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et us first recall from Lecture 6 the following theorem.

Theorem: Let G be a discrete group. TFAE:

(1) G is amenable,

(2) There exists a net of unit vectors &, € ¢>(G) (with finite support)
such that [[Aséa — €allo — O for all s € G,

(3) There exists a net of (positive definite) contractive/bounded ¢, €
A(G) (with finite support) such that po(s) — 1 for all s € G.

(4) A(G) has a contractive/bounded appriximate identity,

(5) C*(G) = C}(G) or equivalently B(G) = By(G).



Theorem: For discrete group G, we can easily prove that TFAE:

(1) G is amenable,

(2) C3(G) is nuclear,

(3) C3(G) has the CPAP,

(4) VN, (G) is semidiscrete.



How about non-amenable groups 7
What can we say about the free group [, of 2-generators 7

How do we describe the correspondng property for their group C*-
algebras and group von Neumann algebras ?



Completely Bounded/Herz-Schur Multipliers

A function ¢ : G — C is a multiplier of A(G) if the multiplication map

my: f € A(G) — of € A(G).

In this case, m, is automatically bounded on A(G).

Since A(G) = VN, (G)«, there is a natural operator space structure on
A(G). A multiplier ¢ is completely bounded (we also call it Herz-Schur
multiplier) if my @ A(G) — A(G) is a cb map. In this case, we use the
notion H(Pch — ”mSOch-

Theorem: A function ¢ : G — C is a cb multiplier with ||myl|, < 1 if and
only if there exist contractive maps «o,8 : G — H for some Hilbert space
H such that

p(s7H) = (a(t) | B(s)) = B(s)*a(t).
We let M_,A(G) denote the space of all cb-multipliers of G.



Since every ¢ € B(G) is the coefficient of the universal representation
of G. We can choose &,n € Hy such that

p(s) = (uséln) and thus o(s™1t) = (ustlusn)
and ||¢ll gy = ll€lllInl]. Therefore, we have

B(G) € MpA(G)

and

leller < llellB(ay-

In general, we have

A(GQ) — By(G) < B(G) C M4 A(G).

For any ¢ € A(G), we have

lellacey = lelsy ) = llvllse) = llelle-



Theorem: A group G is amenable if and only if B(G) = M ,A(G).

So if G is non-amenable, then we have

leller < llell ace
for all ¢ € A(G).



Weakly Amenable Groups

A discrete group G is weakly amenable if there exists a net of finitely
supported ¢ € A(G) such that ||pal|l < C < oo and ¢ — 1 pointwisely.

Theorem: Let G be a discrete group. TFAE:
(1) G is weakly amenable (with ||eal|lp < C < 00),

(2) C5(G) has the CBAP, i.e. there exists a net of finite rank cb maps
To - C3(G) — CY(G) such that [Tyl < C and || Ta(x) — || — O for
all z € C}(G),

(3) VN,(G) has the weak* CBAP, i.e. there exists a net of finite
rank weak* continuous cb maps Ty : VN)(G) — VN,(G) such
that [|Talle, < C and (Ta(x) — x,w) — 0 for all x € VN,(G) and
w € VN)\(G)*

We let A(G) = inf{C} denote the Cowling-Haagerup constant. In gen-
eral, we have A(G) > 1. We say that G has the CCAP if A(G) = 1.
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Outline of Proof: (1) = (2) and (3) If G is weakly amenable such that
we have a net of finitely supported oo € A(G) such that [[pal|lp < C < oo
and pq — 1 poitwisely. Then for each «,

My, - f € A(G) = paf € A(G)

is a finite rank cb map on A(G). Its adjoint map T, = m:;a is a
weak* continuous finite rank cb map on the group von Neumann al-

gebra VN, (G) such that ||Tal|e = [|mealley < C and

Ta(As) = pal(s)s.

It follows that the restriction of T, to C5(G) defines a net of finite rank
cb maps on C3(G).

Finally since pq(s) — 1 for every s € GG, we get

Ta()\s) — @a(S))\S — >\5

in the norm topology on C5(G) (resp., in weak™ topology on VN, (G)).
This implies that Tn(x) — « for all finite sum = = > a;As;. Since {Tn}
is uniformly bounded, this is also true for all z € C{(G)) (resp., for all
x € VN(G)).



(2) = (1) Suppose that {T,} is a net of finite rank maps on C3(G)
given in condition (2). We can prove that

pa(s) = <>\3—1Ta(>\s)5e|5e> = (Ta(As)de|Asbe)

is a net of bounded functions on G such that (i) each ¢ is contained in
A(G) and (ii) [[eallep < C. The norm convergence Ty (As) — As implies
that

SO@(S) — <Ta(>\3>5e|53> — <>\856|58> =1
for all s € G. This shows that G is weakly amenable with A(G) < C.

We can similarly prove (3) = (1).
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Proof of (i): It sufficies to consider that T, is a rank one map, i.e.
To(z) = fa(x)ba for some fo € By\(G) and by € C5(G). In this case, we
get

9004(3) — <Ta(>\s)5e|58> — fa(As)<b5e|>\85e> S A(G)-

Proof of (ii): Since Ty : C{(G) — C3(G) C B({2(G)) is completely
bounded, we have the cb-representation

To(z) = V()W with ||[V|[||W]| = ||Tal|cb-
Then we obtain two bounded maps

a(t) = m(t)WA,—16e and B(s) = w(s)V A _16¢
such that

(a(t)|B(s))

(T(EWA—10e|m(8)VA _18e) = (V¥ (s~ 1) m(£)WA,_18¢| A, —16¢)
(Ta(Ag—1)A-10e|A-10e) = (Ta(Ag-14)0e[As-14) = 9004(5_175)

This shows that we have

lealler < NIVIIIIWI = ITalle < C.
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Properties About Cowling-Haagerup Constant

(1)

(2)

(3)

(4)

Every amenable group is weakly amenable with A(G) = 1.

Weak amenability is closed under subgroups, i.e. if H < G is a
subgroup, then A(H) < A(G).

Weak amenability is closed under the cartesian product, i.e. we have
N(G1 x G2) = N(G1) - N(G2).

Weak amenability is not closed under group quotient or group semidi-
rect product.
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Length Function on the Free Group >

Let 5> be the free group of 2-generators with generators v and v. Then

F» consists of all reduced words e (empty word), w, v, ™1, v ™1, wu, uv, uwv=1, v

Given a reduced word s = riro-- -7y (With 7, = u,v,u~ 1 or v 1), we use
|s| = n denote the length of s. This induces a metric

d(s,9) = |s"'g|
on 5. It is known by Haagerup that there exists a map f : Fo — Hp
such that f(e) = 0 and

d(s,9) = |s~ gl = £ (s) = F(@)>.
Then the length function

(s,9) € Fa x Fa — |stg| = || £(s) — F(9)?

IS @ negative definite kernel, i.e. for all s1,---sp € Fo and aq---a, € C
with >  a; = 0, we have

> Is; sjlasdy = SN (s) = fsplPeid; = =2 3 eif (s < 0.
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Positive Definite Functions associated with the Length Function

It follows from Schoenberg theorem that for each real number ¢ > O,

~1
s,g) € Fo X F e tsTdl
2 2

IS a positive definite kernel. Therefore,

ot gelfy— el ¢ [0, c0)

IS a positive definite function on F».

Proposition: Let ¢t > 0.
(1) Each ¢ is a positive definite function in B(G) with ¢(e) = 1.
(2) Each ¢y is contained in cg(G) since pi(g) — 0 as |g| — oo,

(3) For each g € Fo, ¢t(g) — 1 ast — 0.
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CCAP of C}(F3)
Theorem: C{(F2) has the CCAP.

Outline of Proof: Let W,, denote the set of words with length n and let
En = Up_oW) be the set of all words with length < n. For n > 1, we
have

n
Whn| =4 x3""1and |[E,=1+4(Y 3 1),
k=1
Then o, = pixEg, 1S @ net of functions on F, with finite support and
thus all contained in A(F»).

It is known by Haagerup that for each t > O, |lentlles — llotller = 1.
Then ¥, = orn/lletnllen IS @ net of functions with finite support such
that ||¢¢nlle < 1 and ¥t ,(g) — 1 for all g € Fo. This shows that C5(F»)
is weakly amenable with A(F>) = 1.

Corollary: For any 2 <n < oo, C{(Fyn) has the CCAP.

Proof: Since Fy, is a subgroup of F», we have A(F,) = A(F>) = 1.
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More Examples

e If G1 and G5 are weakly amenable with A(G1) = A(G>) = 1, then the
free product G1 x G is weakly amenable such that A(G1 xG5y) = 1.

It follows that Fo = Z % Z and Zo % Z3 are weakly amenable with
Cowling-Haagerup constant 1.

o A(SL(2,7)) = 1.

e Any lattice I' of Sp(1,n) is weakly amenable with Cowling-Haagerup
constant equal 2n — 1.

e 72 x SL(2,Z) and SL(3,Z) are not weakly amenable.
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Haagerup Property for Groups

Definition: A group G has the Haagerup property (or a-T-menable in
Gromov's sense) if there exists a sequence of positive definite functions
on . G — C such that

1) each ¢, is contained in Cy(G),

2) on(s) — 1 for every s € GG.

Remark: Since 0 < pn(e) — 1, we can assume that ¢n(e) = 1 in the
definition.

As we have seen from the above discussion, the free group C*-algebra
C3(F2) has the Haagerup property. In this case,

pi(g) =e 9l 1t >0

IS @ net of positive definite functions on [F,, satisfying the above condi-
tions 1) and 2).
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Groups with the Haagerup Property

e Amenable groups

e Free groups, SL(2,7Z),

e subgroups, cartesian product, free product, increasing unions, ...

Groups without the Haagerup Property

e 72 x SL(2,Z) SL(3,Z), Sp(n,1), or any group with property (T)

A group has the property (T) if any sequence of (normalized) positive
definite functions, converging uniformly on compact sets, must converge
uniformly on G
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Von Neumann Algebra Haagerup Property

Definition: A von Neumann algebra M with a normal faithful trace r
has the Haagerup property if there exists a net of unital normal cp
maps ®, on M such that

0) Tod; <7

1) each &; extends to a compact operator on Lo(M, 1)

2) ||[®;(x) — x|]|]p — O for every x € M (resp. for every x € Lo(M,T)).

Theorem [Choda 1983]: A discrete group has the Haagerup property
if and only if its group von Neumann algebra L(G) with the canonical
trace 7 has the von Neumann algebra Haagerup property.
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Definition A unital C*-algebra A with a faithful trace (or state) = has
the Haagerup property if there exists a net of unital cp maps ®; on A
such that

0) Tod, <7

1) each &, extends to a compact operator on Lo(A, 1)

2) ||[®;(x) — x|]|]o — O for every z € A (resp. for every z € Lo(A,1)).

Theorem [Dong 2010]: A discrete group has the Haagerup property

if and only if its reduced group C*-algebra C{(G) with the canonical
trace 7 has the C*-algebra Haagerup property.
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