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Background

Theorem (Sinclair�Tullo 1974). Let A be a Banach algebra such that each
closed left ideal of A is �nitely generated. Then A is �nite-dimensional.

Terminology

I Banach algebra: a complete normed algebra, usually unital, always having
complex scalars;

I left ideal: a non-empty subset L of A such that L is

I closed under addition: a+ b ∈ L (a, b ∈ L );
I closed under arbitrary left multiplication: ab ∈ L (a ∈ A , b ∈ L );

I �nitely generated: there exist n ∈ N and b1, . . . , bn ∈ L such that

L = {a1b1 + · · ·+ anbn : a1, . . . , an ∈ A }.
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The Dales��elazko conjecture

Conjecture (Dales��elazko 2012). Let A be a unital Banach algebra such that
every maximal left ideal of A is �nitely generated. Then A is �nite-
dimensional.

Evidence. Ferreira and Tomassini (1978) have proved a stronger form of this
conjecture for A commutative.

Non-commutative case: open!

Question I. Is this conjecture true for A = B(E), the Banach algebra of all
bounded, linear operators acting on a Banach space E?
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A partial answer to Question I

Theorem (DKKKL). Let E be a separable Banach space with a countable,
unconditional Schauder decomposition. Then B(E) contains 2c maximal left
ideals, but only c �nitely-generated, maximal left ideals, where c = 2ℵ0 .

Hence not all maximal left ideals of B(E) are �nitely generated.

Terminology. A countable, unconditional Schauder decomposition of a Banach
space E is a sequence (En)n∈N of non-zero, closed subspaces of E such that,
for each x ∈ E , there is a unique sequence (xn) with xn ∈ En (n ∈ N) such that

x =
∞∑
n=1

xn unconditionally,

that is, the net (∑
n∈N

xn

)
N⊂N �nite

converges to x .

Remark. The above theorem can be extended to non-separable Banach spaces.
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Applications of the theorem

In each of the following cases, the Banach space E is separable and has a
countable, unconditional Schauder decomposition:

I E has an unconditional Schauder basis (this means that each of the
subspaces En has dimension one);

examples:
I the classical sequence spaces `p (1 6 p < ∞) and c0;

I the Lebesgue spaces Lp [0, 1] (1 < p < ∞);
I the Lorentz sequence spaces dw,p and the Orlicz sequence spaces hM ;

I more generally, E contains a complemented subspace which has an
unconditional Schauder basis;

examples:
I the Lebesgue space L1[0, 1];

I the space C(K) of continuous functions on an in�nite, compact metric
space K ;

I the pth quasi-re�exive James space Jp (1 < p < ∞).

Hence not all maximal left ideals of B(E) are �nitely generated in each of the
above cases.

Perspective. Gowers's Dichotomy Theorem: an in�nite-dimensional Banach
space is either hereditarily indecomposable (in the sense that none of its closed
subspaces can be decomposed into the direct sum of two closed, in�nite-
dimensional subspaces), or it contains a subspace which has an unconditional
Schauder basis.
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A re�nement of the question

Observation. Let E be a Banach space. For each x ∈ E \ {0},

ML x = {T ∈ B(E) : Tx = 0}

is a maximal left ideal

which is generated by the single projection I − P, where
P is any projection of E onto Cx. Moreover,

ML x = ML y ⇐⇒ x and y are proportional (x , y ∈ E \ {0}).

Terminology. A maximal left ideal of the form ML x for some x ∈ E \ {0} is
�xed.

Question II. Is every �nitely-generated, maximal left ideal of B(E) �xed?

Fact. This is true for E �nite-dimensional.

Proof. The mapping

F 7→ {T ∈ B(E) : F ⊆ kerT}

is an anti-isomorphism of the lattice of linear subspaces of E onto the lattice of
left ideals of B(E). Hence each maximal left ideal L of B(E) corresponds to
a unique one-dimensional subspace of E , and therefore L is �xed. 2
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Question II � the in�nite-dimensional case

Let E be an in�nite-dimensional Banach space. Then

F (E) = {T ∈ B(E) : dimT (E) <∞}

is a proper, two-sided ideal of B(E).

Hence F (E) is contained in a maximal
left ideal of B(E).

Fact. F (E) 6⊆ML x for each x ∈ E \ {0}.

Proof. Given x ∈ E \ {0}, take λ ∈ E∗ such that 〈x , λ〉 = 1. Then

T : y 7→ 〈y , λ〉x , E → E ,

belongs to F (E), but not to ML x because Tx = x 6= 0. 2

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an in�nite-dimensional Banach space, and suppose that every
�nitely-generated, maximal left ideal of B(E) is �xed. Then B(E) contains a
maximal left ideal which is not �nitely generated.

Question III. Is F (E) ever contained in a �nitely-generated, maximal left ideal
of B(E)?

7



Question II � the in�nite-dimensional case

Let E be an in�nite-dimensional Banach space. Then

F (E) = {T ∈ B(E) : dimT (E) <∞}

is a proper, two-sided ideal of B(E). Hence F (E) is contained in a maximal
left ideal of B(E).

Fact. F (E) 6⊆ML x for each x ∈ E \ {0}.

Proof. Given x ∈ E \ {0}, take λ ∈ E∗ such that 〈x , λ〉 = 1. Then

T : y 7→ 〈y , λ〉x , E → E ,

belongs to F (E), but not to ML x because Tx = x 6= 0. 2

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an in�nite-dimensional Banach space, and suppose that every
�nitely-generated, maximal left ideal of B(E) is �xed. Then B(E) contains a
maximal left ideal which is not �nitely generated.

Question III. Is F (E) ever contained in a �nitely-generated, maximal left ideal
of B(E)?

7



Question II � the in�nite-dimensional case

Let E be an in�nite-dimensional Banach space. Then

F (E) = {T ∈ B(E) : dimT (E) <∞}

is a proper, two-sided ideal of B(E). Hence F (E) is contained in a maximal
left ideal of B(E).

Fact. F (E) 6⊆ML x for each x ∈ E \ {0}.

Proof. Given x ∈ E \ {0}, take λ ∈ E∗ such that 〈x , λ〉 = 1. Then

T : y 7→ 〈y , λ〉x , E → E ,

belongs to F (E), but not to ML x because Tx = x 6= 0. 2

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an in�nite-dimensional Banach space, and suppose that every
�nitely-generated, maximal left ideal of B(E) is �xed. Then B(E) contains a
maximal left ideal which is not �nitely generated.

Question III. Is F (E) ever contained in a �nitely-generated, maximal left ideal
of B(E)?

7



Question II � the in�nite-dimensional case

Let E be an in�nite-dimensional Banach space. Then

F (E) = {T ∈ B(E) : dimT (E) <∞}

is a proper, two-sided ideal of B(E). Hence F (E) is contained in a maximal
left ideal of B(E).

Fact. F (E) 6⊆ML x for each x ∈ E \ {0}.

Proof. Given x ∈ E \ {0}, take λ ∈ E∗ such that 〈x , λ〉 = 1.

Then

T : y 7→ 〈y , λ〉x , E → E ,

belongs to F (E), but not to ML x because Tx = x 6= 0. 2

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an in�nite-dimensional Banach space, and suppose that every
�nitely-generated, maximal left ideal of B(E) is �xed. Then B(E) contains a
maximal left ideal which is not �nitely generated.

Question III. Is F (E) ever contained in a �nitely-generated, maximal left ideal
of B(E)?

7



Question II � the in�nite-dimensional case

Let E be an in�nite-dimensional Banach space. Then

F (E) = {T ∈ B(E) : dimT (E) <∞}

is a proper, two-sided ideal of B(E). Hence F (E) is contained in a maximal
left ideal of B(E).

Fact. F (E) 6⊆ML x for each x ∈ E \ {0}.

Proof. Given x ∈ E \ {0}, take λ ∈ E∗ such that 〈x , λ〉 = 1. Then

T : y 7→ 〈y , λ〉x , E → E ,

belongs to F (E),

but not to ML x because Tx = x 6= 0. 2

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an in�nite-dimensional Banach space, and suppose that every
�nitely-generated, maximal left ideal of B(E) is �xed. Then B(E) contains a
maximal left ideal which is not �nitely generated.

Question III. Is F (E) ever contained in a �nitely-generated, maximal left ideal
of B(E)?

7



Question II � the in�nite-dimensional case

Let E be an in�nite-dimensional Banach space. Then

F (E) = {T ∈ B(E) : dimT (E) <∞}

is a proper, two-sided ideal of B(E). Hence F (E) is contained in a maximal
left ideal of B(E).

Fact. F (E) 6⊆ML x for each x ∈ E \ {0}.

Proof. Given x ∈ E \ {0}, take λ ∈ E∗ such that 〈x , λ〉 = 1. Then

T : y 7→ 〈y , λ〉x , E → E ,

belongs to F (E), but not to ML x because Tx = x 6= 0. 2

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an in�nite-dimensional Banach space, and suppose that every
�nitely-generated, maximal left ideal of B(E) is �xed. Then B(E) contains a
maximal left ideal which is not �nitely generated.

Question III. Is F (E) ever contained in a �nitely-generated, maximal left ideal
of B(E)?

7



Question II � the in�nite-dimensional case

Let E be an in�nite-dimensional Banach space. Then

F (E) = {T ∈ B(E) : dimT (E) <∞}

is a proper, two-sided ideal of B(E). Hence F (E) is contained in a maximal
left ideal of B(E).

Fact. F (E) 6⊆ML x for each x ∈ E \ {0}.

Proof. Given x ∈ E \ {0}, take λ ∈ E∗ such that 〈x , λ〉 = 1. Then

T : y 7→ 〈y , λ〉x , E → E ,

belongs to F (E), but not to ML x because Tx = x 6= 0. 2

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an in�nite-dimensional Banach space, and suppose that every
�nitely-generated, maximal left ideal of B(E) is �xed. Then B(E) contains a
maximal left ideal which is not �nitely generated.

Question III. Is F (E) ever contained in a �nitely-generated, maximal left ideal
of B(E)?

7



Question II � the in�nite-dimensional case

Let E be an in�nite-dimensional Banach space. Then

F (E) = {T ∈ B(E) : dimT (E) <∞}

is a proper, two-sided ideal of B(E). Hence F (E) is contained in a maximal
left ideal of B(E).

Fact. F (E) 6⊆ML x for each x ∈ E \ {0}.

Proof. Given x ∈ E \ {0}, take λ ∈ E∗ such that 〈x , λ〉 = 1. Then

T : y 7→ 〈y , λ〉x , E → E ,

belongs to F (E), but not to ML x because Tx = x 6= 0. 2

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an in�nite-dimensional Banach space, and suppose that every
�nitely-generated, maximal left ideal of B(E) is �xed. Then B(E) contains a
maximal left ideal which is not �nitely generated.

Question III. Is F (E) ever contained in a �nitely-generated, maximal left ideal
of B(E)?

7



Question II � the in�nite-dimensional case

Let E be an in�nite-dimensional Banach space. Then

F (E) = {T ∈ B(E) : dimT (E) <∞}

is a proper, two-sided ideal of B(E). Hence F (E) is contained in a maximal
left ideal of B(E).

Fact. F (E) 6⊆ML x for each x ∈ E \ {0}.

Proof. Given x ∈ E \ {0}, take λ ∈ E∗ such that 〈x , λ〉 = 1. Then

T : y 7→ 〈y , λ〉x , E → E ,

belongs to F (E), but not to ML x because Tx = x 6= 0. 2

Corollary. A positive answer to Question II implies a positive answer to Q. I:

Let E be an in�nite-dimensional Banach space, and suppose that every
�nitely-generated, maximal left ideal of B(E) is �xed. Then B(E) contains a
maximal left ideal which is not �nitely generated.

Question III. Is F (E) ever contained in a �nitely-generated, maximal left ideal
of B(E)?

7



The Dichotomy Theorem

De�nition. An operator T on a Banach space E is inessential if I − ST is a
Fredholm operator, in the sense that

dim ker(I − ST ) <∞ and dim
E

(I − ST )(E)
<∞,

for each S ∈ B(E).

The set E (E) of inessential operators on E is a closed, two-sided ideal
of B(E), and proper whenever E is in�nite-dimensional.

An equivalent, more algebraic, de�nition is that T is inessential if and only if
T + K (E) belongs to the Jacobson radical of the Calkin algebra B(E)/K (E).

Example. A Hilbert-space operator is inessential if and only if it is compact.

Theorem (DKKKL). Let E be a non-zero Banach space. Then, for each
maximal left ideal L of B(E), exactly one of the following two alternatives
holds:

(i) L is �xed; or

(ii) L contains E (E).
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The equivalence of Questions II and III

Recall: Let E be a non-zero Banach space. Then, for each maximal left
ideal L of B(E), exactly one of the following two alternatives holds:

(i) L is �xed; or

(ii) L contains E (E).

Remarks.

I This result is essentially known for Hilbert spaces, but the approach is very
di�erent from ours.

I It can be viewed as the analogue of the fact that an ultra�lter on a set M
is either �xed (in the sense that it consists of precisely those subsets of M
which contain a �xed element x ∈ M), or it contains the Fréchet �lter of
all co�nite subsets of M.

Corollary. Questions II and III are equivalent, in the following sense:

Every �nitely-generated, maximal left ideal of B(E) is �xed if and only if no
�nitely-generated, maximal left ideal of B(E) contains F (E).
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Positive answers to Question II

Theorem (DKKKL). Let E be a Banach space which satis�es one of the
following �ve conditions:

(i) E has a Schauder basis and is complemented in its bidual

(examples: `p and Lp[0, 1] for 1 6 p <∞);

(ii) E is an injective Banach space, in the sense that E is automatically
complemented in any superspace

(examples: `∞(Γ) for some non-empty index set Γ);

(iii) E = c0(Γ)

, E = H, or E = c0(Γ)⊕ H, where Γ is a non-empty index set
and H is a Hilbert space;

(iv) E has few operators, in the sense that each operator on E is a strictly
singular perturbation of a scalar multiple of the identity

(examples: hereditarily indecomposable Banach spaces);

(v) E = C(K), where K is a compact Hausdor� space without isolated points,
and each operator on C(K) is a weak multiplication, in the sense that it is
a strictly singular perturbation of a multiplication operator.

Then each �nitely-generated, maximal left ideal of B(E) is �xed.

De�nition. An operator S on E is strictly singular if, for each ε > 0, each
in�nite-dimensional subspace of E contains a unit vector x such that ‖Sx‖ 6 ε.
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The Hilbert-space case

Let A be a unital C∗-algebra, with involution a 7→ a?.

A state on A is a
norm-one functional λ on A such that

〈a?a, λ〉 > 0 (a ∈ A ).

Given a state λ on A , the set

Nλ = {a ∈ A : 〈a?a, λ〉 = 0}

is a closed left ideal of A . It is maximal if and only if λ is a pure state, that is,
an extreme point of the weak∗-compact, convex set of all states on A .

Suppose that A = B(H) for some Hilbert space H, and let x ∈ H be a unit
vector. Then Nλ = ML x if and only if λ is the vector state induced by x , that
is,

〈T , λ〉 = (Tx | x) (T ∈ B(H)),

where ( · | · ) denotes the inner product on H.

The Dichotomy Theorem for Hilbert spaces follows from these facts because
each pure state λ on B(H) is either a vector state, or K (H) ⊆ ker λ, in which
case K (H) ⊆ Nλ.
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A negative answer to Question II: Argyros�Haydon's Banach space

Theorem (Argyros�Haydon 2011). There is a Banach space XAH which has the
following three properties:

(i) XAH has very few operators, in the sense that each operator on XAH is a
compact perturbation of a scalar multiple of the identity;

(ii) XAH has a Schauder basis;

(iii) the dual space of XAH is isomorphic to `1.
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A negative answer to Question II: the example

Let E = XAH ⊕ `∞.

We identify operators T on E with (2× 2)-matrices(
T1,1 : XAH → XAH T1,2 : `∞ → XAH

T2,1 : XAH → `∞ T2,2 : `∞ → `∞

)
.

Key point: T1,2 is necessarily strictly singular.

Theorem (DKKKL). The set

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
is a maximal two-sided ideal of codimension one in B(E), and hence also a
maximal left ideal. It is not �xed, but it is singly generated as a left ideal.

More precisely, K1 is generated as a left ideal by the operator

L =

(
0 0

VU∗κ W

)
,

where κ : XAH → X ∗∗AH is the canonical embedding, while U : `1 → X ∗AH,
V : `∗1 = `∞ → `∞(2N− 1) and W : `∞ → `∞(2N) are isomorphisms.

13



A negative answer to Question II: the example

Let E = XAH ⊕ `∞. We identify operators T on E with (2× 2)-matrices(
T1,1 : XAH → XAH T1,2 : `∞ → XAH

T2,1 : XAH → `∞ T2,2 : `∞ → `∞

)
.

Key point: T1,2 is necessarily strictly singular.

Theorem (DKKKL). The set

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
is a maximal two-sided ideal of codimension one in B(E), and hence also a
maximal left ideal. It is not �xed, but it is singly generated as a left ideal.

More precisely, K1 is generated as a left ideal by the operator

L =

(
0 0

VU∗κ W

)
,

where κ : XAH → X ∗∗AH is the canonical embedding, while U : `1 → X ∗AH,
V : `∗1 = `∞ → `∞(2N− 1) and W : `∞ → `∞(2N) are isomorphisms.

13



A negative answer to Question II: the example

Let E = XAH ⊕ `∞. We identify operators T on E with (2× 2)-matrices(
T1,1 : XAH → XAH T1,2 : `∞ → XAH

T2,1 : XAH → `∞ T2,2 : `∞ → `∞

)
.

Key point: T1,2 is necessarily strictly singular.

Theorem (DKKKL). The set

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
is a maximal two-sided ideal of codimension one in B(E), and hence also a
maximal left ideal. It is not �xed, but it is singly generated as a left ideal.

More precisely, K1 is generated as a left ideal by the operator

L =

(
0 0

VU∗κ W

)
,

where κ : XAH → X ∗∗AH is the canonical embedding, while U : `1 → X ∗AH,
V : `∗1 = `∞ → `∞(2N− 1) and W : `∞ → `∞(2N) are isomorphisms.

13



A negative answer to Question II: the example

Let E = XAH ⊕ `∞. We identify operators T on E with (2× 2)-matrices(
T1,1 : XAH → XAH T1,2 : `∞ → XAH

T2,1 : XAH → `∞ T2,2 : `∞ → `∞

)
.

Key point: T1,2 is necessarily strictly singular.

Theorem (DKKKL). The set

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
is a maximal two-sided ideal of codimension one in B(E)

, and hence also a
maximal left ideal. It is not �xed, but it is singly generated as a left ideal.

More precisely, K1 is generated as a left ideal by the operator

L =

(
0 0

VU∗κ W

)
,

where κ : XAH → X ∗∗AH is the canonical embedding, while U : `1 → X ∗AH,
V : `∗1 = `∞ → `∞(2N− 1) and W : `∞ → `∞(2N) are isomorphisms.

13



A negative answer to Question II: the example

Let E = XAH ⊕ `∞. We identify operators T on E with (2× 2)-matrices(
T1,1 : XAH → XAH T1,2 : `∞ → XAH

T2,1 : XAH → `∞ T2,2 : `∞ → `∞

)
.

Key point: T1,2 is necessarily strictly singular.

Theorem (DKKKL). The set

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
is a maximal two-sided ideal of codimension one in B(E), and hence also a
maximal left ideal.

It is not �xed, but it is singly generated as a left ideal.

More precisely, K1 is generated as a left ideal by the operator

L =

(
0 0

VU∗κ W

)
,

where κ : XAH → X ∗∗AH is the canonical embedding, while U : `1 → X ∗AH,
V : `∗1 = `∞ → `∞(2N− 1) and W : `∞ → `∞(2N) are isomorphisms.

13



A negative answer to Question II: the example

Let E = XAH ⊕ `∞. We identify operators T on E with (2× 2)-matrices(
T1,1 : XAH → XAH T1,2 : `∞ → XAH

T2,1 : XAH → `∞ T2,2 : `∞ → `∞

)
.

Key point: T1,2 is necessarily strictly singular.

Theorem (DKKKL). The set

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
is a maximal two-sided ideal of codimension one in B(E), and hence also a
maximal left ideal. It is not �xed

, but it is singly generated as a left ideal.

More precisely, K1 is generated as a left ideal by the operator

L =

(
0 0

VU∗κ W

)
,

where κ : XAH → X ∗∗AH is the canonical embedding, while U : `1 → X ∗AH,
V : `∗1 = `∞ → `∞(2N− 1) and W : `∞ → `∞(2N) are isomorphisms.

13



A negative answer to Question II: the example

Let E = XAH ⊕ `∞. We identify operators T on E with (2× 2)-matrices(
T1,1 : XAH → XAH T1,2 : `∞ → XAH

T2,1 : XAH → `∞ T2,2 : `∞ → `∞

)
.

Key point: T1,2 is necessarily strictly singular.

Theorem (DKKKL). The set

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
is a maximal two-sided ideal of codimension one in B(E), and hence also a
maximal left ideal. It is not �xed, but it is singly generated as a left ideal.

More precisely, K1 is generated as a left ideal by the operator

L =

(
0 0

VU∗κ W

)
,

where κ : XAH → X ∗∗AH is the canonical embedding, while U : `1 → X ∗AH,
V : `∗1 = `∞ → `∞(2N− 1) and W : `∞ → `∞(2N) are isomorphisms.

13



A negative answer to Question II: the example

Let E = XAH ⊕ `∞. We identify operators T on E with (2× 2)-matrices(
T1,1 : XAH → XAH T1,2 : `∞ → XAH

T2,1 : XAH → `∞ T2,2 : `∞ → `∞

)
.

Key point: T1,2 is necessarily strictly singular.

Theorem (DKKKL). The set

K1 =

{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T1,1 is compact

}
is a maximal two-sided ideal of codimension one in B(E), and hence also a
maximal left ideal. It is not �xed, but it is singly generated as a left ideal.

More precisely, K1 is generated as a left ideal by the operator

L =

(
0 0

VU∗κ W

)
,

where κ : XAH → X ∗∗AH is the canonical embedding, while U : `1 → X ∗AH,
V : `∗1 = `∞ → `∞(2N− 1) and W : `∞ → `∞(2N) are isomorphisms.

13



How about Question I?

Recall: E = XAH ⊕ `∞.

Theorem (DKKKL). The ideal K1 is the unique non-�xed, �nitely-generated,
maximal left ideal of B(E).

Hence{(
T1,1 T1,2

T2,1 T2,2

)
∈ B(E) : T2,2 is strictly singular

}
,

which is a maximal two-sided ideal of B(E), is not contained in any
�nitely-generated, maximal left ideal of B(E).

In particular, the answer to Question I is positive for E .
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A separable example

Question: Is there a separable Banach space E such that B(E) contains a
�nitely-generated, non-�xed, maximal left ideal?

(Recall: in the example, above, E = XAH ⊕ `∞.)

Answer: yes!

Theorem (Kania�L). Argyros and Haydon's Banach space XAH contains a
closed, in�nite-dimensional subspace Y of in�nite codimension such that:

(i) each operator from Y into XAH has the form αJ + K for some α ∈ C and
some compact operator K, where J : Y → XAH denotes the inclusion;

(ii) Y has a Schauder basis;

(iii) the dual space of Y is isomorphic to `1.

15



A separable example

Question: Is there a separable Banach space E such that B(E) contains a
�nitely-generated, non-�xed, maximal left ideal?

(Recall: in the example, above, E = XAH ⊕ `∞.)

Answer: yes!

Theorem (Kania�L). Argyros and Haydon's Banach space XAH contains a
closed, in�nite-dimensional subspace Y of in�nite codimension such that:

(i) each operator from Y into XAH has the form αJ + K for some α ∈ C and
some compact operator K, where J : Y → XAH denotes the inclusion;

(ii) Y has a Schauder basis;

(iii) the dual space of Y is isomorphic to `1.

15



A separable example

Question: Is there a separable Banach space E such that B(E) contains a
�nitely-generated, non-�xed, maximal left ideal?

(Recall: in the example, above, E = XAH ⊕ `∞.)

Answer: yes!

Theorem (Kania�L). Argyros and Haydon's Banach space XAH contains a
closed, in�nite-dimensional subspace Y of in�nite codimension such that:

(i) each operator from Y into XAH has the form αJ + K for some α ∈ C and
some compact operator K, where J : Y → XAH denotes the inclusion;

(ii) Y has a Schauder basis;

(iii) the dual space of Y is isomorphic to `1.

15



A separable example

Question: Is there a separable Banach space E such that B(E) contains a
�nitely-generated, non-�xed, maximal left ideal?

(Recall: in the example, above, E = XAH ⊕ `∞.)

Answer: yes!

Theorem (Kania�L). Argyros and Haydon's Banach space XAH contains a
closed, in�nite-dimensional subspace Y of in�nite codimension such that:

(i) each operator from Y into XAH has the form αJ + K for some α ∈ C and
some compact operator K, where J : Y → XAH denotes the inclusion;

(ii) Y has a Schauder basis;

(iii) the dual space of Y is isomorphic to `1.

15



A separable example

Question: Is there a separable Banach space E such that B(E) contains a
�nitely-generated, non-�xed, maximal left ideal?

(Recall: in the example, above, E = XAH ⊕ `∞.)

Answer: yes!

Theorem (Kania�L). Argyros and Haydon's Banach space XAH contains a
closed, in�nite-dimensional subspace Y of in�nite codimension such that:

(i) each operator from Y into XAH has the form αJ + K for some α ∈ C and
some compact operator K, where J : Y → XAH denotes the inclusion;

(ii) Y has a Schauder basis;

(iii) the dual space of Y is isomorphic to `1.

15



A separable example

Question: Is there a separable Banach space E such that B(E) contains a
�nitely-generated, non-�xed, maximal left ideal?

(Recall: in the example, above, E = XAH ⊕ `∞.)

Answer: yes!

Theorem (Kania�L). Argyros and Haydon's Banach space XAH contains a
closed, in�nite-dimensional subspace Y of in�nite codimension such that:

(i) each operator from Y into XAH has the form αJ + K for some α ∈ C and
some compact operator K, where J : Y → XAH denotes the inclusion;

(ii) Y has a Schauder basis;

(iii) the dual space of Y is isomorphic to `1.

15



A separable example (continued)

Let E = XAH ⊕ Y . Then each T ∈ B(E) has the form

T =

(
α1,1IXAH + K1,1 α1,2J + K1,2

K2,1 α2,2IY + K2,2

)
,

where α1,1, α1,2, α2,2 ∈ C and the operators K1,1,K1,2,K2,1,K2,2 are compact.

Theorem (Kania�L).

(i) There are exactly two non-�xed, maximal left ideals of B(E), namely

M1 = {T ∈ B(E) : α2,2 = 0} and M2 = {T ∈ B(E) : α1,1 = 0};

(ii) M1 is generated as a left ideal by the two operators(
IXAH 0
0 0

)
and

(
0 J
0 0

)
,

but M1 is not generated as a left ideal by a single operator on E ;

(iii) M2 is not �nitely generated as a left ideal.
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Open problems

and references

I Let E = C(K), where K is any in�nite, compact metric space such that
C(K) 6∼= c0. Is each �nitely-generated, maximal left ideal of B(E) �xed?

I What is the situation for maximal right ideals of B(E)?

Key references

I H. G. Dales, T. Kania, T. Kochanek, P. Koszmider and N. J. Laustsen,
Maximal left ideals of the Banach algebra of bounded operators on a
Banach space, Studia Math. 218 (2013), 245�286.

I H. G. Dales and W. �elazko, Generators of maximal left ideals in Banach
algebras, Studia Math. 212 (2012), 173�193.

I T. Kania and N. J. Laustsen, Ideal structure of the algebra of bounded
operators acting on a Banach space, in preparation.
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