of course, for G ~ G: 3! inv. mean on {5 (G) < G finite
Quick proof using topological centres (Lau '86):

unique inv. mean M

= Mc Z,(ls(G)*) = €1(G)

= M finite Haar measure, so G finite!

What about general actions G ~ X 7



Topological centres as a tool

An independence result for general actions



Topological centres as a tool

An independence result for general actions

Theorem (Foreman ’94)

The statement ‘3 locally finite group G of permutations of N with
a unique invariant mean on {~(N)" is independent of ZFC!




Topological centres as a tool

An independence result for general actions

Theorem (Foreman ’94)

The statement ‘3 locally finite group G of permutations of N with
a unique invariant mean on {»(N)" is independent of ZFC!

Theorem (Foreman '94)

CH = 4 locally finite group of permutations of N, of size c,
with a unique invariant mean on /. (N)




Topological centres as a tool

An independence result for general actions

Theorem (Foreman ’94)

The statement ‘3 locally finite group G of permutations of N with
a unique invariant mean on {»(N)" is independent of ZFC!

Theorem (Foreman '94)

CH = 4 locally finite group of permutations of N, of size c,
with a unique invariant mean on /. (N)

Theorem (Rosenblatt—Talagrand '81)

Infinite countable groups never admit a unique invariant mean.




Topological centres as a tool

An independence result for general actions

Theorem (Foreman ’94)

The statement ‘3 locally finite group G of permutations of N with
a unique invariant mean on {»(N)" is independent of ZFC!

Theorem (Foreman '94)

CH = 4 locally finite group of permutations of N, of size c,
with a unique invariant mean on /. (N)

Theorem (Rosenblatt—Talagrand '81)

Infinite countable groups never admit a unique invariant mean.

How many?



Topological centres as a tool

An independence result for general actions

Theorem (Foreman ’94)

The statement ‘3 locally finite group G of permutations of N with
a unique invariant mean on {»(N)" is independent of ZFC!

Theorem (Foreman '94)

CH = 4 locally finite group of permutations of N, of size c,
with a unique invariant mean on {(N)

Theorem (Rosenblatt—Talagrand '81)

Infinite countable groups never admit a unique invariant mean.

How many?

Theorem (N—Pachl-Steprans)

G ~ X with G, X infinite countable.
G amenable = 3 2° many invariant means on {.(X)
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Arens type product and topological centre

for group actions

gn X.
Q For n € loo(X)* and h € £5s(X) define nOh € £(G) by

(n0h)(g) := (n, hg)

@ Define a “convolution” £ (G)* X loo(X)* = loo(X)* by

(mOn, hy := (m, nOh)

Definition

Zi(G. X)) ={mel(G)" | loo(X)* > n— mdn w*-cont. }
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The topological centre of Foreman’s group F

Theorem (N—Pachl-Steprans)

G ~ X with G amenable and Z:(G, X) = (1(G).
If the number of inv. means on U~ (X) is finite, then G is finite.

Corollary (N-Pachl-Steprans)
CH = Zi(F,N) # (:1(F)

By using work of Erdds and Shelah, we even obtain:

Theorem (N—Pachl-Steprans)
CH = 0((F) G Zo(F,N) G tL(F)*
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Ghahramani—Farhadi’s multiplier problem

Problem (Duncan—Hosseiniun '79)

G LC group. Does the involution on L;(G) extend to an involution
on its bidual?

Proposition (Farhadi—-Ghahramani '07)

@ This fails for non-discrete groups.

@ It also fails for all groups with the following property (x):
Consider any ® : Loo(G)** — Loo(G)™ normal & surjective;
if ® commutes with L1(G), then also with L1(G)**.

Problem (Farhadi—-Ghahramani '07)

Does every group G satisfy (x) ?
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Solution to the multiplier problem

The problem has a negative answer for all infinite countable
discrete abelian groups.

For the proof, consider 5G C ¢1(G)** :

compact right topological semigroup with first Arens product
Remainder/Corona/Growth:
G =BG\ G

= G* compact right topological semigroup
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Topological centres as a tool
Module maps

m € 3G is called left cancellable if A, is injective on 8G

Proposition (Dales—Lau—Strauss '08)

m € G left cancellable = X\, : £1(G)** — (1(G)** isometry

Write A := (1(G)**.
3 m e G* C A such that m is left cancellable in 3G
Proposition = & := A% : A* — A* (normal &) surjective
Need to show:

QO o is a right ¢1(G)-module map

@ ¢ is not a right ¢1(G)**-module map
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o=\

m

is a right /1(G)-module map

Recall: A = /¢1(G)**
VHEA acli(G)C A be A

(P(HOa),b) = (H,a* m=xb)
But a € (1(G) = Z(A), so a commutes with m e G* C A :
(®(HOa), b) = (H, m* ax* b) = ($(H)Oa, b)

as desired.
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a right /1(G)**-module map

Recall: A = /¢1(G)**
Suppose @ is a right A-module map
= VHeA*, a,be A

(H,ax mx b) = (®(HOa), b) = (¢(H)Da, by = (H,m* ax b)

= asmxb=mxaxbVabecA
= (with b=10,) me Z(A) = (1(G)
This contradicts m € G*.
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Topological centres for quantum group algebras

Definition

Hopf-von Neumann algebra (M, )
@ M von Neumann algebra
ol: M— M&M co-multiplication

Examples
o M= L,(G)=Li(9)"
" = adjoint of convolution product
o M=L(G)=A(G)"

' = adjoint of pointwise product e
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Locally compact quantum groups

Non-commutative integration
N.s.f. weight A : Mt — [0, o0]
My :=lin { xe MT | A\(x) <o }
Definition (Kustermans—Vaes '00)
LC Quantum Group G = (M, T, ), p)
@ )\ left Haar weight on M:
AM(feid)Ix) = (f,1) A(x) VieM,, xeM,
@ p right Haar weight on M:
p((id®@ A)lx) = (f,1) p(x) VfeM,, xeM,

v

Theorem (Kustermans—Vaes '00)

“Pontryagin duality” GG
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Topological centres as a tool
Algebras over quantum groups

Lo(G) =M L1(G) =M, L[5(G):=L(M,N\)
L1(G) | Banach algebra via fxg=T,(f ® g)

LUC(G) = Tin Leo(G)OL1(G) C Loo(G)

WAP(G) {TeLo(G) | Li(G)> f+— TOf weakly compact }



Topological centres as a tool

Characterization of compact quantum groups



Topological centres as a tool

Characterization of compact quantum groups

Since LUC(G) C Lo(G) we have
LUC(G)* +— L1(G)**



Topological centres as a tool

Characterization of compact quantum groups

Since LUC(G) C Lo(G) we have
LUC(G)* +— L1(G)**

~» Transport of left Arens product ~» LUC(G)* Banach algebra



Topological centres as a tool

Characterization of compact quantum groups

Since LUC(G) C Lo(G) we have
LUC(G)* «+— L1(G)**
~» Transport of left Arens product ~» LUC(G)* Banach algebra
Z:(LUC(G)*) :={ X € LUC(G)* | Y — XOY w*-cont. }



Topological centres as a tool

Characterization of compact quantum groups

Since LUC(G) C Lo(G) we have
LUC(G)* «+— L1(G)**
~» Transport of left Arens product ~» LUC(G)* Banach algebra
Z:(LUC(G)*) :={ X € LUC(G)* | Y — XOY w*-cont. }

Theorem (Hu—N-Ruan)

TFAE:
o G compact (i.e., has finite Haar weight)
e LUC(G) C WAP(G) and Z;(LUC(G)*) = M(G)




Topological centres as a tool

Characterization of compact quantum groups

Since LUC(G) C Lo(G) we have
LUC(G)* «+— L1(G)**
~» Transport of left Arens product ~» LUC(G)* Banach algebra
Z:(LUC(G)*) :={ X € LUC(G)* | Y — XOY w*-cont. }

Theorem (Hu—N-Ruan)

TFAE:
o G compact (i.e., has finite Haar weight)
e LUC(G) C WAP(G) and Z;(LUC(G)*) = M(G)

Question G = £(G) with G discrete = WAP(G) C LUC(G)



Topological centres as a tool

Characterization of compact quantum groups

Since LUC(G) C Lo(G) we have
LUC(G)* «+— L1(G)**
~» Transport of left Arens product ~» LUC(G)* Banach algebra
Z:(LUC(G)*) :={ X € LUC(G)* | Y — XOY w*-cont. }

Theorem (Hu—N—-Ruan)

TFAE:
o G compact (i.e., has finite Haar weight)
e LUC(G) C WAP(G) and Z;(LUC(G)*) = M(G)

Question G = £(G) with G discrete = WAP(G) C LUC(G)

If yes, then there is NO infinite G with A(G) Arens regular!
Open for Olshanskii group ...
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Characterizations using invariant means
on quantum groups

G amenable :& 3 mean on Loo(G) s.t.

fOM = (f,1) MV f € L1(G)

Theorem (Hu—N-Ruan)

Let G be amenable with L1(G) separable or SAI.
Then: G uniquely amenable < G compact

| A

Theorem (Hu—N-Ruan)

Let G be amenable & co-amenable, with L1(G) separable.
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Characterizations using invariant means
on quantum groups

G amenable :& 3 mean on Loo(G) s.t.

fOM = (f,1) MV f € L1(G)

| A

Theorem (Hu—N-Ruan)

Let G be amenable with L1(G) separable or SAI.
Then: G uniquely amenable < G compact

Theorem (Hu—N-Ruan)

Let G be amenable & co-amenable, with L1(G) separable.
Then: L1(G) Arens regular < G finite
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Topological centres as a tool

Uniform continuity

G LC group. Then f € L(G) is LUC < Ve > 0 3U € YU(e) s.t.

[6xf — flloo < Vx €U

By Cohen: LUC(G) = Loo(G) * L1(G)

Definition

G LC quantum group. Then LUC(G) := lin Lo(G) * L1(G)

If G is co-amenable: LUC(G) = Loo(G) * L1(G)
What about equi uniform continuity?
Recall: (f,) € B1LUC(G) is equi-LUC if Ve > 0 U € (e) s.t.

|0xfo — fulloo <€ Vx € U Va
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Equi uniform continuity

Theorem (N-Pachl-Salmi)

G LC group. For bounded (f,) C LUC(G) TFAE:
o (fy) is equi-LUC
e Jg € L1(G) 3 bounded (hy) C LUC(G) s.t. fo, = hy % g

Proof.

e G non-compact
Then: B;LUC(G) = B;LUC(G)*TB;1LUC(G). Now:

fo = Vo Of = Y,0(hx g) = (YaOh) x g = hy * g.

e G compact

General result: A Banach algebra with BAI for action on Banach
A-module X; if K € X norm-compact, then da € Ast. K C X *a.
Apply this with A = L1(G), X = LUC(G), K = {f,}. O
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Equi-LUC and uniform measures

Definition (N—Pachl-Salmi)

@ Bounded (fy) € LUC(G) is equi-LUC <
Jg € L1(G) 3 bounded (hy) C LUC(G) s.t. fo = hy x g
@ m € LUC(G)* is uniform measure, written m € U(G) <
V (fy) equi-LUC with f, — 0 (w*) we have (m, f,) — 0

Theorem (Berezanskii '68)

G LC group. Then U(Ls(G)) = M(G).

Theorem (N-Pachl-Salmi)
G co-amenable LC quantum group. Then U(G) = M(G).
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Topological centres as a tool

A functor

Theorem (Kalantar—N)

e GisalC group w.r.t. point weak topology on Li(G)
o G = Sp(Li(G))

Theorem (Kalantar—N)

The functor G — G preserves

@ local compactness
@ compactness
@ discreteness

@ (hence) finiteness

N
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Semigroup compactifications from quantum groups

Assume G co-amenable.

Theorem (Hu—N-Ruan)
MepL1(G) = M(G) — Z(LUC(G)*)

Theorem (Kalantar—N)

The embedding G C M, L1(G) in LUC(G)* gives rise to

Then GYYC js a compact right topological semigroup.

Note: G = Loo(G) for a LC group G = GLUC = gtuc
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Structure of G

Theorem (Kalantar—N)

G compact matrix pseudogroup (Woronowicz '87)
= G is a compact Lie group

Example Woronowicz's SU,(2) with deformation parameter
q € (0,1]
e SU,(2) = C(SU(2)) forg=1
@ Non-commutative C*-algebra for g € (0,1)

S/U;(/2) = SU(2)forg=1

e~

SU4,2) =2 Tforg#1

Theorem (Kalantar—N)

G compact, non-Kac with L1(G) separable = G uncountable
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Topological centres as a tool

Heisenberg relation for quantum groups

G abelian. Fors € G and v € G
L My = (y,5) M, L

We obtain a generalization to quantum groups, using a
commutation result by Junge-N—Ruan:

Theorem: (Kalantar—N)

g€G, geG = 3 (g, g) eTst.

gg = (g.g8) g¢

<@,@> =: Go is a subgroup of T .

Example SU,(2)o=T (g #1)
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Topological centres as a tool

Unification via 7 (L(G))

Co-multiplications I and T extend to

B(L2(G)) — B(L2(G)) ® B(L2(G))

=T,=m and T, =1 yield 2 dual products
T(L2(G)) ® T(L(G)) — T(L(G))

Theorem (Kalantar—N)

mo (M®id) = m o (m®id) o (id® o)
Here, o(p @ T) = T ® ¢ is the flip.

Duality = Anti-Commutation Relation on tensor level
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T(L(G))

as a home for convolution pointwise product

On T(L2(G)) we can compare
“convolution” and “pointwise product”!

(pxr)etp = (pogp) s
(Kalantar-N)



Topological centres as a tool

Some cohomology for LC quantum groups



Topological centres as a tool

Some cohomology for LC quantum groups

The following generalizes results by Pirkovskii on (7(L2(G)), %) to
quantum groups.



Topological centres as a tool

Some cohomology for LC quantum groups

The following generalizes results by Pirkovskii on (7(L2(G)), %) to
quantum groups.

Theorem (Kalantar—N)

L1(G) is projective in mod—T (L2(G))

< Li(G) has the Radon—Nikodym Property
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Some cohomology for LC quantum groups

The following generalizes results by Pirkovskii on (7(L2(G)), %) to
quantum groups.

Theorem (Kalantar—N)
L1(G) is projective in mod—T (L2(G))
< Li(G) has the Radon—Nikodym Property

Theorem (Kalantar—N)
C is projective in mod-T (L2(G))

< G is compact

| A\

\




Topological centres as a tool

Woronowicz’s SU (2)

C*-algebra generated by a and b with

b*b = bb*
a*a+bh = 1
ab = q ba
ab* = g b*a
aa* + g% bb* = 1
Co-multiplication:
Na) = a®a—qgb"®b

M) = b®a+a"®b



Topological centres as a tool
Compact matrix pseudogroups

Definition (Woronowicz '87)
Given A unital C*-algebra, u € Mp(A)iny.

G = (A, u) compact matrix pseudogroup if

e “-subalgebra A generated by uj; is dense in A

e 1 co-multiplication [ on A

e 3 : A — A anti-multiplicative, k(x(a*)*) = a (a € A),

(id® k)u=u?t

a —qb*
~» For SUq,(2): u= < b oot )
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