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Exact C*-algebras

Let 7 : B({p) — Q(¢3) = B(¥2)/K(42) be the canonical quotient map.
For any C*-algebra A, we obtain a *-homomorphism

r®id: B(fs) @MN A = Q) @M A.
It is clear that K (¢5) MM A is contained in the kernel of 7 ® id.

According to Kirchberg, a C*-algebra A is an exact C*-algebra if
K(l5) @M A = ker(r ® id),
i.e. if we have the short exact sequence

0— K()@MM A < B(ls) @MN A — QW) @M A — 0.

Theorem [Kirchberg]: A C*-algebra A is exact if and only if there
exists two nets of completely positive and contractive maps

Sat A= My and To 1 M,y = B(H)
such that ||Ty o Sa(x) — z|| — O for all x € A.



It follows from Kirchberg theorem that every nuclear C*-algebra is exact.
Proposition: If a C*-algebra A has the CBAP, then A is exact.

Proof: Suppose we have a net of finite rank maps T (x) = 3; f*(x)bS
on A such that ||Tal|p < C < o0 and Ty — id in the point-norm topology.
Then for any u € ker(m ® id) C B(¢5) @M A | we have

(id @ To) (u) = Z(z’d R ) (u) @b — u

in the norm topology in B(¢») @M A. Notice that

m((id ® fi*)(v)) = fi' (7w ®id)(u)) = 0.

This shows that each (id ® To)(uw) is contained in K(/») ® A and thus
uw e K(6) @Mn A,



Examples of Exact C*-algebras
e For C*-algebras, we have

Nulcearity = CBAP = Exactness
e For any discrete group G, we have
Amenability = Weakly Amenability = EXxactness, i.e. C;(G) IS exact
e Groups like G =TF,,Z2 x SL(2,7),G = SL(3,7) are exact.
Non-Examples of Exact C*-algebras

o C*(F,) for n >2 and B(H) if dim H = oo.



Some Interesting Theorems

It is easy to see that if A is an exact C*-algebra, then any C*-subalgebra
or subspace of A is also exact. Therefore, every C*-subalgebra of nuclear
C*-algebra is exact.

Theorem [Kirchberg and Phillips 2000]: If A is a separable exact
C*-algebra, then A is *-isomorphic to a C*-subalgebra of O-.

The Cuntz algebra O» is the universal C*-algebra generated by isome-
tries S; and Sy such that 5157 + 5255 = 1.

It is known that the Cuntz algebra is nuclear, simple, purely infinite
C*-algebra.



How about group C*-algebras ?



Roe Algebra C;(G)

Now let G be a discrete group. Then span{fls : f € bec(G),s € G} is a
unital *-subalgebra of B(4>(G)).

It is clearly unital. It is subalgebra since

(fAs)(gAt) = fFAsgr,—1 Ast = (f 59) st

It is also closed under the involution since

(FA) = A1F = Q1A -1 = (1) A1

Therefore,

CH(G) = spanifrs - F € lo(G),s € T C Bea (@)

is a unital C*-algebra, which is called uniform Roe algebra. In fact,
Ci(G) = Llo(G)xG. It contains CY(G), Loo(G) and K(£2(G)) = co(G) xG.



C*-algebra Crossed Product

Let A C B(H) be a unital C*-algebra and o : G ~ A is an action of G
on A. We can obtain a representation 7 : A — B(H ® ¢>(G)) given by

m(a)(§ ®ds) = a,1(a)(§) ® s
and an unitary represntation s : G — B(H ® ¢>(Q))

ds = 1 ® .
Then the reduced C*-algebra crossed product

Axiar G ={> n(as)Xs} I C B(H @ £2(@)).

To simplify notation we simply write 3., m(as)As as > s ass.



Positive Definite Schur Multipliers

A function ¢ : G x G — C is a positive definite Schur multiplier if for
any si1,---,sn € G, [¢(s;,5;)] is a positive definite matrix in My,(C).

Remark: If ¢ : G — C is a p.d. Herz-Schur multiplier, then
¢(s,t) = p(s™ 1)

defines a (left invariant) Schur multiplier.

Theorem: Let ¢ : G x G — C. TFAE:
(1) ¢ is a p.d. Schur multiplier,

(2) the Schur map Ty : [zs¢] € B(£a(G)) — [é(s,t)xst] € B(€a(G)) de-
fines a (weak* continuous) cp map on B(/>(G)),

(3) there exists a bounded map « : G — ¢>(I) such that
¢(s,t) = (als) | a(t)) = als) a(?).



General Schur Multipliers

A function ¢ : G x G — C is a Schur multiplier if the Schur map

Ty @ lwst] € B(l2(G)) = [¢(s, t)xs,i] € B(L2(G))

defines a (weak* continuous) cb map on B(¢>((G)). This is equivalent
to say that there exists two bounded maps o, 5 : G — ¢>(I) such that

¢(s,t) = (a(t) | B(s)) = B(s) a(?).

If o : G — C is a completely bounded/Herz-Schur multiplier, then

b(s,t) = (s~ 1t)

defines a (left invariant) Schur multiplier.



The following theorem was first observed by Guentner and Kaminker,
but was finally proved by Ozawa.

Theorem [Ozawa]: Let G be a discrete group. Then TFAE:
1. G is exact, i.e the reduced group C*-algebra C3(G) is exact;

2. for any finite subset £ C G and ¢ > 0, there exists a finite subset
F C G and a positive definite Schur multiplier u : G x G — C such
that

lu(s,t) — 1] < e if slte Eand u(s,t) =0 if st ¢ F.

3. CHG) = ¥lxo(G) x G is nuclear.
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Let FF be a subset of G. We define
Ap={(s,t) s te E}
to be a strip associated with E. In particular, if £ = {e},
Ne = {(s,t),s t € {e}} = {(s,5) : s € G}

IS just the diagonal of G x G. Here we are mainly interested in the finite
strips, i.e. strips with finite subsets FE C G.
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Now we can restate the theorem as follows.

Theorem [Ozawa]: Let G be a discrete group. Then TFAE:
1. G is exact, i.e the reduced group C*-algebra C3(G) is exact;

2. for any finite subset £ C G and ¢ > 0, there exists a finite subset
F C G and a positive definite Schur multiplier gb(E,g) G X G — C
such that

|¢(E’€)(S,t) — 1l <eif s~ 'te E and ¢(E,s)(s7t) =0 if s 1t ¢ F,

(2') there exists a net of positive definite Schur multipliers ¢o : GXG — C
such that
1) oo — 1 uniformly on each finite strip Ag
2) each ¢q is supported on some finite strip Ay

3. CF(G) = lxx(G) x G is nuclear.
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Coarse Embedding

In his study of large scale properties of finitely generated groups, Gromov
introduced the notion of coarse embeddability. We recall that a metric
space (X,dy) is coarsely embeddable into another metric space (), dy)
if there is a function f : X — Y for which there exist non-decreasing

functions
P+ . R_|_ — R_|_

such that I|im p+(r) = co and
r——+00

p—(dx(z,y)) < dy(f(=), f(y)) < p4(dx(z,y))

for all z,y € X.
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Some Equivalent Theorems

Theorem [Dadarlat and Guentner 2003]: A countable discrete group
(G is coarsely embeddable into a Hilbert space if and only if there exists
a sequence of positive definite Schur multipliers ¢, : G x G — C such
that

1) each ¢, is in Co(G x G, Ae),

2) ¢n — 1 uniformly on finite strips Ag.

We say that a Schur mulriplier ¢ is vanishing off the diagonal, ¢ €
Co(G x G, Ae), if for arbitrary € > 0O, there exists a finite set FF C G such
that for all (s,t) € Ap, we have |¢(s,t)] < e.

Examples of Coarsely Embeddable Groups

e Amenable groups, hyperpobic groups, SL(3,7Z), exact groups
e Groups with the Haagerup property

Non-example of Coarsely Embeddable Groups

e Gromov’'s example of finitely generated groups with a sequence of
spanders
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Summaring our discussion, we have

Amenable Groups Exact Groups

Groups has the HP Coarsely Embeddable Gr

C'onstder completely bounded p.d. multipliers Constder p.d.Schur multip
o:G—C .G xG—C.

If we have o : G — C, then we get ¢ : G Xx G — C with
¢(s,t) = (s 1t).
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Thank you for your attention.
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