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Introduction

The structure theory of simple nuclear C∗-algebras is currently undergoing
revolutionary progress, driven by the discovery of regularity properties of
various flavours. The regularity property of having finite nuclear dimension
is the one we are going to focus on:

Definition (Winter-Zacharias)

Let A be a C*-algebra. We say that A has nuclear dimension r, and write
dimnuc(A) = r, if r is the smallest natural number with the following
property:
For all F⊂⊂A and ε > 0, there exists a finite dimensional C∗-algebra F
and a c.p.c. map ψ : A→ F and c.p.c. order zero maps
ϕ(0), . . . , ϕ(r) : F → A such that

‖a−
r∑
l=0

ϕ(l) ◦ ψ(a)‖ ≤ ε for all a ∈ F.
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Introduction

Question

How does nuclear dimension behave with respect to passing to (twisted)
crossed products? A Aoα G

Answering this question in full generality seems to be far out of reach at
the moment. However, by inventing the concept of Rokhlin dimension,
Hirshberg, Winter and Zacharias have paved the way towards very
satisfactory partial answers. This notion was initially defined for actions of
finite groups and integers, and was also adapted to actions of Zm.

We will discuss a generalization to cocycle actions of residually finite
groups:
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Rokhlin dimension

From now on, all C∗-algebras are assumed to be separable and unital for
convencience. For what follows, neither condition is actually necessary.

Definition

Let A be a separable, unital C∗-algebra and G a countable, discrete and
residually finite group. Let (α,w) : Gy A be a cocycle action. Let d ∈ N
be a natural number. Then α has Rokhlin dimension d, written
dimRok(α) = d, if d is the smallest number with the following property:
For every subgroup H ⊂ G with finite index, there exist equivariant
c.p.c. order zero maps

ϕl : (C(G/H), G-shift) −→ (A∞ ∩A′, α∞) (l = 0, . . . , d)

with ϕ0(1) + · · ·+ ϕd(1) = 1.
If no number satisfies this condition, we set dimRok(α) :=∞.

Remark

If G is finite or Zm, this agrees with the previous definition.
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Rokhlin dimension

As mentioned at the beginning, the following permanence properties
served as motivation for introducing Rokhlin dimension:

Theorem (Hirshberg-Winter-Zacharias)

If α : Gy A is a finite group action on a unital C∗-algebra, we have

dim+1
nuc(Aoα G) ≤ dim+1

Rok(α) · dim+1
nuc(A).

Theorem (Hirshberg-Winter-Zacharias)

If A is a unital C∗-algebra and α ∈ Aut(A), we have

dim+1
nuc(Aoα Z) ≤ 2 · dim+1

Rok(α) · dim+1
nuc(A).

Theorem (S)

If α : Zm y A is an action on a unital C∗-algebra, we have

dim+1
nuc(Aoα G) ≤ 2m · dim+1

Rok(α) · dim+1
nuc(A).
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Rokhlin dimension

Here comes the main result of this talk. The following unifies (and in fact
improves some of) the previous estimates:

Theorem (S-Wu-Zacharias)

Let G be a countable, discrete, residually finite group. Let A be any
C∗-algebra and (α,w) : Gy A a cocycle action. Then we have

dim+1
nuc(Aoα,w G) ≤ asdim+1(�G) · dim+1

Rok(α) · dim+1
nuc(A).

The above constant denotes the asymptotic dimension of the box space of
G. We shall elaborate:
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The box space

Definition (Roe)

Let G be a countable, residually finite group. The box space �G is the
disjoint union of all finite quotients groups of G, equipped with its minimal
connected G-invariant coarse structure for the left action of G by
translation.

Remark (Roe-Khukhro)

Take a decreasing sequence of normal subgroups Gn ⊂ G with finite index,
such that every finite index subgroup H ⊂ G contains Gn for some n. Let
S⊂⊂G be a finite generating set, and equip G with the associated
right-invariant word-length metric. Then the box space �G can be
realized (up to coarse equivalence) as the disjoint union

⋃
n∈NG/Gn,

endowed with a metric dist such that this metric, when restricted to some
G/Gn, is induced by the image of S in G/Gn, and such that

dist(G/Gn, G/Gm) ≥ max {diam(G/Gn),diam(G/Gm)}

for all n,m ∈ N.
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The box space

It is known that the coarse structure of �G encodes important features of
G. We would like to pick out one particular instance of this:

Theorem (Guentner)

�G has property A if and only if G is amenable.

Theorem (Higson-Roe)

Finite asymptotic dimension implies property A.

So for what kind of groups do we have asdim(�G) <∞?

Example

The box space of a finite group is a one-point set, hence it has
asymptotic dimension 0.

asdim(�Zm) = m.

Probably all finitely generated, virtually nilpotent groups G satisfy
asdim(�G) <∞. (Details still need to be checked!)
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The box space

When the box space of a residually finite group has finite asymptotic
dimension, one might be tempted to think that this value encodes the
geometric complexity of the group in some sense.

This turns out to be true, and that is what makes the proof of the main
result possible. Unfortunately, there is not enough time to get into details.
Instead, we would like to look at the case of topological actions.
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Topological actions

Let G be a countable, discrete group and d ∈ N. Let 4dG ⊂ `1(G) be the
set of all probability measures of G supported on at most d+ 1 points. Let
4G =

⋃
d∈N4dG be the set of all finitely supported probability measures

of G.

Note that there is a canonical G-action β on each of these spaces
defined by βg(µ)(A) = µ(g−1A) for all g ∈ G.

Definition (one of many equivalent versions)

Let α : Gy X be an action on a compact metric space. Then α is
amenable if there exist approximately equivariant maps

(X,α) −→ (4G, β).

That is, there exists a net of continuous maps fλ : X →4G such that
‖fλ(αg(x))− βg(fλ(x))‖1 → 0 as λ→∞ for all x ∈ X and g ∈ G.
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Topological actions

Definition (Guentner-Willett-Yu)

Let α : Gy X be an action on a compact metric space and d ∈ N. α is
said to have amenability dimension at most d, written dimam(α) ≤ d, if
there exist almost equivariant maps

(X,α) −→ (4dG, β).

The amenability dimension dimam(α) is defined to be the smallest such d,
if it exists. Otherwise dimam(α) :=∞.

They mainly use this to describe some sufficient criterions of the
Baum-Connes conjecture or the Farrell-Jones conjecture for a group. But
they also prove the following

Theorem (Guentner-Willett-Yu)

For a free action α : Gy X, one has the estimate

dim+1
nuc(C(X) oα G) ≤ dim+1

am(α) · dim+1(X).
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Topological actions

Let X be a compact metric space, G a countable, residually finite group,
and α : Gy X an action. Let ᾱ : Gy C(X) denote the induced
C∗-algebraic action.

Question

Is there a connection between dimam(α) and dimRok(ᾱ)?

This can be answered as follows:

Theorem (S-Wu-Zacharias)

If α : Gy X is free, one has the following estimates:

dim+1
Rok(ᾱ) ≤ dim+1

am(α) ≤ asdim+1(�G) · dim+1
Rok(ᾱ).

In particular, if asdim(�G) <∞, then α has finite amenability dimension
if and only if ᾱ has finite Rokhlin dimension.
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This can be answered as follows:

Theorem (S-Wu-Zacharias)

If α : Gy X is free, one has the following estimates:

dim+1
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Topological actions

Last year, the following result was obtained:

Theorem (S)

If α : Zm y X is a free action on a compact metric space of finite
covering dimension, then dimRok(ᾱ) <∞. In particular,
dimnuc(C(X) oα Zm) <∞.

Using the methods that were developed for this (e.g. marker property),
and also using some additional ingredients, this extends to the following
setting:

Theorem (S-Wu-Zacharias)

Let G be a finitely generated, nilpotent group. If α : Gy X is a free
action on a compact metric space of finite covering dimension, then both
dimam(α) <∞ and dimRok(ᾱ) <∞. In particular,
dimnuc(C(X) oα G) <∞.

18 / 19



Topological actions

Last year, the following result was obtained:

Theorem (S)

If α : Zm y X is a free action on a compact metric space of finite
covering dimension, then dimRok(ᾱ) <∞. In particular,
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Thank you for your attention!
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