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Unitary Representations

In this lecture, we assume that all groups under consideration are dis-
crete. Many results are still true for general locally compact groups.

Let G be a discrete group. A unitary representation on a Hilbert space
H is a map

s € G—Us € U(H), the unitary group in B(H).
such that
UsUp = Usg;.
In this case,
i f =) asds € 41(G) = my(f) =) asUs € B(H)

is a contractive unital *-homomorphism from ¢1(G) into B(H), and
7(01(G)) ={=x(f) : f € £1(G)} is a unital *-subalgebra in B(H).



Group C* and von Neumann Algebras

We let C*(GQ) = 7(¢1(@)) 'l and VNL(G) = n(¢1(G))5°t denote the
group C*-algebra and group von Neumann algebra associated with the
unitary representation «. In particular, for the left regular representation

A:is€G — s € BlUx(@)),

we get the reduced left group C*-algebra C5(G) and the left group von
Neumann algebra V N)(G).

There is a universal representation

Tu - S & G — Ug — @aUg c B(@QHO&)7

where the direct sum is taken over all non-equivalent classes of cyclic
unitary representations. In this case, we can obtain the full group C*-
algebra C*(GQ) = my (L1(G)) I

It is known that there is a natural unital *~-homomorphism
7y 1 C*(G) — CX(G)
from C*(G) onto CY(G).



Fourier Algebras A(G)

Let A(G) = {f : G — C such that f(s) = (\s&|n)} be the space of all
coeficient functions of the left reqular representation A. It was shown
by Eymard in 1964 that A(G) with the norm

1Ly = inf{lIglllInl] = f(s) = (As&lm) }

and pointwise multiplication

(fg9)(s) = f(s)g(s)

is a commutative Banach algebra. We call A(G) the Fourier algebra
of G. It is known that we have the isometric identification A(G) =

VN, (G)s.

T herefore, if G is an abelian group, then we have

CI(G) = C(G), VNA(G) & Loo(G), and A(G) = L1(G).



Fourier Stieltjes Algebras

We let B(G) = {f : G — C such that f(s) = (us&|n)} be the space of
all coefifcient functions of the universal unitary representation m, of G.
Then B(G) with the norm

1fllseay = {lElllinll = f(s) = (us€ln)

and the pointwise multiplication is a unital commutative Banach algebra.
We call B(G) the Fourier-Stieltjes algebra of G. In general, we have the
iIsometric indetification

B(G) = C*(Q)*.

A function f : G — C is positive definite (or simply p.d.) if for any
s1,- - sn € G, [f(s; 's;)] is positive in My (C).

Theorem: A function f: G — C is p.d. if and only if f(s) = (Us£|&) for
some unitary representation mw; of G.

Therefore, every p.d. function f uniquely corresponds to a positive
linear functional on C*(G).



B\(G)
Moreover, we let By(G) = C{(G)*. Then the C*-quitent 7y : C*(G) —
C3(G) induces an isometric inclusion
B)\(G) — B(G),
and by a standard duality argument, we have

C*(GQ) = CX(G) if and only if B(G) = B)(G).

In general, A(G) and B)(G) are two-sided ideals in B(G) and we have
the isometric inclusions

A(G) — B \(G) — B(G).



Amenable Groups

A discrete group G is amenable if /5o (G) has a left invariant mean, i.e.
there is a state m : lo(G) — C such that m(s-h) = m(h) for all s € G
and h € lo(G), where we let s-h(t) = h(s71t). Since loo(G)* = £1(G)**,
this is equivalent to ds xm = m for all s € G.

Theorem: Let G be a discrete group. TFAE:
(1) G is amenable,

(2) There exists a net of fo > 0 in ¢1(G) such that ||fa|l1 = 1 and
|0s x fao — fall]1 — O for all s € G,

(2') For every finite subset I C G and € > 0, there existsa f > 0 in £1(G)
such that ||f|[l1 = 1 and ||dsx f — f||1 < e for all s € F.

(3) G satisfies the Fglner condition, i.e. for any finite set F C G and € >

0, there exists a finite set K C G such that |S'[|(KA|K‘ < e for all s € F.




Theorem: Let G be a discrete group. TFAE:

(1) G is amenable,

(2) There exists a net of unit vectors &, € ¢>(G) (with finite support)
such that [[Aséa — &allo — O for all s € G,

(3) There exists a net of (positive definite) contractive ¢, € A(G) (with
finite support) such that pq(s) — 1 for all s € G.

(4) A(G) has a bounded appriximate identity,

(5) C*(G) = C3(G) or equivalently B(G) = By(G).



Outline of Proof: (1) & (2) If G is amenable, we get a net of positive
1

functions {fo} in (2) of previous theorem. Then &, = f& is a net of unit
vectors in ¢>(G)T such that

[As€a — fa”% = > Ea(s™1t) — ca(t)|?

teG

< Y éa(sTH) — Ea@®)][EalsT ) + £a(D)
teG

= 3 fals7) — fa(t)| = ||6s * fa — fall1 — O.
teG

By an appropriate approximation, we can choose &, with finite support.

On the other hand, if we have (2), then Then f, = |£a]? is a net of
positive functions contained in ¢1(G) such that ||fa]l1 = 1 and

[0s % fa — falli = Z\foz(s_lt)—foz(tﬂ

tedG

= 3 Jta(sT) — €a(®)||€a(s 1) + £a(t)]
teG

< (Y (s — ea@®)?)2(Y |alsTIt) + a(t)]?)3
teG teG

— ||>‘S€Oé — 504”2”)‘8504 + €Oé||2 < 2”)\8504 — 504”2 — 0.
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(2) = (3) If we have (2), then pa(s) = (As€aléa) is @ net of positive
definite contractive functions in A(G) such that

If &4 has a finite support, then so is .

(3) = (4) Suppose we have (3). We want to show that the net of
contractive {pq} in A(G) is an approximate identity of A(G). Let us
first note that each ds is contained in A(G) since ds(t) = (Adelds). We
also note that the linear span of {ds : s € G} is norm dense in A(G). So
it sufficies to show that for all s € GG,

lpads — dslla(c) = lpa(s)ds — Oslla(ay = [pals) — 1[]0sl| o¢qy = O-
(4) = (5) Suppose that A(G) has a bounded approximate identity {pa}.
Reversing the above calculation, we can

[pals) — 1| = [pals) — 1|||5S||A(G) = ||pads — 55||A(G) — 0.
SO pu(s) — 1 for all s € G.



Let ¢ € B(G) = C*(G)*. For any s1,---,sp € G, we have

p(si) = 1-0(si) =1imea(si)e(s;) = lim(eap)(s;)
Then for any x = Y a;mu(s;) € C*(G), we have
p(z) = lim(eap)(z).
Since pqp is a net of bounded elements in A(G), we can conclude that
for any z € kermy, C C*(G),
p(z) = lim(pap)(x) = lim(pap)(mr(z)) = 0.

This shows that kermy = {0} and thus =) is an isometric *-isomorphism
from C*(G) onto CY(G).

(5) = (1) suppose C*(G) = CY(G). Then A(G) — B)(G) = B(G) is
weak* dense in B(G). For 1 € B(G), we can find a net of unit vectors
£a € U>(G)T such that for any s € G,

1= ”Orén<>\85a|foz> = @al(s).
This implies (2), i.e.

[As€a — Eall2 = ||>\S§oz||2 + H§OéH2 — 2Re{Aséaléa) — O
for s € G. So it follows from (1) < (2) that G is amenable.



Completely Bounded and Completely Positive Maps

Let A be a C*-algebra. Then for each n € N, there exists a unique C*-
algebra norm on My, (A). Indeed, we can assume that A C B(H). Then
we can get a C*-algebra norm on M, (A) by the following identification

Mn(A) = {[z4] : xi; € A} € Mn(B(H)) = B(H™).

If T:xe€ A— T(x) € B is a bounded linear map, then for each n € N,
we obtain a bounded linear map 1y, : Mp(A) — M,(B) defined by

T is completely bounded (or simply cb) if [|T||., = sup{||Tn|| : n € N} < .
T is completely positive (or simply cp) if each Ty, : Mn(A) — Mp(B) is
positive.

Theorem: Every bounded/positive T : A — C(2) (in particular, T :
A— C) is cb/cp.

Theorem: If T : A — M,(C(2)) is n-positive, then it is cp.

Theorem: A linear map T : M, (C) — B is cp if and only if for the matrix
unit {ew} of Mn(C), Tn([ew]) = [T(BZ])] IS positive in Mn(B)
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Stinespring/Arveson-Wittstock-Hahn-Banach Extension Theorem Let
A — B be C*-algebras and let T" : A — B(H) be a cp/cb map.
Then there exists a cp/cb map T : B — B(H) such that T|A =T
and | Tllcy = |17t

Theorem [Stinespring]: Let T : A — B(H) be a cp map. Then there
exist a Hilbert space K, a unital *~-homomorphsim = : A — B(K), and a
bounded linear map V : H — K such that

T(x) =V r(z)V
and [|T|ep = [[V]I*.
Theorem [Wittstock]: Let T': A — B(H) be a cb map. Then there

exist a Hilbert space K, a unital *~-homomorphsim = : A — B(K), and
bounded linear maps V,W : H — K such that

T(z) = Vir(z)W
and [|T'|[p = [[V[[[[W]].
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C*-algebra Tensor Product and Nuclearity of C*-algebras

Let A C B(H) and B C B(K) be two C*-algebras. We can obtain a
natural injective representation A ®,, B € B(H ® K). We define

A" B = (A®y, B) Il C B(H ® K).
We define A®M* B to be the norm closure of A®,;, B under the norm

[zllmax = sup{|lma - mg(x)|| = || D_7a(z)mp(y)ll if = =) z; ®y;},
where the supremum is taken over all representations : w4 : A — B(H)
and ng : B — B(H) with commutating range, i.e. my(x)rg(y) =
mg(y)ma(x) for all z € A and y € B. In general || - |max = || * [Imin
and the identity map on a Qqlg B exntends to a C*-quotient map

A®maxB N A®min B.

A C*-algebra A is nuclear (by C. Lance in the early 1970’'s) if for any
C*-algebra B, we have the C*-isomorphism

A ®max B=A ®min B.
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Nuclear C*-algebras and Semidiscrete von Neumann Algebras

Theorem [Choi-Effros]; A C*-algebra A is nuclear if and only if there
exists two nets of cp and contractive maps So : A — Mn(a) and T, :
M, (o) = A such that

|To, © Sa(x) — x|| — O for all z € A.

A C*-algebra A is said to have the CPAP if there exists a net of cp and
contractive finite rank maps 7T, : A — A such that

| Ta(x) — z|| — O for all x € A.

A von Neumann algebra M is said to be semidiscrete if it has the weak*
version of CPAP, i.e. there exists a net of weak* continuous cp and
contractive finite rank maps T, : M — M such that

(To(zx) —z,w) — 0 for all z € M and w € Mx.
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Examples of Nuclear C*-algebras

Finite Dimensional C*-algebras A = My, ® --- & Mn,,
Comm C*-algebra C(2)

Rotation algebra Ay,

CAR algebra Asc,

Matrix algebras M, (A), inductive limit and cg-direct sum of nulcear C*-
algebras A ...
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Theorem: For discrete group G, we can easily prove that TFAE:

(1) G is amenable,

(2) C3(G) is nuclear,

(3) C3(G) has the CPAP,

(4) VN, (G) is semidiscrete.
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Outline of Proof: (1) = (2) Suppose that GG is amenable. It is known
from the Fglner condition that for any finite set F' in G and € > 0O, there
exists a finite subset Ko = K(p.y in G such that

| Kal

< €

for all s € F.

Let 1o be the isometric inclusion />(Ky) < £>(G) and P, : /»(G) —
/>(Ky) be the projection. We obtain a complete contraction

Sa : & € C{(G) — Paxta € B(£2(Ka)) = M (o)

where n(a) = |Kq| is the cardinality of K.
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Let {ef;}s ek, Pe the matrix unit of B(/>(Kqa)). We can define a map

A,
To : €2y € B(£a(Ka)) = My (q) mﬁJeCﬂ@.

Now it is easy to verify that

egis)‘p(g)el?ft — {

Therefore, for any g € GG, we have

eg‘,t if g=st—1

O otherwise.

Sa()\g) = Pa)\gl/oé — Z eg)s)\gegt — Z eg,g_]_s,
s,te Ky s€EKaNgKa
and thus
KoNgK
T 0 Sa(Ng) = [KaNg al)\g_
n(a)
It follows that
FoA\gF,
| T 0 Sa(Ag) — Ag|| < Fa (g) a|||)\g|| <€ for all g€ FE.
n\ o

Therefore, we have ||Ty o Sa(x) — || — O for every z € C3(G).

(2) = (3) is obvious.
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(3) = (1) Suppose that we have C5(G) has the CPAP, i.e. there exists
a net of cp finite rank contractions T, : C{(G) — C3(G) C B(42(G))
such that ||Ta(z) — z|| — 0 for all z € CY(G).

Then we can get a net of functions {pn} Oon G defined by

pa(s) = <>\zTa(>\s)5e|5e> — <Ta()\s)5e|>\s5e>-

Since T, are completely positive maps, each ¢ is a positive definite
function contained in B(G) and we have

leallpay = pale) = (Ta(1)de|de) < [Ta(1)|| < 1.

Moreover, it is known by Haagerup that since each T, is finite rank,
then ¢q € £o(G) C A(G) with |lvall a(q) = lleallBay < 1.

Finally, we see that for each s € G, Tao(As) — As in norm-topology implies
that

SDC\{(S) — <Ta(>\3)5e|)\356> — <>\85€|)\85€> = 1.
T his shows that the group G is amenable.
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Remark: It is quite often to consider the following proof of (2) = (1).

Suppose that C;(G) is nuclear. Then there exists two nets of cp and
contractive maps So @ CY(G) — My (o) and Ty : y = C} Y (G) such
that

n(a

| T, 0 Sa(x) — z|| — O for all z € CY(G).

For each «, we can obtain a cp extension S, : B(l-(G)) — M, (o) Of Sa.
Then we obtain a net of cp maps

by = Ta o Sa : B(la(G)) — C3(G) C VNL(G).
Since VN, (@) is a dual space, there exists a subnet of {®d,} converging
in the point-weak* topology to a cp map @ : B(/2(G)) — VN (G). In
this case, we have ®(z) =z for all z € C{(G) and
D(Asz ) = AP ()N

for all x € B(¢»(G)). Let 7 be the canonical trace on VN, (G), then
7o P(x) defines a state on B(¢»>(G)). The restriction m = ToPy (@) IS
a left invariant mean on 45 (G) since

m(s-h) = 17(P(Ashr,1)) = T(AsP(h)A 1) = 7(P(h)) = m(h).

This shows that G is amenable.
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Theorem [Choi-Effros/Effros-Lance]: Let A be a C*-algebra. TFAE:

(1) A is nuclear,

(2) A has the CPAP,

(3) A** is demidiscrete.

20



References

(1) C*-algebras and Finite-Dimensional Approximations, N. Brown and
N. Ozawa

(2) C*-algebras by examples, K. Davidson

(3) Operator Spaces, E. Effros and Z-J Ruan

(4) Completely Bounded Maps and Operator Algebras, V. Paulsen

(5) Introduction to Operator Spaces, G. Pisier

21



