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1. Locally compact groups

A topological group (G, T ) is a group G with a Hausdorff topology T such that

(i) G×G→ G

(x, y)→ x · y

(ii) G→ G

x→ x−1

are continuous. G is locally compact if the topology T is locally compact i.e. there

is a basis for the neighbourhood of the identity consisting of compact sets.

Ex: Gd, IRn, (E,+), T, Q, GL(2, IR), E = Banach space, T = {λ ∈ C; |λ| = 1}

CB(G) = bounded complex-valued continuous functions f : G→ C

‖f‖u = sup {|f(x)| : x ∈ G} f ∈ CB(G), let (`af)(x) = f(ax), a, x ∈ G.

LUC(G) = bounded left uniformly continuous functions on G

= {f ∈ CB(G); a→ `af from G to
(
CB(G), ‖ · ‖

)
is continuous}
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G is amenable if ∃ m ∈ LUC(G)∗ such that

m ≥ 0, ‖m‖ = 1 and

m(`af) = m(f) for all a ∈ G, f ∈ LUC(G).
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Theorem (M.M. Day - T. Mitchell). Let G be a topological group. Then G is

amenable ⇐⇒ G has the following fixed point property:

Whenever G = {Tg; g ∈ G} is a continuous representation of G as

continuous affice maps on a compact convex subset K of a separated locally

convex space, then there exist x0 ∈ K such that Tg(x0) = x0 for all

g ∈ G.

Amenable Groups: • abelian groups

• solvable groups

• compact groups

• U
(
B(`2)

)
= group of unitary operators on `2

with the strong operator topology where

`2= {(αn) :
∞∑

n=1
|αn|2 <∞}

IF2 – not amenable
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Let G be a locally compact group and λ be a fixed left Haar measure on G.

L1(G) = group algebra of G i.e. f : G 7→ C measurable such that

∫
|f(x)|dλ(x) <∞

(f ∗ g)(x) =
∫
f(y)g(y−1x)dλ(y)

‖f‖1 =
∫
|f(x)|dλ(x)

(
L1(G), ∗

)
is a Banach algebra i.e. ‖f ∗ g‖ ≤ ‖f‖ ‖g‖ for all f, g ∈ L1(G)

L∞(G) = essentially bounded measurable functions on G.

‖f‖∞ = ess - sup norm. = inf
{
M : {x ∈ G; |f(x)| > M is a locally null set}

}

L∞(G) is a commutative C∗-algebra containing CB(G)

L1(G)∗ =L∞(G) : 〈f, h〉 =
∫
f(x)h(x)dλ(x)
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G = locally compact abelian group then L1(G) is a commutative Banach

algebra.

A complex function γ on G is called a character if γ is a homomorphism of

G into (T, ·).

Ĝ = all continuous characters on G

⊆ L∞(G) = L1(G)∗.

If γ ∈ Γ, f ∈ L1(G),

〈γ, f〉 = f̂(γ) =
∫

G
f(x)(−x, γ)dx.

Then 〈γ, f ∗ g〉 = 〈γ, f〉 〈γ, g〉 for all f, g ∈ L1(G). Hence γ defines a non-zero

multiplicative linear functional on L1(G). Conversely every non-zero multiplicative

linear functional on L1(G) is of this form:

σ
(
L1(G)

) ∼= Ĝ.
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Example

G = IR Ĝ = IR

G = T Ĝ = Z

G = Z Ĝ = T.

Equip Ĝ with the weak∗-topology from L1(G)∗ (or the topology of uniform

convergence on compact sets). Then

Ĝ with product: (γ1 + γ2)(x) = γ1(x)γ2(x)

is a locally compact abelian group.
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• Pontryagin Duality Theorem: ̂̂
G ∼= G

For f ∈ L1(G), f̂ : Ĝ→ C

f̂(γ) =
∫

G

f(x)(−x, γ)dx = 〈f, γ〉

• A(Ĝ) = {f̂ ; f ∈ L1(G)} ⊆ C0(Ĝ) = functions in CB(Ĝ) vanishing at infinity.

• θ : f → f̂ is an algebra homomorphism from L1(G) into a subalgebra of

C0(Ĝ).

•
(
A(Ĝ), ‖ · ‖

)
‖f̂‖ = ‖f‖1 is a commutative Banach algebra with spectrum Ĝ.

A(Ĝ) = Fourier algebra of Ĝ.
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2. Fourier algebra of a group

G = locally compact group

A continuous unitary representation of G is a pair: {π,H}, where H = Hilbert space

and π is a continuous homomorphism from G into the group of unitary operators on

H such that for each ξ, n ∈ H,

x→ 〈π(x)ξ, n〉

is continuous.
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L2(G) = all measurable f : G→ C
∫
|f(x)|2dλ(x) <∞

〈f, g〉 =
∫
f(x) g(x) dλ(x)

L2(G) is a Hilbert space.

Left regular representation:

{ρ, L2(G)},

ρ : G 7→ B
(
L2(G)

)
,

ρ(x)h(y) = h(x−1y), x ∈ G, h ∈ L2(G).
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G = locally compact group

A(G) = subalgebra of C0(G)

consisting of all functions φ :

φ(x) =〈ρ(x)h, k〉, h, k ∈ L2(G)

ρ(x)h(y) =h(x−1y)

‖φ‖ =sup
{ ∣∣∣

n∑

i=1

λiφ(xi)
∣∣∣ :

∥∥∥
n∑

i=1

λiρ(xi)
∥∥∥ ≤ 1

}

≥‖φ‖∞.
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P. Eymard (1964):

A(G)∗ = V N(G)

= von Neumann algebra in B
(
L2(G)

)

generated by {ρ(x) : x ∈ G}

= 〈ρ(x) : x ∈ G〉WOT = {ρ(x); x ∈ G} (second commutant)

If G is abelian, then

A(G) ∼= L1(Ĝ), V N(G) ∼= L∞(Ĝ).

• A(G) is called the Fourier algebra of G.

• V N(G) is called the group von Neumann algebra of G.

• V N(G) can be viewed as non-commutative function space on Ĝ when G is

non-abelian.
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Theorem (P. Eymard 1964). For any G, A(G) is a commutative Banach algebra

with spectrum G.

Theorem (H. Leptin 1968). For any G, A(G) has a bounded approximate identity

if and only if G is amenable.

Theorem (M. Walters 1970). Let G1, G2 be locally compact groups. If A(G1) and

A(G2) are isometrically isomorphic, then G1 and G2 are either isomorphic or anti-

isomorphic.
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3. Invariant complementation property of the group von Neumann algebra

Theorem (H. Rosenthal 1966). Let G be a locally compact abelian group, and X

be a weak∗-closed translation invariant subspace of L∞(G). If X is complemented in

L∞(G), then X is invariantly complemented i.e. X admits a translation invariant

closed complement (or equivalently X is the range of a continuous projection on

L∞(G) commuting with translations).

Theorem (Lau, 1983). A locally compact group G is amenable if and only if every

weak∗-closed left translation invariant subalgebra M which is closed under conjuga-

tion in L∞(G) is invariantly complemented.
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For T ∈ V N(G), φ ∈ A(G), define

φ · T ∈ V N(G) by

〈φ · T, ψ〉 = 〈T, ψφ〉, ψ ∈ A(G).

X ⊆ V N(G) is invariant if φ · T ∈ X for all φ ∈ A(G), T ∈ X.

If G is abelian and X ⊆ L∞(Ĝ) is weak∗-closed

subspace of L∞(Ĝ), then X is translation invariant ⇐⇒

L1(Ĝ) ∗X ⊆ X.

Hence: weak∗-closed A(G)-invariant subspaces of V N(G)

↔ weak∗-closed translation invariant subspaces of L∞(Ĝ).
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Question: Let G be a locally compact group, and M be an invariant W ∗-subalgebra

(i.e. weak∗-closed ∗ -subalgebra) of V N(G). Is M invariantly complemented?

Equivalently: Is there a continuous projection

P : V N(G) −→
onto

M such that P (φ · T ) = φ · P (T )

for all φ ∈ A(G).

Yes: G-abelian (Lau, 83)

Losert-L(86): Yes: G compact, discrete.

Theorem (Losert-Lau. 1986). Let M be an invariant

W ∗-subalgebra of V N(G) and

∑
(M) = {x ∈ G; ρ(x) ∈M}.

If
∑

(M) is a normal subgroup of G, then M is invariantly complemented.
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Let H be a closed subgroup of G, and

V NH(G) = 〈ρ(h) : h ∈ H〉WOT ⊆ V N(G).

Then V NH(G) is an invariant W ∗-subalgebra of V N(G).

Takesaki-Tatsuma (1971): If M is an invariant W ∗-subalgebra of V N(G), then

M = 〈ρ(x) : x ∈ H〉W∗
= V NH(G)

where H = Σ(M). Hence there is a 1− 1 correspondence between closed subgroups

H of G and invariant W ∗-subalgebras of V N(G).
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G ∈ [SIN] if there is a neighbourhood basis of the identity consisting of compact

sets V, x−1V x = V for all x ∈ G.

[SIN]-groups include: compact, discrete, abelian groups.

A locally compact group G is said to have the complementation property if

every weak∗-closed invariant W ∗-subalgebra of V N(G) is invariantly

complemented.

Theorem (Kaniuth-Lau 2000). Every [SIN]-group has the complementation property.

Converse is false: The Heisenberg group has the complementation property but it is

not a SIN group.
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For a closed subgroup H < G, let

P1(G) = {φ ∈ P (G); φ(e) = 1}

PH(G) = {φ ∈ P (G); φ(h) = 1 ∀ h ∈ H} ⊆ P1(G)

PH(G) is a commutative semigroup.

We call H a separating subgroup if for any x ∈ G\H, there exists φ ∈ PH(G)

such that φ(x) 6= 1.

G is said to have the separation property if each closed subgroup of G is separating.

(Lau-Losert, 1986) The following subgroups H are always separating:

• H is open

• H is compact

• H is normal

(Forrest, 1992): Every SIN-group has the separation property.
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Example 1: G = affine group of the real line = 2× 2

matrices of form

{(
a s
0 1

)
: a > 0, s ∈ IR

}
←→ {(a, s); a > 0, s ∈ IR}

(a, s)(b, t) = (ab, s+ at).

Let H = {(a, 0); a > 0}. Then H is not separating.

Note: If φ ∈ PH(G), x, y ∈ G

|φ(xy)− φ(x)φ(y)|2 ≤
(
1− |φ(x)|2)(1− |φ(y)|2).

Hence φ(h1xh2) = φ(x) (+)

∀x ∈ G, h1, h2 ∈ H.
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For t > 0, xt = (1, t)

H(1, t)H = G+ = {(a, s); a > 0, s > 0}.

Hence:

φ(h1xth2) = φ(xt) ∀ h1, h2 ∈ H

so by continuity, t→ 0+

φ(g) = 1 for all g ∈ G+.

Similarly, by considering t < 0,

φ(g) = 1 for all g ∈ G−.

Consequently φ = 1.
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x
↙
H

◦
(1, 0)

• (1, t)

◦

y
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Example 2: G = Heisenberg group

G = all 3× 3 matrices



1 x z

0 1 y
0 0 1


←→ (x, y, z)

(x1, y1, z1)(x2, y2, z2)

=(x1 + x2, y1 + y2, z1 + z2 + x1y2)

Centre of G =Z(G)

={(0, 0, t); t ∈ IR}

Let H = {(x, 0, 0); x ∈ IR} < G. Then H is not separating.
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Let φ ∈ PH(G). For y 6= 0, let gy = (0, y, 0). Then

{hgyh
−1g−1

y ;h ∈ H} = {(0, 0, t) : t ∈ IR}

= Z(G).

Since φ(gy) = φ(hgyh
−1)

= φ
(
(hgyh

−1g−1
y︸ ︷︷ ︸

∈Z(G)

) · gy

)

we obtain that

φ(gy) = φ(gy · g) ∀ g ∈ Z(G)

y 6= 0, y ∈ IR.

With y → 0, we conclude that

φ(g) = 1 ∀ g ∈ Z(G).
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y

z
Z(G)
↙

x

H
↘

•
(0,y,0)
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Theorem 7 (Kaniuth-Lau 2000). (a) For any locally compact group G, separation

property implies invariant complementation property.

(b) Let G be a connected locally compact group. Then G has the separation

property ⇐⇒ G ∈ [SIN].

Losert (2008):

There is an example of a locally compact group G such that G has a com-

pact open normal subgroup and every proper closed subgroup of G is compact (in

particular, G is an IN-group) with the separation property and hence the invariant

complementation property but G is not a SIN-group.
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Theorem 1 (Forrest, Kaniuth, Spronk and Lau, 2003). Let G be an amenable locally

compact group. Then G has the invariant complementation property.

Open Problem 1: Does every locally compact group have the invariant

complementation property?
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4. Fixed point sets of power bounded elements in V N(G)

G–locally compact group

P (G) = continuous positive definite

functions on G

i.e. all continuous φ : G→ C such that
∑

λiλjφ(xix
−1
j ) ≥ 0, x1, . . . , xn ∈ G,

λi, . . . , λn ∈ C

i.e. the n× n matrix
(
φ(xix

−1
j )

)
is positive

φ ∈ P (G)⇐⇒ there exists a continuous

unitary representation {π,H}

of G, η ∈ H, such that

φ(x) = 〈π(x)η, η〉, x ∈ G.
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Let B(G) = 〈P (G)〉 ⊆ CB(G) (Fourier Stieltjes algebra of G)

Equip B(G) with norm ‖u‖ = sup
{∣∣ ∫

f(t)u(t)dt
∣∣; f ∈ L1(G) and |||f ||| ≤ 1

}

where

|||f ||| = sup{‖π(f)‖; {π,H} continuous unitary representation of G}

• When G is amenable, then |||f ||| = ‖ρ(f)‖, where ρ is the left regular

representation of G.

• When G is abelian, B(G) ∼= M(Ĝ) (measure algebra of Ĝ).
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For a discrete group D, let R(D) denote the Boolean ring of subsets of D

generated by all left cosets of subgroups of D.

Let Rc(G) = {E ∈ R(Gd) : E is closed in G}

Gd = denote G with the discrete topology.

Theorem (J. Gilbert, B. Schreiber, B. Forrest). E ∈ Rc(G)⇐⇒

E =
n⋃

i=1

(
aiHi\

mi⋃
j=1

bi,jKij

)
, where ai, bi,j ∈ G, Hi is a closed subgroup of G and

Kij is an open subgroup of Hi .
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Let G and H be groups. A map α : C ⊆ G → H is called affine if C is a

coset and for any r, s, t ∈ C,

α(rs−1t) = α(r)α(s)−1α(t).

A map α : Y ⊆ G→ H is called piecewise affine if

(i) there exist pairwise disjoint sets Yi ∈ R(G), i = 1, . . . , n, such that Y =
n
∪

i=1
Yi ,

(ii) each Yi is contained in a coset Ci on which there is an affine map αi : Ci → H

such that αi|Yi = α|Yi .
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Theorem (Illie and Spronk 2005). Let G and H be locally compact groups with

G amenable, and let Φ : A(G) → B(H) be a completely bounded homomorphism.

Then there is a continuous piecewise affine map α : Y ⊂ H → G such that for each

h in H

Φu(h) =
{
u
(
α(h)

)
if h ∈ Y,

0 otherwise.

Lemma A. Let G be a locally compact group and u a power bounded element of

B(G) such that Eu is open in G. Then u|Eu is a piecewise affine map from Eu

into T.
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Proof. For f ∈ B(T), define a function φ(f) on G by φ(f)(x) = f
(
u(x)

)
for

x ∈ Eu and φ(f)(x) = 0 otherwise. Then φ(f)(u) is continuous since Eu is open

and closed in G. Because B(T) = `̂1(Z), we have

∑

n∈Z

f̌(n)u n ∈ B(G),

where f̌ denotes the inverse Fourier transform of f, and

φ(f)(x) =
∑

n∈Z

f̌(n)n(x) n

for all x ∈ Eu . Since Eu ∈ Rc(G), 1Eu
∈ B(G), and therefore

φ(f) = 1Eu
·
∑

n∈Z

f̌(n)u n ∈ B(G).

34



Since fg is the inverse Fourier transform of f̌ ∗ ǧ, it is straightforward to check that

φ is a homomorphism from B(T) into B(G). Since φ is bounded and B(T) = `1(Z)

carries the MAX operator space structure, φ is actually completely bounded. It now

follows from that there exists an affine map α : Y ⊆ G → T such that, for each

f ∈ B(T) and x ∈ G, φ(f)(x) = f
(
α(x)

)
whenever x ∈ Y and φ(f)(x) = 0

otherwise. Here

Y = {x ∈ G : φ(f)(x) 6= 0 for some f ∈ B(T)}.

It is then obvious that Y = Eu and α = u|Eu
is piecewise affine. �
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For σ ∈ B(G), T ∈ V N(G), define σ · T ∈ V N(G)

〈σ · T, ψ〉 = 〈T, σψ〉, ψ ∈ A(G).

Let Iσ = {σφ− φ : φ ∈ A(G)}
‖·‖

⊆ A(G).

Then

(i) Iσ is a closed ideal in A(G)

(ii) I⊥σ = {T ∈ V N(G) : σ · T = T} (σ-harmonic functionals on A(G) :

Chu-Lau (2002)) is a weak∗-closed invariant subspace of V N(G).

36



If u ∈ B(G), let

Eu = {x ∈ G; |u(x)| = 1} and

Fu = {x ∈ G; u(x) = 1}.

Theorem (Kaniuth-Lau-Ülger 2010, JLMS). Let G be any locally compact group

and u ∈ B(G) be power bounded (i.e. sup{‖xn‖; n = 1, 2, . . . } <∞). Then

(a) The sets Eu and Fu are in Rc(G).

(b) The fixed point set of u in V N(G) = {T ∈ V N(G); u · T = T} is the range of

a projection P : V N(G)→ V N(G) such that u · P (T ) = P (u · T ) for all T ∈

V N(G). If G is amenable, then {T ∈ V N(G); u ·T = T} = 〈ρ(x); x ∈ Fu〉
W∗

.

Note: When G is abelian, (a) is due to B. Schrieber.
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Theorem (Kaniuth, Lau and Ülger, JFA 2011). Let G be a locally compact group

and let u be a power bounded element of B(G). Then there exist closed subsets

F1, . . . , Fn of G with the following properties:

(1) Fj ∈ Rc(G), 1 ≤ j ≤ n, and Eu =
n
∪

j=1
Fj .

(2) For each j = 1, . . . , n, there exist a closed subgroup Hj of G, aj ∈ G, αj ∈ T

and a continuous character γj of Hj such that Fj ⊆ ajHj and

u(x) = αjγj(a−1
j x)

for all x ∈ Fj .
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Proof. Consider the group G equipped with the discrete topology. Let i : Gd → G

denote the identity map. Then u ◦ i ∈ B(Gd) and ‖u ◦ i‖B(Gd) = ‖u‖B(G) and

hence u ◦ i is power bounded. Therefore, by Lemma A there exist subsets Si of G,

subgroups Li of G, ci ∈ G and affine maps βi : ciLi → T, i = 1, . . . , r, with the

following properties:

(1) Si ∈ R(Gd) and Eu =
n
∪

i=1
Si ;

(2) For each i = 1, . . . , n, Si ⊆ ciLi and βi|Si
= u|Si

.

Now each Si is of the form

q⋃

`=1

d`

(
M`\

q⋃̀

k=1

e`kN`k

)
,

where d`, e`k ∈ G, the M` are subgroups of G and the N`k are subgroups of M` ,

1 ≤ ` ≤ q, 1 ≤ k ≤ q` . Thus, by a further reduction step, we can assume that we
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only have to consider a set S of the form

S = a
(
H\

m⋃

j=1

bjKj

)
⊆ bT,

where bj ⊂ H and the Kj are subgroups of H, and that there exists an affine map

β : bT → T such that β|S = u|S . Furthermore, we can assume that each Kj has

infinite index in H because otherwise, for some j, H is a finite union of Kj-cosets,

and therefore can be assumed to be simply a coset.

Now

H = (H ∩ a−1bT ) ∪
n⋃

j=1

bjKj and H ∩ a−1bT 6= ∅,

because otherwise at least one of the Kj has finite index in H. It follows that

H ∩ a−1bT = h(H ∩ T ) for some h ∈ H and H ∩ T has finite index in H. So

S is contained in a finite union of cosets of T ∩H and consequently we can assume
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that S ⊆ c(T ∩H) for some c ∈ G. Since also S ⊆ bT, we have bT = cT. Hence

δ = β|c(T∩H) is an affine map satisfying δ|S = u|S . Now S ⊆ c(T ∩H) implies that

a = ch for some h ∈ H and therefore

S = c
(
H\

m⋃

j=1

hbjKj

)
= c

(
(T ∩H)\

m⋃

j=1

hbjKj

)
.

If hbjKj ∩ (T ∩H) 6= ∅, then hbj = tk for some t ∈ (T ∩H) and k ∈ Kj and hence

hbjKj ∩ (T ∩H) = tKj ∩ (T ∩H) = t(Kj ∩ T ∩H).

Thus, setting A = T ∩H and Bj = hbjKj ∩ (T ∩H), we have

S = c
(
A\

m⋃

j=1

Bj

)
,
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where Bj is either empty or a coset in A. In addition, since Kj has infinite index

in H and A has finite index in H, the subgroup corresponding to Bj has infinite

index in A.

Since u ∈ B(G) is uniformly continuous, the affine map δ : cA→ T is uniformly

continuous as well and hence extends to a continuous affine map δ : cA→ T.

Then δ agrees with u on S since u is continuous. Let γ denote the contin-

uous character of A associated with δ. Then u(x) = αγ(c−1x) for all x ∈ S.

Finally, since Eu is closed in G, Eu is a finite union of such sets S and on

each such set S, u is of the form stated in (2). This completes the proof of the

theorem. �

Theorem 9 above is due to Bert Schreiber for G abelian (TAMS 1970).
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Corollary. Let u be a power bounded element of A(G). Then in the description of

Eu and u|Eu
in Theorem each Fj can be chosen to be a compact coset in G.

Proof. We only have to note that Eu is compact and that every compact set in R(G)

is a finite union of cosets of compact subgroups of G. �
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Theorem 4 (Kaniuth, Lau and Ülger, JFA 2011). Let G be an arbitrary locally

compact group and let u ∈ B(G) be such that Eu is open in G. Then u is power

bounded if and only if there exist

(i) pairwise disjoint open sets F1, . . . , Fn in R(G) such that Eu =
n
∪

j=1
Fj and

open subgroups Hj of G and aj ∈ G such that Fj ⊆ ajHj , j = 1, . . . , n,

and

(ii) characters γj of Hj and αj ∈ T, j = 1, . . . , n, such that

u(x) = αjγj(a−1
j x)

for all x ∈ Fj .
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Let G be a discrete group and, for any subset E of G, let C∗
δ (E) = 〈ρ(x) : x ∈ E〉,

the norm closure in C∗
ρ(G) of the linear span of all operators ρ(x), x ∈ E.

For any locally compact group G, let C∗
δ (G) denote the norm-closure in B

(
L2(G)

)

of the linear span of all operators ρ(x), x ∈ G.

Remark (Bekka, Kaniuth, Lau and Schlichting, Proc. A.M.S. 1996):

C∗
δ (G) ∼= C∗

ρ(Gd)⇐⇒ G contains an open subgroup H which is amenable as discrete.

Theorem 5 (Kaniuth-Lau-Ulger, 2013). Let G be a locally compact group which

contains an open subgroup H such that Hd is amenable and let u ∈ Bρ(G). Then

u is power bounded if and only if (i) and (ii) hold.

(i) ‖u‖∞ ≤ 1 and there exist pairwise disjoint sets F1, . . . , Fn ∈ Rc(G) such that

Eu = ∪n
j=1Fj , closed subgroups Hj of G and aj ∈ G such that Fj ⊆ ajHj ,

and characters γj of Hj and αn ∈ T such that u(x) = αjγj(a−1
j x) for all

x ∈ Fj , 1 ≤ j ≤ n.

(ii) For each T ∈ C∗
δ (G\Eu), 〈un, T 〉 → 0 as n→∞.
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Geometric Form of Hahn-Banach Separation Theorem.

Every closed vector subspace of a locally convex space is the intersection of the closed

hyperplanes containing it.

y

z

x

F

46



Lemma. Let H be a closed subgroup of G, and U be a neighbourhood basis U

of the identity of G. If G has the H-separation property, then

(∗) H =
⋂

U∈U
HUH.

Theorem (Kaniuth-Lau, 2003). If G is connected, then G has H-separation prop-

erty ⇐⇒ (∗) holds.

Open Problem 2: If G has property (∗) for each closed subgroup of G, does G

have the invariant complementation property?
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For general G

G− [SIN] ⇒
:
G has separation =⇒ G has geometric separtion property

property

⇓ 6⇑

Complementation
property

For connected G :

G− [SIN]⇐⇒ G has separation⇐⇒ G has geometric
property separtion property
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5. Natural projections

Let A be a commutative Banach algebra with a BAI.

For f ∈ A∗ and a ∈ A, by a · f we denote the functional on A defined by

〈a · f, b〉 = 〈f, ab〉 .

A projection P : A∗ → A∗ is said to be “invariant”(or A-invariant) if, for an

a ∈ A and f ∈ A∗, the equality P (a·f) = a·P (f) holds. Similarly, a closed subspace

X of A∗ is said to be “invariant” if, for each a ∈ A and f ∈ X, the functional a ·f

is in X (i.e. X is an A-module for the natural action (a, f) 7→ a · f). If there is

an invariant projection from A∗ onto a closed invariant subspace X of A∗ then X

is said to be “invariantly complemented in A∗”.
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We say that a projection P : A∗ 7→ A∗ is “natural” if, for each γ ∈ ∆(A), either

P (γ) = γ or P (γ) = 0.

If X is a closed invariant subspace of A∗ and if there is natural projection P

from A∗ onto X we shall say that X is “naturally complemented” in A∗.

Lemma B. Let P : A∗ → A∗ be a projection. Then

a) P is natural iff, for each γ ∈ ∆(A) and a ∈ A, P (a · γ) = a · P (γ).

b) Every invariant projection P : A∗ → A∗ is natural.

Theorem (Lau and Ulger, Trans. A.M.S. to appear). Let G be an amenable locally

compact group, and I be a closed ideal in A(G). Then X = I⊥ is invariantly

complemented ⇐⇒ X is naturally complemented.
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