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Basic definitions

Let (E,|-||) be a normed space. A multi-
norm on {E" : n € N} is a sequence (||-],,)
such that each ||-||,, is a norm on E™, such
that ||z||; = ||=|| for each x € E, and such
that the following hold for all n € N and all
T1,...,Tn € I

(AD) o1y Zo(m)|, = ICz1,-- - za)ll,
for each permutation o of {1,...,n};

(A2) [[(e11,. .., onzn)l,

< (Max;en, i) [[(z1, .-, 2zn)lly,
for each aq1,...,an € C;
(A3) [[(z1,-..,2n, 0l = (21, - zn) ]y,

(A4) [[(z1,-- s zn,zn) g1 = (1, -5 20) ||,

See [DP2].



Dual multi-norms

For a dual multi-norm, replace (A4) by:

(84) ||(CU1, coee 751377/73377/)”714—]_ — ||(3§'1, <o 7m’n—172xn)||n'

Let (||-|[,,) be a multi-norm or dual multi-norm
based on a space E. Then we have a multi-
normed space and a dual multi-normed space,
respectively. They are multi-Banach spaces
and dual multi-Banach spaces when E is
complete.

Let ||-]l,, be @ norm on E™. Then ||-||;. is the
dual norm on (E™), identified with (E)".

The dual of (E™ | -],) is ((EN™ ] -].). The
dual of a multi-normed space is a dual multi-
Banach space; the dual of a dual multi-normed
space is a multi-Banach space.



What are multi-norms good for?

1) Solving specific questions - for example,
characterizing when some modules over group
algebras are injective [DDPR1]; see below.

2) Understanding the geometry of Banach spaces
that goes beyond the shape of the unit ball.

3) Throwing some light on absolutely summing
operators

4) Giving a theory [DP2] of ‘multi-bounded
linear operators’ between Banach spaces. It
gives a class of bounded linear operators that
subsumes various known classes, and some-
times gives new classes.

5) Giving results about Banach lattices [DP2].

6) Giving a theory of decompositions [DP2] of
Banach spaces generalizing known theories.

7) Giving a theory that ‘is closed in the
category’.



Conditions for modules to be injective
Let A be a Banach algebra. There is a condi-
tion for a Banach left A-module E to be ‘in-
jective'.

Let G be a locally compact group, and consider
the following, which are all regarded as Banach
left L1(G)-modules in a natural way.

Theorem [DP1]

(1) L1(@) itself is injective iff G is discrete and
amenable.

(2) Co(G) is injective iff G is finite.
(3) L°°(@G) is injective for all G.
(4) M(G) is injective iff G is amenable. O

What about LP(G) when p > 17



An application

Let G be a locally compact group. The Banach
space LP(G) is a Banach left L1(G)-module in
a canonical way.

Theorem - B. E. Johnson, 1972 Suppose
that G is an amenable locally compact group
and 1 < p < co. Then LP(G) is an injective
Banach left L1(G)-module. 0

Long-standing conjecture T he converse holds.
Partial results in DP, 2004.

Theorem - DDPR1, 2012 Yes, G is amenable
whenever LP(G) is injective for some (and hence
all) p € (1,00). O

This uses the theory of multi-norms. It gives
various new, combinatorial characterizations of
amenability.



A homework exercise

Let G be a group. Recall that G is amenable
if, for each € > 0 and each finite set F in G,
there exists a finite set S in G such that

SzASy| <e|S| (x,y € F).

This is Folner’s condition.

We say that G is pseudo-amenable if, for each
e > 0, there exists ng € N such that, for each
finite set F' in G with |F| > ng, there exists a
finite set S in G such that

ISF| < e|F||S] .

Each amenable group is pseudo-amenable; a
pseudo-amenable group cannot contain F, as
a subgroup.

Question Is every pseudo-amenable group
already amenable?



Minimum and maximum multi-norms

Let (E™ ||-|l,,) be a multi-normed space or a
dual multi-normed space. Then

n
max ||z]| < [[(z1, . zn)ll, < 30 llwll ()
i=1
for all z1,...,zn € E and n € N.
Example 1 Set ||(gc1,...,:cn)||frTin = max ||z;]|.
This gives the minimum multi-norm.

Example 2 It follows from (*) that there is
also a maximum multi-norm, which we call

(I 17 n € N).

Note that it is not true that } ', ||x;|| gives
the maximum multi-norm — because it is not
a multi-norm. (It is a dual multi-norm.)



A characterization of multi-norms
Give M, » @ norm by identifying it with B(£,°,£5°).

Let £ be a normed space. Then My, acts
from E™ to E™ in the obvious way.

Consider a sequence (J|-]|,,) such that each
| - |l,, is @ norm on E™ and such that ||z||; = ||z||
for each z € E.

Theorem This sequence of norms is a multi-
norm if and only if

la - x|, <lla:£" = L[| ||,

for all m,n € N, a € M n, and x € E™. O

Remark: We could calculate ||a|| in different
ways - for example, by identifying My, n with
BeE ¢1) for other values of p and ¢q. The case
p = q = 1 gives a dual multi-norm. See DLT

and the lecture of VT.
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Another characterization

This is taken from [DDPR1]. It gives a
‘coordinate-free’ characterization.

Let (E,||-||) be a normed space. Then a
co-horm on cg® E is a norm || -|| such that:

1) fla®z| < llal[[[z]| (a€co,z € E);

2) T ® Ig is bounded on (cqog ® E,| -||) with
|T ® Ig|| = ||T|| whenever T is a compact
operator on cg;

3) 161 @zl = |lzf| (z € E).

Each cg-norm is a reasonable cross-norm; we
can replace ‘T'is a compact’ by ‘T is bounded’.

For the theory of tensor products, see the fine
books of: J. Diestel, H. Jarchow, and A. Tonge;
A. Defant and K. Floret; R. Ryan.

11



T he connection

Theorem Multi-norms on {E" : n € N}
correspond to cp-norms on cg ® E.

The injective tensor product norm gives the
minimum multi-norm, and the projective
tensor product norm gives the maximum multi-

norm O
The recipe is: given a cg-norm || - ||, set
n
[(z1,. .z, =D 6 @z (x1,...,xn € F).
j=1

Thus the theory of multi-norms could be a
theory of norms on tensor products.

12



Banach lattices
Let (E,||-||) be a complex Banach lattice.

Then E is monotonically bounded if every
increasing net in EH] iIs bounded above, and
(Dedekind) complete if every non-empty sub-
set in ET which is bounded above has a supre-
mum.

Examples LP(2), L*°(2), or C(K) with the
usual norms and the obvious lattice operations
are all Banach lattices.

Each Banach lattice LP (for p € [1,00]) and
C(K) (for K compact) is monotonically bounded,
but cg is not monotonically bounded.

Each LP-space is complete, but C(K) is com-
plete iff K is Stonean.

13



Banach lattice multi-norms
Let (E,||-||]) be a complex Banach lattice.
Examples LP(2), L°°(£2), or C(K) with the

usual norms and the obvious lattice operations
are all (complex) Banach lattices.

Definition [DP2] Let (FE,|-]|) be a Banach

lattice. For n e N and x1,...,xn € E, set
L
(@1, @)y, = [z V-V @n| |
and
DL
(@1, x|l ™ = 1] 4+ + |zl || -

Then (E™, |- H{{) is @ multi-Banach space. It is
the Banach lattice multi-norm. Also
(E™, || - ||717?L) is @ dual multi-Banach space. It is
the dual Banach lattice multi-norm.

Each is the dual of the other.
14



A representation theorem

Clause (1) below is basically a theorem of Pisier,
as given in a thesis of a student, Marcolino
Nhani. There is an simplified proof in DLT.
Clause (2) is a new dual version.

Theorem (DLT)

(1) Let (E™ | -],,) be a multi-Banach space.
Then there is a Banach lattice X such that
(E™, || -],,) is multi-isometric to (Y™, |- ||£) for
a closed subspace Y of X.

(2) Let (E™, |- |,,) be a dual multi-Banach space.
Then there is a Banach lattice X such that
(E™ || -1,,) is multi-isometric to ((X/Y)", || - ||7?L)
for a closed subspace Y of X. O

15



Comparison with operator spaces

There is a huge industry connected with the
theory of ‘operator spaces’.

Definition Let £ be a linear space, and
consider an assignment of norms || - ||,, on M (E)
for each n € N; these norms are called the
matrix norms. An abstract operator space
on E is a sequence (J|-|,, : n € N) of matrix
norms such that:

(M1) |lavB|l,, < el [[vll,y, I8]] for each m,n € N,
o € Mn’m, /B - Mm,n, and v - Mm(E)

(M2) [[v & wllp 4, = max{[[v]l,, . [w]l, } for each
m,n €N, veMp(FE), and w € Mp(F).

Ruan’s theorem For each such system we can
represent E as a closed subspace of B(H) for a
Hilbert space H in such a way that the matrix
norms are recovered in a canonical way. ]

This is an £2-theory; ours is an £1 —¢°-theory.
16



An associated sequence
Let (]| -]|,,) be a multi-norm on {E™ : n € N}.

Define a rate of growth sequence via

pn(E) = sup{|[(z1, ..., zn)ll, * llzl] < 1}.
Trivially, 1 < pp(E) <n for all n € N and

Som—l—n(E) < om(E) + on(E)
for all m,n € N. What is the sequence (pn(E))?

In particular (pM3*(E)) is the sequence associ-
ated with the maximum multi-norm.

It can be shown quite easily that "¥*(F) is

n
o { ]|
1=1

where M\q,...,\n € E' and
n

(2, M) <1 (z€ By,
=1

J

17



Some examples

Theorem (i) For each p € [1,2], we have

PMAX(pPy = QMaX(pP) = pl/P  (n eN).

(ii) For each p € [2,00], there is a constant Cj
such that

Vv < 'Ry < o (eP) < Cpv/n (neN).
]

[In general, I do not know the best constant
Cp in the above inequality.]

Theorem Let F be an infinite-dimensional normed
space. Then /n < oMI¥*(FE) < n for eachn € N.

Proof This uses Dvoretzky's theorem. O

18



T he Hilbert multi-norm

Let H be a Hilbert space. For each family
H = {Hq,...,Hn} of closed subspaces of H
such that H =H; 1L --- 1 Hp, set

1/2
ra((@1, - 20)) = ([Preall® 4 - 4 [ Paznl?) 7,
where P, : H — H; for 1t = 1,...,n is the pro-
jection, and then set

H
[(z1,. - zn)ll, = Sl}JID"“H((fBL .3 Tn)) .

Then we obtain a multi-norm (|- ||,,Ij :n € N)
based on H. It is the Hilbert multi-norm.

19



Summing norms - I

Let £ be a normed space, and take p € [1,00).
For xzq,...,xn € E/, set

n 1/p

p

e = s { (5 )
This is the weak p-summing norm. For

example, we can see that

n
,LLLn(ZIZl,...,CL'n):SUD{ Zg‘jazj :g‘l,...,cjneT}.
j=1
For \1,...,\n € E/, we have

m,n()\l,...,)\n)zsup{ ‘(1‘,)\])‘ I.CUGE[l]} :

n
j=1
Theorem [DP2] Thedual of ||- |7 is pg . O

20



Summing norms - 1II

Again 1 <p<qg < oo, and E and F' are Banach
spaces. For T € B(E, F), wé?};)(T) is

n 1/q
sup (Z ij)q> Cppn(Tl,...,xn) <1
1

Definition Let T € B(E, F). Suppose that

Then T is (gq,p)-summing; the set of these is
Ngp(E, F). This gives a Banach space.

We write ng;}(E) for mgz;)(IE) and g p(E) for
mqp(Ig). Also mp(E) for mpp(E), etc.

In Memoriam: Joram Lindenstrauss (1936—
2012) and Aleksander Petczynski (1932—-2012),
founders of the theory of summing operators.

21



A connection

We write wqp (E) for wqp)(IE) and g p(E) for
wqp(Ig). Also mp(E) for mpp(E), etc.

Theorem Let E be a normed space, and let
n € N. Then

() =™ (B').
If E=F’ then

m(E) = my" (F).

22



The (p,q) —multi-norm

Let £ be a Banach space, and take p,q with
1 <p<qg<oo. Define

n 1/q
|1, zn) |9 = sup (Z )<wj,/\j>\q) ,
j=1

taking the sup over all \1,...,\n € E’ with
,UJp,n(Ala---aAn) S 1.

Fact: [DP2] {(E", || |{?) : n € N} is a multi-
Banach space.

Then (|| - ||§LP’Q)) is the (p, ¢) —multi-norm based
on E.

Remarks (1) The (1,1)-multi-norm is the
maximum multi-norm based on E.

(2) The (p,q) —multi-norm over E”, when re-
stricted to F, is the (p,q) —multi-norm over E
(by the principle of local reflexivity).

23



A connection

Let £ be a normed space. Take n € N and
x = (x1,...,zn) € E™, and define

n
Tr: (C1,-- ) — > Gz, C'— E.
j=1

Then pupn(w) = ‘

/
T;B:E%—>EH for p > 1.

It follows that

||| PO = 7y (TS - B — ).

This leads to:

Theorem Let E be a normed space, and sup-
pose that 1 < p < g < o©o. Then the (p,q)-
multi-norm induces the norm on cg ® E given
by embedding cg ® E into My p(E’, co). O

24



The (p,p) —multi-norm

For Banach spaces F and F, the (right) Chevet—
Saphar norm d, on E® F' is defined as

n 1/p
dp(z) = inf ¢ ppy (21, .., 2Tn) (Z |yz'||p> :
i=1

taking the inf over {z =31 1 z;®y; € EQ F}.
This norm is what is called a uniform cCross-
norm.

Theorem Let E be a normed space. Then
the (p,p)-multi-norm (regarded as a norm on
co ® E) is the Chevet—Saphar norm dp.

Proof The (p,p)-multi-norm comes from the
embedding of co® E into My(E’,cg). The latter
agrees isometrically with the class of p-integral
maps from E’ into cg - and the p-integral norm
is the norm of the induced functional on

E@ tt=0',F.
9p p
We use the facts that cg has MAP and dp is

an accessible tensor norm. O
25



A question

Question But what if we go to the (p,q)—
multi-norm?” What tensor product does it ex-

plicitly correspond to? How do we calculate
dual spaces?

26



(p, g)-invariant means

Let G be a locally compact group, and take
p,g With 1 < p <g<oo. A mean A € L>®(G)’
is (p,q)-Iinvariant if the set {s - A : s € G} is
(p, g)-multi-bounded (see below). The group
G is (p,g)-amenable if there is such a mean.

Key Theorem [DDPR1] In fact, G is (p,q)-
amenable if and only if it is amenable (and
several other characterizations).

Proof This uses characterizations of weak com-
pactness, the Krein—=Smulyan theorem, and the
Ryll-Nardzewski fixed point theorem. O

27



Concave multi-norms

Let £ be a Banach lattice, and take p,q with
1<p<gq<oo.

Definition The [p, g]-concave multi-norm is
given by

n . 1/q
||l = sup (Z (25, Aj)] ) ,
j=1

where the supremum is taken over all those
A,...,\n € E' such that

n 1/p
(z pj)p) <1
j=1

(The relevant term is defined by the Krivine
calculus.)

Theorem The sequence (|- [|P%) is a multi-
norm. O
28



Concave operators

The above [p, g]-multi-norms multi-norms are
related to the ‘(¢, p)-concave operators between
Banach lattices’ in the same way as (p,q)-
multi-norms are related to (g, p)-summing op-
erators. Thus we can use some theorems of
Maurey.

Proposition Let E be a Banach lattice. Then:
(i) for 1 <p; < g1 <oo and 1 <py < gp < 00,

we have (| - [[F242]) < (|| -[|!P1-9]) whenever both
1/p1 —1/q1 <1/p>—1/g2 and q1 < go;

(i) for 1< p<q<oo, (|| IIPd) < (- | Dy,
(iii) for 1 < p < g < oo, (|| P4y 22 (| - || [1-a]y;
(iv) for ¢ > 2, we have (|| - |1y = (|| . | {19y,

V) (- 1552y < () - 1122, =

29



The standard t-multi-norm on L"(2)

Let €2 be a measure space, and take r,t with
1 <r<t<oo. We consider the Banach space
L"(2) (e.g., £7), with the usual L™-norm || -||.

For each family X = {X1,..., X} of pairwise-
disjoint measurable subsets of {2 such that
Xq1U---UXy=£2, we set

rx ((f1,-- -, fn)) = (prlflut +o+ HPannHt)W ,

where Py : L"(Q2) — L"(X) is the natural
projection.

Finally, ||(f1, -, fa) |l = supx rx ((f1,- - -, fa)).

Then (||-||7[,f]) is the standard ¢-multi-norm
(on L™(2)) from [DP2].

Remark Suppose that ¢t =r. Then
1oy Y = (A2 V- VISl ]

and so (||-||7[f]) is equal to the lattice multi-
norm on L"(£2).

30



Concave and standard multi-norms

Theorem Suppose that 1 < r <t < oo, and
set 1/v =1/r—1/t. Then the standard t-multi-
norm is equal to the [1,v]-concave multi-norm
on /",

In particular, the Banach lattice multi-norm on
¢" is the [1, 1]-concave multi-norm on ¢". O
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Multi-convergence

Definition Let (E™, | -||,,) be a multi-normed
space. Then a sequence (x;) is multi-null,
written

Lim Xr;, = 0
1
if, for each € > 0O, there exists ng € N such that

[(znqg, .- xn)l, <e  (n1,...,n >np, k€N).

Example Let (E, || -||) be an ‘order-continuous’
Banach lattice, and consider the Banach lat-
tice multi-norm on {E™ : n € N}. Then a se-
quence is a multi-null sequence if and only if it
converges to O ‘in order’. O

Definition An operator is multi-continuous
if it takes multi-null sequences to multi-null
sequences.
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Multi-bounded sets and operators

Let (E™, | -]|,,) be a multi-normed space. A

subset B of E is multi-bounded if

cp = SUD{H(wl,...,xn)Hn L X1y, € B} < 0.
neN

Let (E™, | -||,,) and (F", | -|],,) be multi-Banach
spaces. An operator T € B(E,F) is multi-
bounded if T(B) is multi-bounded in F when-
ever B is multi-bounded in E. The set of these
is a linear subspace M(E, F) of B(E,F); M(FE)
IS a Banach algebra.

Theorem An operator T € B(E,F) is multi-
bounded iff it is multi-continuous. O

For Ty,...,T, € M(E,F), set

(T, - - 7Tn)||mb,n — SUD{CTl(B)U---UTn(B) cg < 1}.
Theorem Now (M(E, F)", |- [l,np.) is @ multi-
Banach space, and (M(E)™, || - [[,,p.,) IS @ ‘multi-

Banach algebra’. O
33



Examples of M(E, F)
T heorem Always

N(B,F) C M(E,F) C B(E,F). -

Theorem We can have M(E,F) = B(E,F)
and M(F,E) =N (F,E). So there is no ‘multi-
Banach isomorphism theorem’. O

Theorem We can have K(E) ¢ M(E). O

34



Multi-bounded maps between Banach
lattices

Theorem Let EF and F be Banach lattices,
and define M(FE, F) with respect to the lattice
multi-norms on E and F..

(i) Suppose that F' is monotonically bounded.
Then M(E,F) = By,(E, F).

(ii) Suppose, further that F has the Nakano
property. Then, further,

[Ty = 1Tl (T € Bp(E, F)).

(iii) Suppose that F' is monotonically bounded
and Dedekind complete. Then

M(E7F) — BT(EaF) — Bb(EaF)7
and |- ||,,, and || - ||, are equivalent on B.(E, F). O

35



Questions about multi-norms on Banach
lattices

Question What are the subsets B of £" that
are (p, g)-multi-bounded? Which operators be-
tween these spaces are multi-bounded - when
we put maybe different (p,qg)-multi-norms on
maybe different ¢ spaces?

Question What happens when ‘suppose’ does
not apply in the previous slide?

Do any of these questions lead to interesting
classes of operators?

36



Equivalences of multi-norms

Definition [DP2] Let (E,||-]|) be a normed
space. Suppose that both (|| - ||,,11) and (|| - ||3;,)
are multi-norms on E. Then (|| - ||7%,)
dominates (||-}), written (||-[3) < (|- [12), if
there is a constant C' > 0 such that

lz|l} <C|z|? (x€E"™ neN).

The two multi-norms are equivalent, written

(HBEX(E

if each dominates the other.

We wish to decide when various pairs of multi-
norms are mutually equivalent - for example,
what about (p, ¢)-multi-norms on £77

Clearly equivalent multi-norms have equivalent
rates of growth (via the sequences (yn)), but

the converse does not hold.
37



Equivalences of the Hilbert multi-norm

Theorem [DDPR2] Let H be an infinite-dimen-
sional (complex) Hilbert space. Then:

(i) the Hilbert and (2,2)-multi-norms are equal;

Gi) |- 12 <)) max < 2 =1 |2 for all n € N (and
the constant is best- pOSS|bIe)

(iii) the above norms are also equivalent to the
(p, p)-multi-norm whenever p € [1,2], but they
are not equivalent to any (p, ¢)-multi-norm for
which p < q.

(iv) but the (p,p)- and (q,q)- multi-norms are
not equivalent when p #% ¢ and max{p,q} > 2. O
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Interpretation in terms of summing
operators

Theorem (DDPR2) Let E be a normed space.
Then

(|- ||7gp17Q1)) 2 (|| - ||$Lp2,q2))
if and only if
rl(h,pl(E,aF) — ﬂqz,pz(E,aF)
as subsets of B(E’, F) for each Banach space F'.
Thus the theory of the equivalence of multi-

norms could be a theory of (g,p)-summing
operators.
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Some curves

Look at the ‘triangle’

T={(p,q) 11 <p<g<oo}.

For c € [0,1), look at the curve C¢:

1 1
Cc={(p,q)€’fi———=6}-
P q

Take r € (1,00). Then the curve Cy/r Meets
the line p = 1 at the point (1,7'). The union
of these curves is 7.

Two points Py = (p1,q1) and P> = (p2,q2)
in 7 are equivalent for a normed space FE if
the corresponding multi-norms (|| - || (?1:91)) and
(|l - ||7§Lp2’QQ)) based on E are equivalent.

First main question: When are two points in
T equivalent for £" (where r > 1)7

40



First result

The following is a fairly easy result from the
theory of absolutely summing operators.

Theorem Let E be a normed space, and sup-
pose that

1<p1<qg<oo and 1<ppy<go<oo.

Then (|- |P292)) < (|| -|{P1 1)) whenever both
1/p1—1/q91 <1/p>—1/g2 and q1 < go. O

Picture 1: The (p,qg)-triangle

Picture 2: Larger/smaller (p,q)-multi-norms
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A calculation

The following calculation gives us a start. It
will show non-equivalence between some (p, q)-
multi-norms.

We calculate ||(4q, ... ,5n)y|§f@ acting on £ (for
r>1and 1 <p<g<oo). The answer is:

p

nt/t+1/a=1/p \when p<rand 1/p—1/¢<1/r,

< 1 when 1/p—1/q > 1/r,

nl/d when p > r.

There are similar calculations involving
I(F1o- oo D IPD, where

1 Y o
= ¢ L " 0,0,...
fZ nl/,r.(c 7C Y 7C Y Y Y )

and ¢ = exp(2xi/n).
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Some tools
The generalized Holder’s inequality gives us:

Lemma Take p,q1,9> with 1 < p < g1 < ¢»o.
Then, for € = (x1,...,2n) € E™, the number
||a:||7(1p’@) is equal to

SUD{I(Clml,---,ann)llqu’Q1) 53 ‘Cj’u < 1} :

j=1
where u satisfies 1/u =1/q1 — 1/qgo. O

Theorem (Khintchine’s inequality): for each
u > 0, there exist constants A, and B, such

that
( 1 u )1/u
/ dt
0 |:

Ay (Z |Oéj| ) > ajri(t)
j=1 j=1

. , 1/2
< 5[ o)
j=1

for all aq,...,an € C and all n € N. Here the r;
are the Rademacher functions. O
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A factorization theorem

We use the following factorization theorem of
GrothendiecKk.

Lemma Let FF = L3(X2), where 2 is a measure
space and s > 1. Take u > s and u = 2 in the
cases where s > 2 and s € [1,2], respectively.
Then there is a constant K > 0 such that, for
each n € N and each A = (\q,...,\p) € F"
with p1 ,(A) = 1, there exist ¢1,...,¢n € C and
v = (vi,...,vp) € F™ such that:

() A; =¢v; (J €Np),;

.. u

(i) X0 | <1

(i) gy ,(v) < K.

In the key case where s € [1,2], we can take

K = Kg, which is Grothendieck’s constant. O
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The case where r=1

Take two (p, ¢) —multi-norms based on ¢1, say
(- 11819y and (|| - [|F292)).  The above cal-
culation shows that a necessary condition for
equivalence is that g1 = ¢g» = ¢q, sav.

Now (- [l 2 (|| - I§~) whenever 1 < p < q,
but they are not equivalent to (|- [{&9)).

The latter depends on an example of Stephen
Montgomery-Smith (Thesis, Cambridge, 1988):

Let I, be the identity map from ¢5° to the
LLorentz space En’l. Then

wg.q(In) ~ nt/9(1+logn) =19 7 (1) ~nt/d.

Now for the case where r» > 1.
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T he minimum multi-norm

Theorem [BDP] Let E be a Banach space
with type u € [1,2], and take s € [1,u]. Then
there is a constant K > 0 such that

lz|(5) < K |2|™" (e E", neN). O

Recall that a normed space E has type u for
1 < u < 2 if there is a constant K > 0 such

that
2 1/2 . 1/u

/1
O =1 j=1

The space L"(€2) has type min{r,2}.

n

46



Full solution for » > 2
Theorem (BDP) Take r > 2 and E = /7.

Then the triangle 7 decomposes into the fol-
lowing (mutually disjoint) equivalence classes:

® Tmin =A={(p,g) €T:1/p—1/q > 1/2},

e the curves 7. .= {(p,q) € Cc: 1 < p < 2}, for
ce€ [0,1/2);

e the singletons T, v = {(p,q)} for (p,q) € T
with p > 2.

Picture 3: Equivalence classes when r > 2.
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Sketch of proof

To show that alleged disjoint classes are indeed
disjoint use the elementary exercises where one
can to separate out classes,; this does not seem
to work when p1 > r and p> > r, and, in this
case, we must use the deeper results involving
Schatten classes, coupled with Khintchine’'s in-
equality and the ‘Orlicz property’.

To show that we do have equivalence where
claimed, use the previous lemmas on minimum
multi-norms and on curves.

The case where 1 <r<?2

Picture 4: Equivalence classes when
1 <r<?2.
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Open cases
There are open cases only when 1 <r < 2.

First open case Does

/ /
Mgy (5 c0) = Mg 2q/(q-2))(¢" 5 c0)
when r <2 and ¢ =2r/(2—1r) ? That is: ‘Do
we have equivalence on the flat bit?’" No idea.

Second open case Consider the points on the
curve C. with 1 < p < r; the left-hand point of
this curve is (1,1/(1—c¢)), and each such point
with 1 < p < r is equivalent to it.

T his leaves open the question whether the point
(r,ue) is equivalent to (1,1/(1 —¢)). An old
example of Kwapien shows that this is not the
case for ¢ = 0, and it is proved in BDP that it
is true for ¢ € (1/2,1/r), but we do not know
what happens when c € (0,1/2].

This should be re-solvable.
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(p, g)-multi-norms and standard
multi-norms

Fix the space ¢", where r > 1, and fix t > r, so
the standard t-multi-norm on ¢7 is defined.

We wish to determine

Br:={ma) €T (-1 = (- 1¥?)}

and

Dry:={ma) €T : (- 199 < (- I} .

Fact There is no (p,q)-multi-norm which is
equivalent to the standard ¢t-multi-norm on #¢7
if and only if these regions are disjoint.

Conjecture from DDPR2 This is always the
case whenever r > 1.
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An easy first step
Theorem Fix r > 1. Then

Bry={(p,q) €T :1/p—=1/q<1/r—1/t, q <t}.

Reason It is easy to see that we always have
- 1Y < (- 19Dy, and so this follows from
earlier diagrams. O

Picture 5. The set B,;.
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The case where r =1

Theorem Taket > 1. Then

D1y ={(p,q) € T :q = max{t,p}} \ {(t, 1)},
whereas
By ={(p,q) €T :q<t}.

Hence (||-|»®) = (|- 1)) on the space ¢1 if
and only ifp=g=t=1o0orp<qg=t.

Picture 6: The sets By ; and Dy ;.

Proof Most of this follows from the exercises,
save for the fact that

(- 122y < (- 18Dy = () - 11#)

when g = p > t. This follows from a result
of Pisier that says that My ;(£°°) C Mp(£>°) in
this case. O

52



The case where r» > 2

This is also rather easy; it follows from earlier
calculations.

Theorem Take t > r > 2. Then

Dyt ={(p,q) €T :1/p—1/q > 1/2},

whereas

Bry={(p,q) €T :1/p—1/q<1/r—1/t, q <t}.

Thus D,: and B, are indeed disjoint. O

Picture 7: The sets B,; and D, for r > 2.
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The case where 1 <r <2
This seems much harder and more interesting.
By a rather deep calculation we have:
Theorem Take t > r > 1, and consider the

space ¢". Set 1/s =1/r —1/t. For example,
when s > 2, then

1 1 _ 1
DT,t: (pac.I)___Z_ )
p q S
which is again disjoint from B, ;. O

Only partially solved: the case wheret>r > 1
and r<2and 1/r—1/t > 1/2.
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Counter to the conjecture

Here, if you look carefully, the two sets do
(just) overlap.

Theorem Suppose that 1 <r < 2, that ¢t > r,
and that 1 < p < ¢ < o0, and consider the space
¢" . Suppose further that 1/r—1/t > 1/2. Then
(I 1172y 2= (|| - I§) whenever
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A question concerning matrices

It is surprising that we can ‘reduce’ the calcu-
lation of D,, to one about matrices.

Given a matrix A = (a; ), we form |A| by re-
placing each a; j by ai,jr.

Theorem Take r > 1. Then the following
conditions on a point (p,q) € T are equivalent:

@) (|- 119y < (- |1y on e

(b) there exists a constant C' > 0 such that
|1A] < £ = L8 S C A €, — €8]

for every m,n € N and every n x m matrix A;

(c) |T| e B(£",£9) whenever T € B(£L",£P). O
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Thus our result gives a result about matrices
that might possibly be new.

Theorem Take » > 1 and 1 < p < g < o0.
Then there exists a constant C > 0 such that

AL £y — L]l < CJ|A = £y, — £7]

for every m,n € N and every n x m matrix A if
and only if 1/p—1/q > 1/2.
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