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Introduction

o
o
o
o
o
In this talk we shall only consider certain groupoids:
SHÉL = Second countable Hausdorff Étale and Locally compact
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Introduction

A groupoid is similar to a group, except that its composition is not
defined everywhere.

Definition
A groupoid G is a set together with two maps G (2) 3 (γ, η) 7→ γη
and G 3 γ 7→ γ−1 satisfying:

1. If (γ, η), (η, ξ) ∈ G (2) then (γη, ξ), (γ, ηξ) ∈ G (2) and
(γη)ξ = γ(ηξ).

2. If γ ∈ G then (γ−1)−1 = γ and (γ−1, γ) ∈ G (2).

3. If (γ, η) ∈ G (2) then γ−1(γη) = η and (γη)η−1 = γ.
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Introduction

Remark
An equivalent definition can be made when regarding G as a set of
arrows together with G (0) (the set of endpoints) and the
associated source and range maps

r , s : G → G 0 = r(G ) = s(G ), r(γ) = γγ−1, s(γ) = γ−1γ, γ ∈ G .

The composition and the inverse can then be regarded as a
composition of arrows and as an inverse arrow.
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Introduction

Definition
Let G be a groupoid with a topology. Give G (2) the relative
product topology. Then G is a topological groupoid if the maps
(γ, η) 7→ γη and γ 7→ γ−1 are continuous.

Definition
Let G be a topological groupoid. If the topology on G is second
countable locally compact Hausdorff then G is called a second
countable locally compact Hausdorff groupoid.
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Introduction

Definition
An étale groupoid is a topological groupoid where s is a local
homeomorphism.

Remark
Let G be a second countable locally compact Hausdorff groupoid.
Then G is étale if and only if it has a countable basis of open
bisections1 with compact closure.

1Open sets in G on which r and s are homeomorphisms.
.
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Example 1

Example

Given n ≥ 2. Define S = {1, . . . , n} and let Z and W be the
infinite and finite sequences (words) in S . Define Gn as all triples
of the form

(αγ, l(α)− l(β), βγ),

for finite α, β and infinite γ and l(·) the length a word. With

G 2
n = {((x , k , x ′), (y , l , y ′)) ∈ Gn × Gn : x ′ = y},

(x , k , x ′)(x ′, l , x ′′) = (x , k + l , x ′′), (x , k, x ′)−1 = (x ′,−k , x),

Gn is a groupoid. For S discrete and Z with the product topology,
the basis Uα,β = {(αγ, l(α)− l(β), βγ) : γ ∈ Z} for α, β finite,

makes Gn into a SHÉL groupoid.



 

Example 1

Example

Given n ≥ 2. Define S = {1, . . . , n} and let Z and W be the
infinite and finite sequences (words) in S .

Define Gn as all triples
of the form

(αγ, l(α)− l(β), βγ),

for finite α, β and infinite γ and l(·) the length a word. With

G 2
n = {((x , k , x ′), (y , l , y ′)) ∈ Gn × Gn : x ′ = y},

(x , k , x ′)(x ′, l , x ′′) = (x , k + l , x ′′), (x , k, x ′)−1 = (x ′,−k , x),

Gn is a groupoid. For S discrete and Z with the product topology,
the basis Uα,β = {(αγ, l(α)− l(β), βγ) : γ ∈ Z} for α, β finite,

makes Gn into a SHÉL groupoid.
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Example

Let G be a countable group acting on a second countable locally
compact Hausdorff space X . Define G(X ,G) := X × G with
product topology, and

G 2
(X ,G) = {((x , t), (y , s)) : x .t = y},

(x , t)(x .t, s) = (x , ts), (x , t)−1 = (x .t, t−1),

Then G(X ,G) is a SHÉL groupoid.

Remark

C ∗(Gn) ∼= On

C ∗(G(X ,G)) ∼= C0(X ) o G
C ∗r (G(X ,G)) ∼= C0(X ) or G
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Examples

I Graph C∗-algebras

I Higher rank graph C∗-algebras

I Kirchberg algebras in UCT (up to stabilisation)

I Katsura algebras

I Oriented transformation groupoid algebras C ∗r (Γ+
φ )

I Bunce-Deddens C∗-algebras

I Partial crossed products C0(X )xG (with countable G )
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Properties of groupoid algebras.

Lemma (cf. Renault (1980))

Let G be SHÉL groupoid. Then

1. The extension map from Cc(G (0)) into Cc(G ) (where a
function is defined to be zero on G − G (0)) extends to an
embedding of C0(G (0)) into C ∗r (G ).

2. The restriction map E0 : Cc(G )→ Cc(G (0)) extends to a
conditional expectation2 E : C ∗r (G )→ C0(G (0)).

3. The map E from item (2) is faithful. That is, E (b∗b) = 0
implies b = 0 for b ∈ C ∗r (G ).

4. The subalgebra Cc(G (0)) contains an approximate unit for
C ∗r (G ).

2A cpc (completely positive contractive) map s.t.
E(ba) = bE(a), E(ab) = E(a)b, E(b) = b (b ∈ B, a ∈ A)
.
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Properties of groupoid algebras.

Lemma (cf. Renault (1980))

Let G be a SHÉL groupoid. Then

5. For every closed invariant set D ⊆ G (0) we have the following
commuting diagram:

0 // C ∗r (G |U)

EU

��

ιr // C ∗r (G )

E
��

ρr // C ∗r (G |D)

ED

��

// 0

0 // C0(U)
ι0 // C0(G (0))

ρ0 // C0(D) // 0

,

where U = G (0) − D, ιr and ρr are determined on continuous
functions by extension and restriction respectively. Moreover,
image(ιr ) ⊆ ker ρr .
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Let G be a SHÉL groupoid. Then

5. For every closed invariant set D ⊆ G (0) we have the following
commuting diagram:

0 // C ∗r (G |U)

EU

��

ιr // C ∗r (G )

E
��

ρr // C ∗r (G |D)

ED

��

// 0

0 // C0(U)
ι0 // C0(G (0))

ρ0 // C0(D) // 0

,

where U = G (0) − D, ιr and ρr are determined on continuous
functions by extension and restriction respectively. Moreover,
image(ιr ) ⊆ ker ρr .



 

Properties of groupoid algebras.

Lemma (cf. Renault (1980))
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Topologically principal.

Topologically principal ⇔ {u ∈ G (0) : uGu = {u}} is dense in G (0).

Lemma
Let G be a SHÉL groupoid. and E : C ∗r (G )→ C0(G (0)) be the
faithful conditional expectation extending restriction. Suppose that
G is topologically principal. For every ε > 0 and c ∈ C ∗r (G )+,
there exists f ∈ C0(G (0))+ s.t.:

1. ‖f ‖ = 1;

2. ‖fcf − fE (c)f ‖ < ε;

3. ‖fE (c)f ‖ > ‖E (c)‖ − ε.
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Let G be a SHÉL groupoid. and E : C ∗r (G )→ C0(G (0)) be the
faithful conditional expectation extending restriction. Suppose that
G is topologically principal. For every ε > 0 and c ∈ C ∗r (G )+,
there exists f ∈ C0(G (0))+ s.t.:

1. ‖f ‖ = 1;

2. ‖fcf − fE (c)f ‖ < ε;

3. ‖fE (c)f ‖ > ‖E (c)‖ − ε.



 

Topologically principal.

Topologically principal ⇔ {u ∈ G (0) : uGu = {u}} is dense in G (0).

Lemma
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Topologically principal

Lemma
Let G be a SHÉL groupoid. Suppose that G is topologically
principal. For every nonzero a ∈ C ∗r (G )+, there exists nonzero
h ∈ C0(G (0))+ s.t. h - a.
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Purely infinite simple algebras

Minimal ⇔ G · u := {r(γ) : s(γ) = u} is dense in G (0) for all
u ∈ G (0)

Theorem
Let G be a SHÉL groupoid. Suppose that G is minimal and
topologically principal. TFAE

1. C ∗r (G ) is purely infinite

2. Every nonzero positive element of C0(G (0)) is infinite in
C ∗r (G ).
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Kirchberg algebras

Corollary

Let G be a SHÉL groupoid. TFAE

1. C ∗(G ) is a Kirchberg algebra

2. G is minimal, topologically principal, measure-wise amenable
and every non-zero positive element of C0(G (0)) is infinite in
C ∗(G ).

Remark
(1)-(2) ⇒ UCT.
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Ample groupoids

Ample ⇔ The groupoid has a basis of compact open bisections.

Remark
Kirchberg algebras in UCT are (stably isomorphic to) SHÉL ample
groupoids.

Theorem
Let G be a SHÉL ample groupoid. Suppose that G is topologically
principal, minimal and that B is a basis of G (0) consisting of
compact open sets. TFAE
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principal and minimal. TFAE
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x consisting of compact open sets s.t. every nonzero
projection q in C0(G (0)) with supp(q) ∈ D is infinite in
C ∗r (G ).
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Let G be a SHÉL ample groupoid. Suppose that G is topologically
principal and minimal. TFAE

1. C ∗r (G ) is purely infinite

2. There exists a point x ∈ G (0) and a neighbourhood basis D at
x consisting of compact open sets s.t. every nonzero
projection q in C0(G (0)) with supp(q) ∈ D is infinite in
C ∗r (G ).



 

Ample groupoids

Corollary
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k-graphs

Λ∞ := Set of infinite paths in a k-graph Λ.

Corollary

Let Λ be a row-finite k-graph with no sources. Suppose Λ is
aperiodic and cofinal in the sense of Robertson-Sims (2007).
TFAE

1. C ∗(Λ) is purely infinite.

2. For every vertex v ∈ Λ0 the projection is infinite.

3. There exists x ∈ Λ∞ s.t. pv is infinite for every vertex v on x.
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Non-simple case

Lemma
Let G be a SHÉL groupoid s.t. C ∗(G ) = C ∗r (G ). TFAE:

1. For every closed invariant set D ⊆ G (0)

C ∗(G |D) = C ∗r (G |D).

2. For every closed invariant set D ⊆ G (0) the sequence

0 // C ∗r (G |G (0)−D)
ιr // C ∗r (G )

ρr // C ∗r (G |D) // 0

is exact where ιr and ρr are determined on continuous
functions by extension and restriction respectively.
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Proposition

Let G be a SHÉL groupoid s.t. C ∗(G ) = C ∗r (G ). TFAE:

1. The C ∗-algebra C ∗r (G ) is strongly purely infinite, and for
every ideal I in C ∗r (G ) we have: I = Ideal[I ∩ C0(G (0))].

2. For every closed invariant set D ⊆ G (0), G |D is topologically
principal; the sequence

0 // C ∗r (G |G (0)−D)
ιr // C ∗r (G )

ρr // C ∗r (G |D) // 0

is exact where ιr and ρr are determined on continuous
functions by extension and restriction respectively; and for
every pair of elements a, b in C0(G (0))+ the 2-tuple (a, b) has
the matrix diagonalization property in C ∗r (G ).
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