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Remark
The second countability assumption is mild

Examples

The following are second countable
• Zp, Qp, (Z/3Z)N

• Aut(T ) for T a locally finite tree
• GLn(Qp)

• Countable discrete groups
• Compactly generated t.d.l.c. groups modulo a compact

normal subgroup.

Elementary t.d.l.c. second countable groups and applications Phillip Wesolek



Introduction Motivation Elementary groups Application 1 Application 2 Questions References

Remark
The second countability assumption is mild

Examples

The following are second countable

• Zp, Qp, (Z/3Z)N

• Aut(T ) for T a locally finite tree
• GLn(Qp)

• Countable discrete groups
• Compactly generated t.d.l.c. groups modulo a compact

normal subgroup.

Elementary t.d.l.c. second countable groups and applications Phillip Wesolek



Introduction Motivation Elementary groups Application 1 Application 2 Questions References

Remark
The second countability assumption is mild

Examples

The following are second countable
• Zp, Qp, (Z/3Z)N

• Aut(T ) for T a locally finite tree
• GLn(Qp)

• Countable discrete groups
• Compactly generated t.d.l.c. groups modulo a compact

normal subgroup.

Elementary t.d.l.c. second countable groups and applications Phillip Wesolek



Introduction Motivation Elementary groups Application 1 Application 2 Questions References

Remark

The second countability assumption is mild

Examples

The following are second countable

� Zp, Qp, (Z=3Z)N

� Aut(T ) for T a locally �nite tree

� GLn(Qp)

� Countable discrete groups

� Compactly generated t.d.l.c. groups modulo a compact
normal subgroup.

Elementary t.d.l.c. second countable groups and applications Phillip Wesolek





Introduction Motivation Elementary groups Application 1 Application 2 Questions References

Remark
The second countability assumption is mild

Examples

The following are second countable
• Zp, Qp, (Z/3Z)N

• Aut(T ) for T a locally finite tree
• GLn(Qp)

• Countable discrete groups

• Compactly generated t.d.l.c. groups modulo a compact
normal subgroup.

Elementary t.d.l.c. second countable groups and applications Phillip Wesolek



Introduction Motivation Elementary groups Application 1 Application 2 Questions References

Remark
The second countability assumption is mild

Examples

The following are second countable
• Zp, Qp, (Z/3Z)N

• Aut(T ) for T a locally finite tree
• GLn(Qp)

• Countable discrete groups
• Compactly generated t.d.l.c. groups modulo a compact

normal subgroup.

Elementary t.d.l.c. second countable groups and applications Phillip Wesolek



Introduction Motivation Elementary groups Application 1 Application 2 Questions References

Observation
In the general study of t.d.l.c. second countable (s.c.) groups,
groups “built” from profinite and discrete groups frequently
arise.

Profinite groups are inverse limits of finite groups; these are
exactly the compact t.d.l.c.s.c. groups.
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A number of counterexamples are built in this way:

• The non-trivial t.d.l.c.s.c. group with a dense conjugacy class
(Akin, Glasner, Weiss)

• The compactly generated uniscalar t.d.l.c.s.c. group without
compact open normal subgroup (Bhattacharjee,
Macpherson)

• The non-discrete topologically simple t.d.l.c.s.c group with
open abelian subgroup. (Willis)
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Various groups may be characterized in this way:

A group is locally elliptic if every finite set generates a relatively
compact subgroup.

Theorem (Platonov)

A t.d.l.c.s.c. group is locally elliptic if and only if it is a countable
increasing union of compact open subgroups.

A t.d.l.c.s.c. group is SIN if it has a basis at 1 of compact open
normal subgroups.

Theorem (Caprace, Monod)

A compactly generated t.d.l.c.s.c. group is residually discrete if
and only if it is a SIN group.
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Most surprisingly,

Theorem (Caprace, Monod)

If G is a non-trivial compactly generated t.d.l.c. group, then one
of the following hold:

(i) G has an infinite discrete normal subgroup.
(ii) G has a non-trivial compact normal subgroup.
(iii) G has exactly 0 < n <∞ non-trivial minimal normal

subgroups.
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Conclusion
T.d.l.c.s.c. groups built from profinite and discrete groups form
a rich class and, furthermore,

seem to play an essential role in
the structure of t.d.l.c.s.c. groups in general.
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Elementary groups

The class of elementary groups is the smallest class, E , of
t.d.l.c.s.c. groups such that

(i) All countable discrete and second countable profinite
groups belong to E .

(ii) E is closed under group extensions. I.e. if H E G and
H,G/H ∈ E , then G ∈ E .

(iii) E is closed under countable increasing unions. I.e. if G is
t.d.l.c.s.c. and G =

⋃
i∈ω Hi with (Hi)i∈ω an ⊆-increasing

sequence of open subgroups of G each in E , then G ∈ E .

Remark
There is an ordinal rank on E . Profinite and discrete groups are
assigned rank zero.
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Examples

The following are elementary:

(i) T.d.l.c.s.c. groups which are locally elliptic (Platonov)
(ii) T.d.l.c.s.c. abelian groups; more generally, t.d.l.c.s.c. SIN

groups
(iii) T.d.l.c.s.c. groups which are residually discrete (Caprace,

Monod)
(iv) T.d.l.c.s.c. groups with a compact open solvable subgroup

(W. [3])

Non-examples

Any group in S , the collection of non-discrete compactly
generated t.d.l.c. groups which are topologically simple, is
non-elementary. E.g. Aut(T3)

+ or PSL3(Qp).
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Theorem (W.)

E enjoys the following permanence properties:

(i) If G ∈ E , H is a t.d.l.c.s.c. group, and ψ : H → G is a
continuous homomorphism, then H/ker(ψ) ∈ E . In
particular, if H 6 G is a closed subgroup with G ∈ E , then
H ∈ E .

(ii) If G ∈ E and L E G is a closed normal subgroup, then
G/L ∈ E .

(iii) If G is residually elementary, then G ∈ E . In particular, E is
closed under inverse limits.
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Proof sketch (i)

• Passing to the induced ψ̃ : H/ker(ψ)→ G, we may assume
ψ : H → G is injective. We now induct on rk(G).

• For rk(G) = 0, G is profinite or discrete. If G discrete, H is
discrete and we are done.

• If G is profinite, let (Ui)i∈N be a base of open normal
subgroups for G. So (ψ−1(Ui))i∈N are open normal
subgroups of H with trivial intersection.

• So H is residually discrete. By results of [1], H is elementary.
• Induction on rk(G) finishes the proof.
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From the closure properties we obtain:

Proposition

Let G be a t.d.l.c.s.c. group.
(i) There is a unique maximal closed normal subgroup which

is elementary, denoted RadE (G).
(ii) There is a unique minimal closed normal subgroup whose

quotient is elementary, denoted ResE (G).

Elementary t.d.l.c. second countable groups and applications Phillip Wesolek



Introduction Motivation Elementary groups Application 1 Application 2 Questions References

From the closure properties we obtain:

Proposition

Let G be a t.d.l.c.s.c. group.

(i) There is a unique maximal closed normal subgroup which
is elementary, denoted RadE (G).

(ii) There is a unique minimal closed normal subgroup whose
quotient is elementary, denoted ResE (G).

Elementary t.d.l.c. second countable groups and applications Phillip Wesolek



Introduction Motivation Elementary groups Application 1 Application 2 Questions References

From the closure properties we obtain:

Proposition

Let G be a t.d.l.c.s.c. group.
(i) There is a unique maximal closed normal subgroup which

is elementary, denoted RadE (G).

(ii) There is a unique minimal closed normal subgroup whose
quotient is elementary, denoted ResE (G).

Elementary t.d.l.c. second countable groups and applications Phillip Wesolek



Introduction Motivation Elementary groups Application 1 Application 2 Questions References

From the closure properties we obtain:

Proposition

Let G be a t.d.l.c.s.c. group.
(i) There is a unique maximal closed normal subgroup which

is elementary, denoted RadE (G).
(ii) There is a unique minimal closed normal subgroup whose

quotient is elementary, denoted ResE (G).

Elementary t.d.l.c. second countable groups and applications Phillip Wesolek



Introduction Motivation Elementary groups Application 1 Application 2 Questions References

Theorem (W.)

Let G be a t.d.l.c.s.c. group. Then there is a sequence of
closed characteristic subgroups

{1} 6 C 6 Q 6 G

such that

(i) C and G/Q are elementary.
(ii) Q/C has no non-trivial elementary normal subgroups.
(iii) Q/C has no non-trivial elementary quotients.

Proof.
We may take either (1) Q := ResE (G) and C := RadE (Q) or
(2) C := RadE (G) and Q := π−1(ResE (G/C)).
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Definition
A t.d.l.c.s.c. group is called elementary-free if it has no
non-trivial elementary normal subgroups and no non-trivial
elementary quotients.

Remark

(i) By the previous theorem, every t.d.l.c.s.c. group admits a
elementary-free normal section, Q/C.

(ii) Even in the case G is compactly generated, Q/C need not
be compactly generated.

Theorem (W.)

If G is an elementary-free t.d.l.c.s.c. group, then QZ (G) = {1}
and the only locally normal abelian subgroup of G is {1}.
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An example

Consider GL3(Qp).

One can show
· Q = ResE (GL3(Qp)) = SL3(Qp)

· C = RadE (Q) = Z (SL3(Qp))

So the series becomes:

{1} 6 Z (SL3(Qp)) 6 SL3(Qp) 6 GL3(Qp)
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Application 1: Decompositions

Fact
A connected locally compact group is pro-Lie. Further,
connected Lie groups are solvable by semi-simple.

Question
Can every t.d.l.c.s.c. group be “decomposed” into “basic”
groups?
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Basic building blocks: Elementary groups and topologically
simple t.d.l.c.s.c. groups
Construction operations: Group extension and countable
increasing union

Question
Can every t.d.l.c.s.c. group be decomposed into elementary
groups and topologically simple t.d.l.c.s.c. groups via group
extension and countable increasing union?

We cannot omit the countable increasing union operation even
for compactly generated groups. E.g. consider⊕

i∈Z(PSL3(Qp),U)o Z where
⊕

i∈Z(PSL3(Qp),U) is a local
direct product.
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Question
Do l.c.s.c. p-adic Lie groups admit a decomposition into
elementary groups and topologically simple t.d.l.c.s.c. groups?

Answer
Yes. Indeed, for a slightly bigger class.
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Theorem (W.)

Suppose G is a l.c.s.c. p-adic Lie group. Then, there is a
sequence of closed characteristic subgroups {1} 6 C 6 S 6 G
such that

(i) C is elementary,
(ii) S/C ' N1 × · · · × Nk with the Ni compactly generated and

topologically simple, and
(iii) G/S is finite.
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Lemma (1)

Suppose G is a l.c.s.c. p-adic Lie group. If G is
elementary-free, then G has 0 < k <∞ many non-trivial
minimal normal subgroups.

Idea of the proof

We adapt the following result of Caprace and Monod: in a
compactly generated t.d.l.c. group G there is a compact K E G
such that every filtering family of non-discrete closed normal
subgroups of G/K has non-trivial intersection. Elementary-free
is enough to show the desired adaptation to our setting.
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LetM(G) denote the collection of minimal non-trivial normal
subgroups given by lemma (1).

Lemma (2)

Suppose G is a l.c.s.c. p-adic Lie group. If G is elementary-free,
thenM(G) consists of topologically simple groups.

This follows from lemma (1) since RadE and ResE are
characteristic subgroups.
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Let G be an elementary-free l.c.s.c. p-adic Lie group.

By
lemma (1) and lemma (2),M(G) consists of non-discrete
topologically simple groups. We put

Nmin(G) := cl(〈M | M ∈M(G)〉)

Fact ([2])
If G is a non-elementary topologically simple p-adic Lie group,
then G = S(Qp)

+ for S an almost simple isotropic Qp-algebraic
group.

By the fact and results in algebraic group theory,
Nmin(G) '

∏
N∈M(G) N and each N ∈M(G) is compactly

generated.
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Proof of the decomposition

• Let G be a l.c.s.c. p-adic Lie group.
• Take C = RadE (G) and S := π−1(ResE (G/C)).
• By lemma (1) and lemma (2), we may form Nmin(H) for

H := S/C.
• Results in algebraic group theory imply

H/CH(Nmin(H))Nmin(H)

is finite. Since H is elementary-free,

CH(Nmin(H))Nmin(H) = H

It follows Nmin(H) = H.
• A similar argument gives G/S finite.
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An example

Let G := SL3(Qp) for some fixed prime p.

It follows
(i) C = Z (SL3(Qp)) and
(ii) S = SL3(Qp).

The decomposition is thus

{1} 6 Z (SL3(Qp)) 6 SL3(Qp)
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Remarks

(i) The decomposition is a special case of a more general
result for all t.d.l.c.s.c. groups with a compact open
subgroup of finite rank

- i.e. a compact open subgroup for
which there there is r <∞ such that every closed
subgroup has a dense r -generated subgroup.

(ii) The proof may generalize as it does not use much Lie
theory. The current barrier is proving lemma 1 in a more
general setting.
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Application 2: Surjectively universal groups

Definition
A group G is surjectively universal for a class of groups C if G is
in C and every member of C is a quotient of G.

Theorem (Gao, Graev)

There exists a surjectively universal group for the class of
non-Archimedean Polish groups.

Question (Gao)

Is there a surjectively universal group for the class of t.d.l.c.s.c.
groups?
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Proposition

If there is a surjectively universal group for the class of
t.d.l.c.s.c. groups,

then there is a surjectively universal group
for E .

Proof.

• Suppose G is surjectively universal for t.d.l.c.s.c. groups.
• So every elementary group is a quotient of G.
• By the minimality of ResE (G), every elementary group is a

quotient of G/ResE (G).
• So G/ResE (G) is surjectively universal for E .
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Remark
It seems unlikely for there to be a surjectively universal group
for E .

Indeed, such a group implies the rank on elementary
groups is bounded below ω1. Alternatively, the similar class of
elementary amenable groups does not admit a surjectively
universal group. (Osin)
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Questions: elementary groups

(i) What other permanence properties hold for elementary
groups?

(ii) Is it possible to build elementary groups of arbitrarily large
rank below ω1?

(iii) What sort of elementary groups appear as closed
subgroups of Aut(Td) with Td the d-regular tree?
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Questions: applications

(i) (Glöckner) What can be said about elementary p-adic Lie
groups? Is the elementary rank bounded in some way?

(ii) Do similar decomposition results hold for other categories
of non-discrete t.d.l.c.s.c. groups? What about for weakly
branch t.d.l.c.s.c. groups?

(iii) Is there a surjectively universal group for E ?
(iv) Is there an injectively universal group for t.d.l.c.s.c.

groups? What about for elementary groups?
(v) Is there an SQ-universal group for t.d.l.c.s.c groups? What

about for elementary groups?
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(i) (Glöckner) What can be said about elementary p-adic Lie
groups? Is the elementary rank bounded in some way?

(ii) Do similar decomposition results hold for other categories
of non-discrete t.d.l.c.s.c. groups?

What about for weakly
branch t.d.l.c.s.c. groups?

(iii) Is there a surjectively universal group for E ?
(iv) Is there an injectively universal group for t.d.l.c.s.c.

groups? What about for elementary groups?
(v) Is there an SQ-universal group for t.d.l.c.s.c groups? What

about for elementary groups?

Elementary t.d.l.c. second countable groups and applications Phillip Wesolek



Introduction Motivation Elementary groups Application 1 Application 2 Questions References

Questions: applications
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Questions: applications

(i) (Glöckner) What can be said about elementary p-adic Lie
groups? Is the elementary rank bounded in some way?

(ii) Do similar decomposition results hold for other categories
of non-discrete t.d.l.c.s.c. groups? What about for weakly
branch t.d.l.c.s.c. groups?

(iii) Is there a surjectively universal group for E ?
(iv) Is there an injectively universal group for t.d.l.c.s.c.

groups? What about for elementary groups?
(v) Is there an SQ-universal group for t.d.l.c.s.c groups? What

about for elementary groups?
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