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Theorem (Sinclair—Tullo 1974). Let </ be a Banach algebra such that each
closed left ideal of <7 is finitely generated. Then < is finite-dimensional.

Terminology

» Banach algebra: a complete normed algebra, usually unital, always having
complex scalars;
> left ideal: a non-empty subset .Z of & such that .Z is
> closed under addition: a+ b e .¥ (a,be¥);
> closed under arbitrary left multiplication: abe€ ¥ (a€ o/,b € ¥);

> finitely generated: there exist n € N and by, ..., b, € Z such that

$2{31b1+'“—|—anbn231,...,3,16527}.



The Dales—Zelazko conjecture

Conjecture (Dales—Zelazko 2012). Let </ be a unital Banach algebra such that
every maximal left ideal of <7 is finitely generated. Then < is finite-
dimensional.



The Dales—Zelazko conjecture

Conjecture (Dales—Zelazko 2012). Let </ be a unital Banach algebra such that
every maximal left ideal of <7 is finitely generated. Then < is finite-
dimensional.

Evidence. Ferreira and Tomassini (1978) have proved a stronger form of this
conjecture for .&/ commutative.



The Dales—Zelazko conjecture

Conjecture (Dales—Zelazko 2012). Let </ be a unital Banach algebra such that
every maximal left ideal of <7 is finitely generated. Then < is finite-
dimensional.

Evidence. Ferreira and Tomassini (1978) have proved a stronger form of this
conjecture for .&/ commutative.

Non-commutative case: open!



The Dales—Zelazko conjecture

Conjecture (Dales—Zelazko 2012). Let </ be a unital Banach algebra such that
every maximal left ideal of <7 is finitely generated. Then < is finite-
dimensional.

Evidence. Ferreira and Tomassini (1978) have proved a stronger form of this
conjecture for .&/ commutative.

Non-commutative case: open!

Question |. Is this conjecture true for & = Z(E), the Banach algebra of all
bounded, linear operators acting on a Banach space E?
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Theorem (DKKKL). Let E be a separable Banach space with a countable,
unconditional Schauder decomposition. Then %B(E) contains 2° maximal left
ideals, but only ¢ finitely-generated, maximal left ideals, where ¢ = 2%°.

Hence not all maximal left ideals of 8(E) are finitely generated.

Terminology. A countable, unconditional Schauder decomposition of a Banach
space E is a sequence (En)nen of non-zero, closed subspaces of E such that,
for each x € E, there is a unique sequence (x,) with x, € E, (n € N) such that

O
X:E Xn unconditionally,

n=1

neN NCN finite

that is, the net

converges to x.

Remark. The above theorem can be extended to non-separable Banach spaces.
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In each of the following cases, the Banach space E is separable and has a
countable, unconditional Schauder decomposition:

» E has an unconditional Schauder basis (this means that each of the
subspaces E, has dimension one); examples:

> the classical sequence spaces ¢, (1 < p < 00) and ¢p;
> the Lebesgue spaces Lp[0,1] (1 < p < 0);
> the Lorentz sequence spaces dy p and the Orlicz sequence spaces hy;

» more generally, E contains a complemented subspace which has an
unconditional Schauder basis; examples:

> the Lebesgue space L;][0,1];
> the space C(K) of continuous functions on an infinite, compact metric
space K;
> the pth quasi-reflexive James space Jp (1 < p < 0).
Hence not all maximal left ideals of Z(E) are finitely generated in each of the

above cases.

Perspective. Gowers’'s Dichotomy Theorem: an infinite-dimensional Banach
space is either hereditarily indecomposable (in the sense that none of its closed
subspaces can be decomposed into the direct sum of two closed, infinite-
dimensional subspaces), or it contains a subspace which has an unconditional
Schauder basis.
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Proof. The mapping
F—{T e BE):FCkerT}

is an anti-isomorphism of the lattice of linear subspaces of E onto the lattice of
left ideals of Z(E). Hence each maximal left ideal .Z of Z(E) corresponds to
a unique one-dimensional subspace of E, and therefore .Z is fixed. O
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Let E be an infinite-dimensional Banach space. Then
F(E)={T € B(E) :dim T(E) < o0}

is a proper, two-sided ideal of #(E). Hence .#(E) is contained in a maximal
left ideal of A(E).

Fact. #(E) L #ZL« for each x € E \ {0}.
Proof. Given x € E \ {0}, take A € E* such that (x,\) =1. Then

T:y—(y,\Mx, E—E,
belongs to .#(E), but not to .#%« because Tx = x # 0. O

Corollary. A positive answer to Question Il implies a positive answer to Q. I:

Let E be an infinite-dimensional Banach space, and suppose that every
finitely-generated, maximal left ideal of (E) is fixed. Then (E) contains a
maximal left ideal which is not finitely generated.

Question Ill. Is % (E) ever contained in a finitely-generated, maximal left ideal
of B(E)?
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Recall: Let E be a non-zero Banach space. Then, for each maximal left
ideal & of B(E), exactly one of the following two alternatives holds:

(i) Z is fixed; or
(i1) £ contains &(E).

Remarks.

» This result is essentially known for Hilbert spaces, but the approach is very
different from ours.

» It can be viewed as the analogue of the fact that an ultrafilter on a set M
is either fixed (in the sense that it consists of precisely those subsets of M
which contain a fixed element x € M), or it contains the Fréchet filter of
all cofinite subsets of M.

Corollary. Questions Il and Il are equivalent, in the following sense:

Every finitely-generated, maximal left ideal of 8(E) is fixed if and only if no
finitely-generated, maximal left ideal of (E) contains .% (E).
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(it) E is an injective Banach space, in the sense that E is automatically
complemented in any superspace
(examples: £ (') for some non-empty index set I');

(i) E=co(lN), E=H, or E=co(I") ® H, where T is a non-empty index set
and H is a Hilbert space;

(iv) E has few operators, in the sense that each operator on E is a strictly

singular perturbation of a scalar multiple of the identity
(examples: hereditarily indecomposable Banach spaces);

(v) E = C(K), where K is a compact Hausdorff space without isolated points,
and each operator on C(K) is a weak multiplication, in the sense that it is
a strictly singular perturbation of a multiplication operator.

Then each finitely-generated, maximal left ideal of %(E) is fixed.

Definition. An operator S on E is strictly singular if, for each £ > 0, each
infinite-dimensional subspace of E contains a unit vector x such that ||Sx|| < e.
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Given a state \ on &7, the set
M ={ae o :(a"a,\) =0}

is a closed left ideal of 7. It is maximal if and only if X\ is a pure state, that is,
an extreme point of the weak™-compact, convex set of all states on 7.

Suppose that &7 = A(H) for some Hilbert space H, and let x € H be a unit
vector. Then A4\ = #L« if and only if \ is the vector state induced by x, that
IS,

(T, A) = (Tx|x) (T € B(H)),
where (-|-) denotes the inner product on H.

The Dichotomy Theorem for Hilbert spaces follows from these facts because
each pure state A on #A(H) is either a vector state, or JZ(H) C ker A, in which
case Z (H) C ;.
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A negative answer to Question |l: Argyros—Haydon's Banach space

Theorem (Argyros—Haydon 2011). There is a Banach space Xan which has the
following three properties:

(i) Xan has very few operators, in the sense that each operator on Xan is a
compact perturbation of a scalar multiple of the identity;
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A negative answer to Question |l: Argyros—Haydon's Banach space

Theorem (Argyros—Haydon 2011). There is a Banach space Xan which has the
following three properties:

(i) Xan has very few operators, in the sense that each operator on Xan is a
compact perturbation of a scalar multiple of the identity;

(i1) Xawn has a Schauder basis;

(iii) the dual space of Xan is isomorphic to {1.
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Ti11: Xan = Xan  T12: loo = XaH
Tz,li XaH — Yoo Tz,zi Voo — loo .

Key point: Ti 2 is necessarily strictly singular.

Theorem (DKKKL). The set

J1 = fia T € AB(E): T11 is compact
To1 T2

is a maximal two-sided ideal of codimension one in #(E), and hence also a
maximal left ideal. It is not fixed, but it is singly generated as a left ideal.

More precisely, J#1 is generated as a left ideal by the operator

(0 0
- \VU'k W)’

where k: Xan — Xap is the canonical embedding, while U: 1 — Xan,
V.l =l > loo(2N —1) and W: loo — £ (2N) are isomorphisms.
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How about Question I7?

Recall: E = Xan @ Voo

Theorem (DKKKL). The ideal J#1 is the unique non-fixed, finitely-generated,
maximal left ideal of %(E).
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How about Question I7?

Recall: E = Xan @ Voo

Theorem (DKKKL). The ideal J#1 is the unique non-fixed, finitely-generated,
maximal left ideal of Z8(E). Hence

Tir N € B(E) : Tz is strictly singular ¢,
Ta1 T2
which is a maximal two-sided ideal of %(E), is not contained in any

finitely-generated, maximal left ideal of %(E).

In particular, the answer to Question | is positive for E.
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closed, infinite-dimensional subspace Y of infinite codimension such that:

(i) each operator from Y into Xan has the form aJ + K for some o € C and
some compact operator K, where J: Y — Xan denotes the inclusion;

(it) Y has a Schauder basis;

(i) the dual space of Y is isomorphic to {1.
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A separable example (continued)

Let E = Xan @ Y. Then each T € #(E) has the form
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K 1 az2ly + Koo)'’

where a1.1, @12, 2.2 € C and the operators Ki 1, K12, K21, K22 are compact.
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A separable example (continued)

Let E = Xan @ Y. Then each T € #(E) has the form

r_ a1,1lxpay + K11 a12d + Kip2
K 1 az2ly + Koo)'’

where a1.1, @12, 2.2 € C and the operators Ki 1, K12, K21, K22 are compact.

Theorem (Kania—L).

(i) There are exactly two non-fixed, maximal left ideals of (E), namely
M1 = {T - <@(E) D Q22 = 0} and Mo = {T c %(E) L1l = 0},
(i1) 1 is generated as a left ideal by the two operators
Ixayy O 0 J
(3 0) » (0 0)

but /1 is not generated as a left ideal by a single operator on E;
(ili) > is not finitely generated as a left ideal.
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